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VIII General Approaches to Tissue Engineering

V. Barron and A. Pandit*

Summary 

T 

issue engineering (TE) has the potential of improving the quality of life for many thousands of people 

throughout the world. One particular area which presents an exciting challenge in this field is the 

repair and regeneration of cartilage where traumatic injuries and arthritis result in pain and restriction 

of movement. In order to achieve this goal of tissue engineering cartilage, there are three necessary 

components: cells for the generation of tissue, a scaffold to support growth and that degrades as the 

extracellular matrix is generated and a bioactive factor to stimulate the correct biological signals in 

vivo for tissue growth and integration with native cartilage.  Over the last number of years there has 

been significant interest in progenitor stem cells for TE applications. Mesenchymal stem cells (MSCs) 

have been shown to differentiate into a range of tissues including bone, cartilage, muscle, tendon, skin 

and fat.  Furthermore, a number of biocompatible biodegradable materials have been identified as 

carriers for these cells for transplantation. Once transplanted, however, these cell seeded scaffolds 

require the necessary signals to survive and assimilate in their host environment. Therefore, a number 

of bioactive factors including growth factors and cytokines are also required for cartilage repair and 

regeneration. In this chapter, the combinatorial approach of progenitor cells, biodegradable scaffolds 

and bioactive factors is discussed in relation to cartilage TE. The challenges for the future including 

cell sources, osteochondral defects and gene therapy are also examined.  
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Background 

 

Degenerative diseases represent a critical issue, especially in the aged where it is predicted that the 

next thirty years could see the population over 60 grow by 50% in the European Union (1). This in 

turn requires the need for more organs, joints and other body parts which will have to be replaced in 

order to maintain a reasonable quality of life. However, while the development of synthetic 

materials and artificial devices has improved the quality of life for many thousands of people, the 

issue of biocompatibility and foreign body response still remains an issue that has not been fully 

resolved. TE presents an excellent opportunity to address these issues with the development of the 

next generation of biomaterials. One such area that seeks to benefit from TE is cartilage. Our 

hypothesis is that, where cartilage damage is beyond self-repair, progenitor stem cells supported by 

biodegradable scaffolds and chondrogenic growth factors can sense and respond to their host 

environment and thereby promote cartilage repair and regeneration. 

 

Essentially, cartilage is composed of chondrocytes embedded in an extracellular matrix composed of 

collagen and proteoglycans (Fig. 1). During foetal development the human skeleton is mostly 

cartilaginous in nature. In adult life there are three types of cartilage found in the human body, 

namely hyaline, white fibrocartilage and yellow elastic fibrocartilage. Hyaline cartilage covers the 

articulating surface of bones and is also found in the nasal, costal, trachea and bronchial and all 

other regions with temporary cartilage. White fibrocartilage is composed mainly of collagen and is 

found in the intervertebral disks, articular disks and the lining of the bony grooves that lodge 

tendons, while yellow elastic fibrocartilage contains a rich elastin network and is found in the 

external ear, larynx, epiglottis and the apices of the arytenoids (2).  
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Fig. 1: Schematic diagram illustrating the key components of articular cartilage 

 

  

As shown in Figure 2, articular cartilage is quite porous and is composed of water, cells, collagen 

fibres and an ECM. The cells and matrix form a layered structure comprised of the superficial layer, 

the transitional layer, the radial layer and the calcified layer. In the human body, articular cartilage is 

exposed to tensile, compressive and shear forces. Under stress, the fluid moves in and out of the 

tissue and alters the properties with fluid movement. The collagen fibres are strong and stiff in 

tension, while the proteoglycans are strong in compression. With respect to the mechanical 

properties of cartilage itself, the compressive stiffness and resistance of cartilage depends on the 

water and proteoglycan content of the tissue. The greater the percentage of proteoglycan present, the 

greater is the compressive resistance. The tensile strength of cartilage depends on the percentage of 

collagen present. As the percentage of collagen increases, the tensile strength of cartilage also 

increases (3). As people grow older the percentage of collagen increases, and this has an effect on the 

mechanical properties of cartilage. 
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Fig. 2: Cross section of articular cartilage illustrating the location of chondrocytes 
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The primary function of articular cartilage is to allow ease of movement between articulating bones. 

This is achieved by the presence of synovial fluid, which reduces the coefficient of friction to the 

order of 0.001-0.06. Other functions of cartilage include wear resistance and dissipation of 

mechanical energy to reduce damage upon impact. However, traumatic injuries and degenerative 

diseases such as rheumatoid arthritis and osteoarthritis can result in cartilage wear, damage, failure 

and hence reduction in joint movement and load – bearing ability. Due to the fact that cartilage is 

avascular, once damaged it is very difficult to repair. Current methods of articular cartilage repair 

include joint resurfacing techniques, such as microfracturing, drilling, scraping, shaving and 

autologous grafting (4, 5). In autologous grafting, adult chondrocytes are isolated, expanded in vitro 

and transplanted into the required area using a scaffold or as cell suspension. Once such method of 

grafting is called autologous cartilage transplantation (ACT), where chondrocytes are injected in a 

cell suspension to the cartilage defect and a progenitor rich periosteal flap is sutured over the 

affected area (4-6). However, to date there has been very little success in the area of articular 

cartilage repair. Only in cases where damage to cartilage is accompanied by damage to the 
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Fig. 3: Parameters required for cartilage repair regeneration using a combinatorial approach 

subchondral bone does the formation of small fibrous tissue repair occur (5). However, this thin 

tissue layer is fibrous and does not have the same mechanical properties as native hyaline cartilage.  

 

One method of addressing this problem of cartilage repair and regeneration involves TE, where the 

prospect of developing patient specific cartilage without adverse foreign body reactions is possible. 

The critical parameters required for such a system are illustrated in Fig. 3 and a combinatorial 

approach employing cells, scaffolds and growth factors is proposed. To create cartilage tissue ex 

vivo, it is necessary to attract cells to a scaffold and for these cells to multiply, differentiate and 

organise to form normal healthy cartilage as scaffold degrades in vivo. Therefore, we believe that the 

identification of the ideal cells, scaffolds and growth factors are crucial in the development of tissue 

engineered cartilage. 
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Cells 

 

In order to generate tissue engineered cartilage, the cells chosen will have to be able to respond to 

their environment, differentiate, form new tissue and integrate with native tissue. To develop a 

tissue suitable for transplantation, it is necessary to isolate healthy cells, expand these cells ex vivo 

using cell culture methods, incorporate them into three dimensional scaffolds and introduce them to 

growth factors (Fig. 4).   
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Fig. 4: Proposed route to obtaining a tissue engineered construct 
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Autologous chondrocytes have been isolated from healthy articular cartilage sites using tissue 

biopsy methods (5). While redifferentiation in vitro is possible, it is problematic and requires 

transforming growth factors such as TGFβ1 to induce chondrogenesis (4). However, success to date 

has been limited due to low numbers of cells available and the restricted ability of these cells to 

proliferate, differentiate and regenerate tissue. Cells from non- articulating surfaces such as nasal 

and rib cartilage have also been examined.  Nevertheless, more research is required to determine if 

these cells are suitable for articular cartilage applications (4). 

 

Over the last decade there has been significant interest in progenitor cells such as pluripotential 

embryonic stem cells and multipotent adult stem cells to regenerate or repair damaged tissues (2, 4, 

5, 7-22). Embryonic cells from human fetal tissue have the capacity to differentiate into any tissue or 

organ (5, 14, 23-34). However, the practical use of embryonic stem cells is restricted due to ethical 

and political considerations. Adult stem cells such as mesenchymal stem cells (MSC) are less 

problematic in terms of ethical issues and have been shown to differentiate into a variety of 

mesenchymal tissue (Fig. 5) including, bone, cartilage, muscle, tendon, fat and connective tissue, 

thereby making them very attractive for tissue engineering applications (16). These progenitor cells 

can be found in bone marrow, adipose tissue and muscle and are known to decrease in frequency 

with age. At present it is difficult to quantify exact numbers or specify exact locations for stem cells 

and their descendants since all the surface markers for these cells have not been completely 

identified (8). Risbud et al. (16) reported that the frequency of MSCs in bone marrow varies between 

1:104 and 1:106. MSCs can be isolated from bone marrow and expanded to large numbers in culture, 

which makes them very attractive for TE applications. Over the last number of years, surface 

markers for the isolation and characterization of MSC have been developed, thereby allowing the 

use of MSCs in TE.  
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Fig. 5: Diagram illustrating MSC differentiation for a range of tissues including cartilage, bone, brain, fat, liver and
muscle. (Reproduced with permission from NIH http://stemcells.nih.gov/infoCenter/stemCellBasics.asp). 

 

 

http://stemcells.nih.gov/infoCenter/stemCellBasics.asp
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The importance of MSCs for TE applications lies in their potential to be cultured in vitro, to 

proliferate and to possess specific cell surface marker proteins, adhesion molecules, cytokines and 

growth factors for differentiation (5). Nevertheless, there are still many questions that remain 

unanswered with regards to cell signalling mechanisms before a true understanding of the 

differentiation and repair mechanisms is achieved. To repair and regenerate cartilage, however, 

differentiation of MSCs into chondrocytes is necessary. To achieve this goal, MSCs have to respond 

to appropriate cell signals and bioactive molecules such as phenotype specific growth factors. 

Additionally, these cells have to be delivered to the specific area of interest without adversely 

affecting the cell signalling mechanism and differentiation. Once implanted these cells have to be 

able to respond to their environment and generate the required extracellular matrix. Herein lies one 

of the foremost challenges of producing tissue engineered cartilage with the same mechanical and 

physical properties of native cartilage from progenitor MSC cells.   

 

 

Scaffolds 

 

The primary function of the scaffold in TE is to provide a template to introduce the progenitor MSCs 

to the specific site of interest and to provide interim mechanical stability for tissue growth and 

integration. Additional requirements of the scaffold include the following: 

• Provide a space to host cells – a three-dimensional (3D) structure is required 

• Has the ability to transfer nutrients to the cells and remove their waste without adverse 

effects on the cells  

• Should be biodegradable – at a rate comparable to extracellular matrix production  

• Should be biocompatible 

• Should be non-toxic 

• Should be easy to manufacture 
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Over the last decade there has been significant interest in biocompatible biodegradable scaffold 

materials including synthetic biodegradable polymers such as polyglycolic acid (PGA), polylactic 

acid (PLA), copolymers of PLA and PGA (PLGA), polycaprolactone (4, 35-39) and natural polymer 

gels such as hyaluronic acid (HA), fibrin, alginate, collagen and agarose hydrogels (6, 9, 40-45).  

 

In addition to the various polymers used as scaffold materials, there are also many different shapes, 

sizes and structural forms of 3D scaffolds including meshes, foams, fibres and sponges. However, 

the greatest challenge in the area of scaffold design and development lies in the areas of optimal 

pore size design and phenotype control. One approach which avoids the issue of immune response 

and examines the possibility of phenotype control involves the use of bio-based bio-mimetic scaffold 

materials. By incorporating bioactive molecules such as cytokines and growth factors into the 

scaffold material, it may be possible to assist chondrocyte differentiation and hence tissue growth 

and integration with native cartilage tissue. At present the authors are investigating the following 

method of scaffold design which involves the three-fold approach:   

i) Biological Domain: to use biological substrates and factors that native cartilage tissue can sense 

and respond without an adverse immune response 

ii) Biostructural Domain: to recreate mechanical properties that are intrinsic to the body, thereby 

removing any concerns of property mismatch in the damaged region. 

iii) Bioarchitectural Domain: to create an architectural pattern where cells can recognise and respond 

to the appropriate signals for successful tissue growth and integration.  

 

 

Growth Factors 

 

Phenotype 

As mentioned previously, MSC cells can differentiate into a range of mesenchymal tissue. For 

cartilage repair and regeneration, MSC progenitor cells have to differentiate into chondrocytes for 

the correct ECM generation. To ensure chondrogenic differentiation, the MSC cells will have to be 

able to attract and respond to the correct biological signals for tissue regeneration and repair (46). 
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Bioactive factors that regulate chondrocytes and cartilage development include transforming growth 

factor-beta 1 (TGF-1), insulin like growth factor-1 (IGF-1), growth and differentiation factor-5 (GDF-

5), bone morphogenetic protein-2 (BMP-2), integrins and the receptors for these molecules (6). These 

bioactive factors can be delivered to the required specific site by a number of methods including the 

incorporation of these molecules into a scaffold for controlled release, by injection to the exact site or 

by the use of gene therapy.  

 

In the area of bone tissue engineering bioactive factors such as bone morphogenetic proteins (BMP) 

have been shown to enhance osteogenesis (47-50).  Bioactive factors also have an important role to 

play in the repair and regeneration of cartilage.  The ultimate aim of this combinatorial approach is 

to promote articular cartilage repair or regeneration by the incorporation of MSC’s and specific cell 

signalling molecules in a support matrix.  By incorporating specific proteins into the scaffold matrix 

it is hoped to recruit in situ MSCs or stimulate implanted MSC’s to promote chondrogenesis and 

encourage tissue growth and integration without an adverse immuno response.  A more detailed 

discussion on the role of differentiation and growth factors is outlined by French et al in a previous 

chapter. 

 

Vascularization  

In addition, chondrocytes also require oxygen and nutrients to survive. Although cartilage is 

avascular, blood vessels are required to keep cells alive and to advance tissue formation. To promote 

angiogenesis, bioactive factors such as fibroblast growth factor will have to be available for correct 

and fast-acting vascularization of the transplant (4), either through incorporation into the scaffold 

for controlled release,  injection or through the use of novel gene vectors (51). 

 

Mechanical Conditioning 

One of the most important requirements of tissue engineered cartilage is the formation and 

integration of neo-tissue with mechanical properties similar to native cartilage. In recent years it has 

become increasingly apparent that biomechanical and biochemical stimulation of tissue engineered 

constructs is very important for tissue growth (44, 52-69). At present much attention is focussed on 
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the use of bioreactors to improve the mechanical and chemical properties of cartilage by 

mechanically conditioning cartilage constructs in a simulated physiological cartilage environment. 

 

 

Challenges for the Future 

 

TE of cartilage shows significant promise for many patients suffering from osteoarthritis, 

rheumatoid arthritis and damaged cartilage. However, at the present time, there are many 

challenges that need to be overcome before it becomes routine in clinical practice. One of the 

challenges in the area is cell source. MSCs can be isolated from bone marrow, and more recently it 

has been shown that MSCs can be isolated from adipose tissue and expanded in large numbers in 

culture. However it is also known that the number of MSCs decrease with age. This introduces the 

added problem of autologous cell availability in older people when osteoarthritis is major problem. 

The alternatives include the use of allogenic or xenogenic cells. Allogenic provide transplants the 

greater opportunity since human and animal MSCs appear to be immuno-privileged (5, 8). Indeed, 

the use of allogenic MSCs has its own problems, including storage, sterlization and ethical issues.  

 

Another more interesting approach, which negates the need for cell isolation and transplantation, 

involves attracting the MSCs to the area of interest, and promoting chondrogenic differentiation in 

situ. This approach although challenging is not impossible due to recent significant progress that has 

been made in the area of gene therapy.  In one of the first reports of a combined TE and gene therapy 

approach, Mason (70) developed a retroviral vector to introduce human bone morphogenic protein-

7 complementary deoxyribonucleic acid into periosteal-derived rabbit mesenchymal stem cells.  The 

results of this study indicated that the grafts containing bone morphogenic protein-7 gene modified 

cells consistently showed complete or near complete bone and articular cartilage regeneration at 8 

and 12 weeks whereas the grafts from the control groups had poor repair as judged by macroscopic, 

histologic, and immunohistologic criteria.  In the future it may be possible to generate gene vectors 

with the ability to attract chondrocytes to the specific region of interest and stimulate cartilage 

growth and integration with native cartilage. However, there are many fundamental questions 
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that need to be addressed before this method is routinely used. As mentioned previously, not all the 

marker proteins for MSCs have been identified, which presents a significant challenge in itself.  

 

In many cases cartilage damage or degradation is accompanied by damage to the underlying 

subchondral bone. At present, transplantation of autologous chondrocytes results in the repair of 

osteochondral defects and the formation of a layer of fibrocartilage with inadequate mechanical 

properties. This represents an exciting challenge for TE. By incorporating the required bioactive 

molecules into scaffold materials, it may be possible to generate the correct biological signals to 

address this issue of bone and cartilage repair.  

 

Although there has been remarkable progress in the area of scaffold design and development for 

cartilage TE applications, there is still much research to be completed before an ideal scaffold is 

constructed. Phenotype control is a major concern. As mentioned previously, cytokines and growth 

factors are being incorporated into scaffolds, but the quantity and release kinetics still raise many 

questions. For example, BMP-2 in low doses results in osteogenesis, but very high doses are required 

to cause the same effect in humans (5). With the advent of gene therapy, however, the scaffold may 

be employed in the future to provide structural support for tissue formation, while gene vectors may 

be recruited for phenotype control.  

 

Osteoarthritis is a degenerative disease that results in the degradation of cartilage.  If tissue 

engineered cartilage is to be successful, it has to last for a reasonably long time. This is an area where 

gene therapy can play a role in down-regulating the cytokines that cause cartilage degradation (5) 

and ensuring that the cartilage continues to repair and regenerate in the long term. 
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Conclusion 

 

In summary, we believe that the key to cartilage repair and regeneration depends on a combinatorial 

approach involving the following components (1) the delivery of progenitor MSC cells to the specific 

site using a carrier or scaffold device (2) the response of these cells to specific bioactive factors, 

nutrients and environmental signals and most importantly (3) the growth and integration of the neo-

tissue with the native tissue.  
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