Study on the Effect of Transphyseal Bioabsorbable Screws on Growth Retardation in Rabbit Femur

Eero Waris¹,², Christopher P. Kelly², Lee Andrus², Timo Waris³, Ian T. Jackson², Nureddin Ashammakhí³,⁴

1. Institute of Biomedicine/Anatomy, Biomedicum Helsinki, University of Helsinki, Finland.
2. Institute for Craniofacial and Reconstructive Surgery, Province Hospital, Southfield, Michigan, USA.
3. Department of Surgery, Oulu University Hospital, Oulu, Finland.
4. Institute of Biomaterials, Tampere University of Technology, Tampere, Finland.

A self-reinforced bioabsorbable poly-L-lactide/polyglycolide (SR-PLGA) 80/20 screw 2.0 mm in diameter was implanted in a transphyseal location across the distal growth plate of the right femur in 24 immature rabbits. Radiological evaluation revealed a mean shortening of 3.1 mm at 3 weeks (p=0.050), 11.1 mm at 6 weeks (p=0.001), 9.3 mm at 24 weeks (p=0.011), 9.0 mm at 48 weeks (p=0.009) and 12.6 mm at 72 weeks (p=0.002) compared with the intact contralateral femur. Growth retardation continued for 6 weeks postoperatively (3 versus 6 weeks, p=0.003), after which the bones grew normally up to 72 weeks (p=0.6). The duration of temporary growth retardation correlated with that of strength retention of the SR-PLGA 80/20 copolymer. These findings suggest that SR-PLGA 80/20 screws can be applied in transphyseal bone fixation. The use of bioabsorbable screws for temporary epiphysseodesis seems attractive but requires further study.

Keywords
Femur, growth, rabbit, SR-PLGA

Acknowledgements
Research funds from the Technology Development Center in Finland (TEKES, 90220, Biowaffle Project 40274/03 and MFM Project 424/31/04), the European Commission (Project BMH4-98-3892, Project QLRT-2000-00487, EU Spare Parts Project QLK6-CT-2000-00487), and the Ministry of Education (Graduate School of Biomaterials and Tissue Engineering) are greatly appreciated.