Novel tools and applications in tumor models

Jukka Rissanen, PhD
CEO and Co-Founder at PreclinApps Ltd
www.preclinapps.com
and
COO at Pharmatest Services Ltd
www.pharmatest.com
Various tumor models for the evaluation of novel cancer therapeutics

- Traditional xenograft models
 - Subcutaneous xenograft models
 - Implantation of human tumor cells subcutaneously into immunodeficient mouse
 - Relatively cheap, fast and easy to perform
 - Lack the correct tumor microenvironment
 - Orthotopic xenograft models
 - Implantation of human tumor cells into the organ of origin of immunodeficient mouse
 - Expensive, time consuming and technically challenging
 - Relevant tumor microenvironment, clinically relevant
 - May also include formation of metastases depending on cells used
- Syngeneic models (subcutaneous or orthotopic)
 - Implantation of mouse tumor cells into (immunocompetent) mouse
 - Tumors originating from their own species
 - Enable to study how immunotherapies act in a functional immune system
 - Similar technical advantages and limitations as with xenograft models
Various tumor models for the evaluation of novel cancer therapeutics

- **Patient Derived Xenograft Models**
 - Tissue from a patient’s primary tumor implanted directly into an immunodeficient mouse
 - Possess natural tissue architecture and composition
 - Expensive, time consuming and technically challenging
 - Often performed as subcutaneous models

- **Genetically engineered mouse (GEM) models**
 - Generated through the introduction of genetic mutations associated with particular human malignancies or transformation
 - Natural tumor microenvironment and immune competence
 - Tumors often mesenchymal instead of epithelial origin
 - May also include spontaneous carcinogenesis
Common features of various tumor models

- Study setups, parameters and endpoints
 - Typical duration between few weeks to few months
 - Immunodeficient or immunocompetent mice
 - Prevention, treatment or survival studies
 - Dosing of test compounds in efficacy studies from single dosing up to several times dosing per day
 - Dosing routes typically po, ip or sc depending on the formulation of test compounds
 - Anesthesia needed typically at implantation of tumor or cells, imaging and at sacrifice
 - Appropriate analgesia to minimize pain and distress, particularly at the end of in-life phase
Common features of various tumor models

- Various measurements for the assessment of disease progression and efficacy of therapy
 - During the in-life phase
 - Tumor burden by serial imaging (if labelled cells)
 - Body weight, cachexia, paraplegia
 - Soft tissues metastases by serial imaging (if labelled cells and soft tissue metastases occurred)
 - Osteolysis by radiography (if bone metastases occurred)
 - Biomarkers
 - At the end of the study
 - Histomorphometry (static and dynamic) of tumor and other tissue
 - Immunohistochemistry
 - Tumor volume and macroscopic findings
 - Molecular analysis
Common consequences of various tumor models

- Implantation of tumor cells or tumor tissue causes often severe disease
 - Cancer studies lead often cachexia, paralysis and pain at the end of the in-life phase
 - Vicious cycle in bone metastases studies lead severe osteolysis
- Earliest scientifically justified point for the termination of study is often when disease has severe symptoms
 - In efficacy studies traditional analyses such as histology and radiography requires visible changes at tissue level
 - In survival studies the type of the study itself
- Mode of treatment and study setup may cause further stress
 - Excessive handling and injection stress raises catecholamine levels thus effecting for example cardiovascular study outcomes such as blood pressure
 - Oral gavage dosing can induce bleeding in oesophagus
 - Fasting needed for biomarker measurements, usually at least 6 hours needed
How can we implement better 3R principles in tumor studies?

- Industry wants to cut costs, but at the same time have better outcomes and predictivity of the studies
- 95% of the anticancer compounds fail in clinical phases => Predictive value of all preclinical data is only 5%!
- Ethical concerns => growing criticism on painful animal experimentation
- Can we improve the predictivity of tumor models and concomitantly implement better 3R principles?
- Two case examples of novel tools and applications on how both of these issues can be implemented in tumor models:
Example 1: Using “early detectors” of disease progression

- Treatment of established bone metastases, MDA-MB-231 breast cancer xenograft study
- Groups (Final n= 14-16 per group)
 - Control, vehicle
 - Reference compound 1: Doxorubicin 2.5 mg/kg weekly i.p.
 - Reference compound 2: Zoledronate 100µg/kg once s.c.
 - Combination group: Sequential treatment (dox + after 24h zol)

<table>
<thead>
<tr>
<th>Day</th>
<th>Blood sample</th>
<th>Blood sample</th>
<th>Radiography Randomization</th>
<th>Blood sample</th>
<th>Dosing</th>
<th>Dosing</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sacrifice;
- Blood sample
- Radiography
- Non invasive-imaging → **Biomarkers**
- Blood sample
- Radiography
- GFP-imaging → **Biomarkers**
Example 1: Using “early detectors” of disease progression, biomarkers

Conclusions:

- Zoledronate prevents the increase of ostelolytic area
- TRACP 5b biomarker may predict tissue level (ostelolytic lesions) changes several days earlier before changes are visible
Example 1: Using “early detectors” of disease progression, imaging

Conclusions:
- GFP-labelled MDA-MB-231 breast cancer cells are visible throughout the animal
- GFP-imaging reveals both, bone and visceral metastases
- GFP-imaging may predict tissue level (ostelolytic lesions) changes few days earlier before changes are visible
Example 2: Using novel methods for long term dosage of animals, MedRod™

- MedRod™, Polymer based long term drug delivery systems
 - Typically 3 mm diameter, 10 mm long cylinder shaped rod
 - Size is dependable on the used substance, study type and duration of the study
 - Elastic, safe and well tolerated
 - Can be used for stable release subcutaneously (s.c) or even in vitro
 - Optimal release capacity for steroid substances such as dihydrotestosterone (DHT), testosterone and estrogen
 - Enables decreasing animal number to be used in the studies thus follows 3R principle

Fig 1: A) Cross-sectional magnified image of a 1 cm long 3 mm OD membrane covered MedRod™ filled with test compound; B) Elastic properties of a polymer rod; C) Magnified image of a test compound filled MedRod™ after 8 weeks experimentation.
MedRod™ drug delivery systems

Benefits of MedRod™

- Adjustable sustained drug release from weeks to several months
- Utilities biocompatible, biostable soft matrix that remains unchanged in tissue
- Soft nature of MedRod™ minimizes irritation and maximizes comfort
- Small in size and thus easy to assemble
- Removable at any time of study, if sudden termination of drug delivery desired
- No replacement required during the study compared to many other substance releasing devices
- Save time and money by eliminating the need for frequent animal handling
MedRod™ drug delivery systems

Possible indications
- Release of hormones in hormone dependent cancer and metabolic disease animal studies
- Release of analgesia in preclinical animal studies
- Release of growth hormone in nerve injuries animals studies
- Release of antifibrotic medication and steroids in heart failure animals studies

The effect of DHT on orthotopic LNCaP tumor growth at 8 weeks, conventional dosing
A pilot study: The effects of DHT MedRod™ in three different mouse strain

- 8 weeks study, n = 7 in each group
- Serum DHT measurements by kit chemistry at various time points
- Liver and prostate weight at sacrifice
- Body weights and macroscopic findings during the study
- Groups
 1) Harlan athymic wo treatment
 2) Harlan athymic with DHT MedRod™
 3) CRL NMRI wo treatment
 4) CRL NMRI with DHT MedRod™
 5) CRL foxnude wo treatment
 6) CRL foxnude with DHT MedRod™
Results of DHT MedRod™ study

Groups
1) Harlan athymic wo treatment
2) Harlan athymic with DHT MedRod™
3) CRL NMRI wo treatment
4) CRL NMRI with DHT MedRod™
5) CRL foxnude wo treatment
6) CRL foxnude with DHT MedRod™
Conclusions of DHT MedRod™ study

- During the 8 weeks study DHT was released continuously from polymer tubes as assessed by DHT measurements
- DHT release was stable with low variance
- The release of DHT was physiological and anabolic as assessed by increased prostate weights
- Liver weights were slightly elevated due to increased metabolic activity, but no pathological findings were observed
- MedRod™ systems were well tolerated during the in-life phase
- Animals had no signs of inflammation upon sacrifice
- Based on preliminary results, MedRod™ drug delivery systems can improve predictability and accuracy of preclinical models providing concomitantly option to decrease the use of research animals
Summary

- Animal studies are required before human administration of new anticancer treatment.
- Various animal models of cancer are irreplaceable link between in vitro studies and clinical data.
- Lack of valid preclinical efficacy models and tools is particularly high in the field of oncology as 95% of the potential anticancer drugs fail in clinical phases.
- Efforts to develop more predictive in vivo models and concomitantly implement better 3R principles are often controversial.
- Key stakeholder is industry and its efforts to increase predictivity and cut costs.
- Novel applications in the field of noninvasive imaging and biomarkers as well as novel tools such as MedRod™ may have the potential to increase predictivity and concomitantly implement better 3R principles in tumor in vivo studies.