On expressible sets for products

Lukáš Novotný

Abstract

For a sequence of real numbers $\{a_n\}_{n=1}^{\infty}$ we call

$$E_{\Pi}\{a_n\}_{n=1}^{\infty} = \left\{\prod_{n=1}^{\infty} \left(1 + \frac{1}{a_n c_n}\right) : c_n \in \mathbb{Z}^+\right\}$$

its Π -expressible set. We calculate $E_{\Pi}\{a_n\}_{n=1}^{\infty}$ under various hypothesis on $\{a_n\}_{n=1}^{\infty}$. Where this is not possible we give some partial information on its contents. This investigation is a sequel to related investigations on the Σ -expressible sets of sums.

We say a sequence $\{a_n\}_{n=1}^{\infty}$ is Π -irrational if all the elements of the set $E_{\Pi}\{a_n\}_{n=1}^{\infty}$ are irrational numbers.

Hančl and Kolouch proved that if $\{a_n\}_{n=1}^{\infty}$ is a non-decreasing sequence of positive integers such that $\limsup_{n\to\infty} a_n^{\frac{1}{2^n}} = \infty$ and $a_n > n^{1+\varepsilon}$ where $\varepsilon > 0$ then the sequence $\{a_n\}_{n=1}^{\infty}$ is Π -irrational.

As an example of the type of result, we have the following.

Theorem Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of positive real numbers such that $\sum_{n=1}^{\infty} \frac{1}{2^n} \log a_n < \infty$. Then it is not Π -irrational.

In this talk we will present more detailed results of sequence $\{a_n\}_{n=1}^{\infty}$ and its Π -expressible set.

This is joint work with Jaroslav Hančl and Radhakrishnan Nair.