Assignment for:
A Compressive Sensing Primer with Applications

Marcello L. R. de Campos

Signals, Multimedia, and Telecommunications Laboratory
COPPE - Federal University of Rio de Janeiro

Version 1.0
August, 2014
Assignment
Assignment

1. Verify that $x = [e^{-\pi i/3} \ e^{\pi i/3} \ 0]^T$ is the unique minimizer of P_1 where

 $$A = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & -1 \end{bmatrix}$$

2. Let $\Psi = \{\psi_1, \ldots, \psi_n\}$ be an orthonormal basis of \mathcal{U}. Let $h \in \mathcal{U}$, $h = \sum_{i=1}^{n} \alpha_i \psi_i$ be normalized such that $\|h\|_2 = 1$. Show that h is maximally incoherent to the basis Ψ if $\alpha_i = \alpha_j = c$, for all $i, j \in \{1, \ldots, n\}$.

3. Prove that the $n + 1$ vertices of a regular simplex in \mathbb{R}^n centered at the origin form an equiangular tight frame.

4. The mutual coherence between two orthonormal bases can be defined as

 $$\mu(\Psi, \Phi) = \max_{i,j \in [n]} \ | < \psi_i, \phi_j > |$$

 Show that the following relation is valid:

 $$\frac{1}{\sqrt{n}} \leq \mu(\Psi, \Phi) \leq 1$$

5. Find a matrix $A \in \mathbb{R}^{2 \times 3}$ with minimal second-order restricted isometry constant.

The assignment is due on September 5th, 2014.