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Summary 

B 

one regeneration in the cranio-maxillofacial skeleton has undergone many advances over a 

short period of time. There is much activity in this area, where autogenous bone grafting 

still plays a significant role in clinical practice. Cranio-maxillofacial osseous reconstruction 

represents a very large potential market effecting many surgical specialties including, oral 

maxillofacial surgery, plastic surgery, otolaryngology, neurosurgery, general surgery and 

head and neck oncology. The area is also of vital interest to most specialties of dentistry 

including periodontics, orthodontics, endodontics, and even general dental practice. 

Indeed these combined specialties form the market basis for the development of many 

commercial products. Some have proven to be useful, others have been most 

disappointing. The future of tissue engineering in this particular anatomic area is not only 

bright, it is necessary. This chapter reviews the historical aspects of osseous reconstruction 

in this region, the efforts to minimize morbidity, and discusses new directions that the 

promise of tissue engineering may bring to this area. 
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Introduction 

 

Dento-alveolar bony defects are very common and pose a significant problem in dental treatment 

and rehabilitation. Reconstruction of dento-alveolar bony defects using minimally morbid 

techniques would greatly enhance the success and patient acceptance of this area of oral and 

maxillofacial reconstructive surgery. The potential market in the reconstruction of this area is great 

and includes virtually every dentist and dental specialist in some way. There are many patients who 

are just now discovering the fact that their jaws can be reconstructed with dental implants. Most of 

these patients require osseous reconstruction as well. This is the basis for the demand and market for 

dento-alveolar reconstruction. It is the reason why there have been so many reconstructive efforts in 

this relatively small anatomic area 

 

However patient acceptance of such reconstructive procedures has been guarded at best. This is 

largely because both practitioners and patients alike have perceived these reconstructive methods as 

being rather invasive. Therefore the impetus of our research group has been the reduction of the 

morbidity associated with dento-alveolar and cranio-maxillofacial osseous reconstruction. The 

ultimate goal is to help increase patient acceptance and utilization of such techniques.  

 

The reduction in morbidity could come from two approaches, either by the development of less 

invasive bone graft harvesting techniques or by the elimination of the bone graft donor sites by 

using a bone graft substitute or tissue engineering techniques. Even more attractive is the thought 

that hybrid grafts are now on the forefront. This means that tissue engineering principles and 

techniques can now take their rightful place in the armamentarium of the oral and maxillofacial 

surgeon who seeks to reconstruct the tooth bearing parts of the jaws using these novel techniques. In 

order to understand these emerging principles we must first understand bone as it pertains 

specifically to the dento-alveolar skeleton, the cells, the growth factors involved as well as the 

currently existing reconstructive options. 
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Structure, Function and Physiology of Bone 

 

Bone is a specialized connective tissue with a mineralized extra-cellular matrix that functions to 

provide support, form and rigidity for the human skeleton and supplies a vast store of calcium 

necessary for calcium related homeostasis (1-6). 

 

Embryologically, bone is formed by two separate developmental processes described as intra-

membranous and endochondral ossification (7, 8). When ossification has occurred directly, it is 

classified as being intra-membranous in character. Embryonic mesenchymal cells with an abundant 

vascular supply develop loci of intracellular collagen deposition. Osteoblasts begin secreting osteoid 

into which calcium salts are deposited.  Such direct bone formation is responsible for the genesis of 

the cranial vault, the facial skeleton and parts of the mandible, scapula and clavicle. Endochondral 

bone formation, involves a cartilaginous phase, where embryonic mesenchymal stem cells 

differentiate into a primitive hyaline cartilage. Blood vessels and bone forming units resorb the 

cartilage and replace it with osteoid while invading this matrix. Weight-bearing bones and those 

terminating in joints comprise most of this group of bones. In addition, most of the cranial base and 

a portion of the mandible are thought to have an endochondral origin (9). These embryologic origins 

should be kept in mind with future tissue engineering attempts. 

 

Bone is composed of four cellular types; osteoblasts, osteocytes, osteoclasts and bone lining cells. 

Osteoblasts are cuboidal cells having a prominent Golgi apparatus and well-developed rough 

endoplasmic reticulum, a histological sign of protein production. These fully differentiated cells 

secrete both the type I collagen and the non-collagenous proteins of bone's organic matrix. They will 

also regulate the mineralization of this matrix. The osteocyte is thought to be a mature osteoblast 

that becomes trapped within the bone matrix. While their primary function is maintenance, they 

have demonstrated abilities to both synthesize and resorb bone (10). Bone lining cells are flat, 

fusiform cells that are found covering inactive bone surfaces. Little is known about the function of 

these cells; however they may be the precursors of osteoblasts. It is understood that certain cells 

(osteoprogenitor cells) are programmed to become bone cells and their origin is believed to lie with 

the primitive mesenchymal stem cells (11). Osteoclasts, unlike the other bone cells, which have 

local origins, arise from the fusion of mononuclear precursor cells originating in the 
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hematopoietic tissues. They function to resorb bone. Histologically, they have been characterized as 

having a ruffled border, where bone resorption is thought to occur. Coupling describes a process, 

which combines all of the above elements, whereby bone formation and resorption are maintained 

in balance (12). Once this balance is disrupted, excessive osteoclastic activity may lead to problems 

such as osteoporosis whereas increased osteoblastic activity may reflect bone growth, healing or 

pathological responses. 

 

The architecture of bone is such that the outer shell of bone, referred to as cortical or compact bone, 

provides the mechanical support.  It is composed of concentric sheets of collagen fibrils in the form 

of lamellar bone. The metabolic functions of bone are controlled by the centrally located cancellous, 

trabecular or spongy bone. In contrast to the densely packed fibrils of the cortical bone, the matrix of 

cancellous bone is loosely organized. Macroscopically, this bone appears as a honeycomb lattice in 

which hematopoietic elements are located. Bone is composed of 65 - 70% crystalline salts by weight, 

primarily in the form of hydroxyapatite, with the remaining 30 - 35% being composed of organic 

matrix. The organic matrix consists primarily of type I collagen (90 - 95%) interspersed with non-

collagenous proteins such as osteopontin, osteocalcin, osteonectin, bone sialoprotein and various 

growth factors (13, 14). 

 

 

The Unique Aspects of Alveolar Ridge Defects and Resorption 

 

Alveolar bone is that specialized part of the cranio-maxillofacial skeleton that forms the primary 

support for the teeth. Alveolar bone is composed of bundles of bone which is built up in layers in a 

parallel orientation to the coronal-apical direction of the tooth. The anterior maxillary bone is less 

dense than mandibular bone but more dense than maxillary posterior bone (15). 

 

Alveolar ridge defects and deformities can be the result of congenital maldevelopment, trauma, 

periodontal disease or surgical ablation, as in the case of tumor surgery. Resorption after tooth-loss 
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has been shown to follow a predictable pattern:  the labial aspect of the alveolar crest is the principal 

site of resorption, which first reduces first in width and later in height (16-18). 

 

Alveolar bone is resorbed after tooth extraction or avulsion most rapidly during the first years. Non-

traumatic loss of anterior maxillary teeth is followed by a progressive loss of bone mainly from the 

labial side. The magnitude of bone loss is estimated to be 40-60 % during the first 3 years following 

tooth-loss and then decreases to a 0.25 – 0.5 % annual loss rate thereafter (19, 20). In the deciduous 

paediatric dentition, loss of a retained second deciduous molar, which has no succedaneous 

permanent tooth to replace it, is also associated with bone loss. The rates of bone loss at these sites 

have manifested as alveolar ridge width decreases of 25% within 3 years after extraction of the 

retained primary molars, and this continues to diminish by a further 4% over the next 3 years (21). 

The cause for resorption of alveolar bone after tooth-loss has been assumed to be due to disuse 

atrophy, decreased blood supply, localized inflammation or unfavorable prosthesis pressure (20, 22). 

 

 

Prevention of Alveolar Ridge Resorption 

 

One strategy to deal with alveolar bone loss without resorting to a bone graft is to prevent its 

occurrence. A number of methods have been tried including the retention of tooth roots to help 

maintain the alveolus. These retained tooth roots can be used as abutments for overdentures for 

example and are effective at halting the process of alveolar ridge resorption (23). Malmgren et al. 

have introduced a method in which the alveolar ridge is preserved by removing the crown and 

filling the root of an ankylosed and infrapositioned tooth. The decoronated root is left in situ for 

slow resorption (24, 25). Other treatment alternatives to preserve alveolar bone without the use of 

bone grafts include autotransplantation of teeth (26) and orthodontic space closure (21). Simply 

adding a bone graft to alveolar bone and allowing it to function by loding it with a tissue bourne 

dental prosthesis such as a denture will only lead to continued resorption of the bone graft. The 

bone graft will ultimately be totally resorbed. The alveolar bone loss will then continue under the 

denture (27).  This method of reconstruction with a bone graft and a tissue bourne dental 
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prosthesis should be regarded as only a temporary measure in today’s world. Surgery and 

prosthodontics can be combined into a brilliant group effort to ensure the co-ordinated 

reconstruction of such demanding clinical situations. The placement of dental implants into alveolar 

bone or grafted alveolar bone has been shown to prevent further alveolar resorption, and this 

represents today’s goal in reconstruction of the masticatory apparatus (28-32). 

 

 

Methods to Augment Deficient Bone  

 

The reconstructive options in the osseous reconstruction of the cranio-maxillofacial skeleton include 

autogenous bone grafts harvested from local or distant sources (33). Allogeneic bone from another 

individual may also be considered, as might xenogeneic bone from another species. Because the 

possibilities of immunogenic problems exist, such grafts were first treated with a freezing technique 

(34). Later other methods to deal with immunogenicity were developed (35). Alloplasts have also 

been developed to replace bone. In addition a number of surgical procedures have been designed to 

increase the amount of bone available locally without bone grafting (36-38). Bone reconstruction is 

best understood if the process of bone healing is first considered (39). 

 

 

Osteoinduction 

 

Osteoinduction describes a process whereby new bone is produced in an area where there was no 

bone before, where one tissue or its derivative causes another undifferentiated tissue to differentiate 

into bone. The phenomenon of osteoinduction was first described in the classic works of Urist (40-

42). Bone matrix was shown to induce bone formation within muscle pouches of many species of 

animals. Later a specific extract from bone, a protein now referred to as Bone Morphogenetic 

Protein (BMP), was identified as that factor which caused the phenomenon (43, 44). Since then a 
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great deal of research has resulted in the discovery of a variety of entities having different effects on 

bone (45). These compounds may be classified as osteoinducers, osteopromoters or bioactive 

peptides (46). 

 

 

Osteoconduction  

 

Osteoconduction describes bone formation by the process of ingrowth of capillaries and 

osteoprogenitor cells from the recipient bed into, around and through a graft or bioimplant. 

Therefore the graft or bioimplant acts as a scaffold for new bone formation (35). Unlike 

osteoinduction, this process occurs in an already bone containing environment. Osteoconduction 

describes the facilitation of bone growth along a scaffold of autogenous, allogenic or alloplastic 

materials. 

 

 

Local Procedures to Augment Existing Alveolar Bone  

 

There are a number of techniques, which enable the surgeon to maximize the available bone in the 

cranio-maxillofacial skeleton without harvesting a bone graft. An appreciation of these existing 

techniques and strategies will help us understand the future application of tissue engineering to 

dento-alveolar and cranio-maxillofacial osseous reconstruction. These techniques serve to minimize 

reconstructive morbidity, as there is no graft donor site. Osteocondensation is one such technique. It 

can reshape the morphology of the alveolar bone of the maxilla for example, by compacting it in 

various directions using the condensing chisels or plungers. The procedure can establish a new 

contorur of the bone being condensed. This allows the clinician who is placing dental implants to 

more optimally house a dental implant, resulting in better primary stability in areas of poor bone 

quality. Orthopaedic surgeons have practiced osteocondensation since the early 1960s (47). The 
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major advantage of this technique is that an implant bed is created with either minimal drilling or no 

bone removal (48) and with osteotomes, which compress the bone. There are implants, which 

produce osteocondensation and are called press-fit fixtures (47, 49). In the cranio-maxillofacial 

skeleton, osteocondensation is best performed in the maxilla.   

 

The major proponent of osteocondensation in oral and cranio-maxillofacial skeleton has been 

Summers who described a method to increase the width of alveolar bone and to facilitate sinus floor 

elevation, without opening the lateral sinus wall (50-53). The technique was further developed to 

include the use of D-shaped osteotomes and chisels which produced lateral widening of the alveolar 

ridge and osteocompression, increasing the density of cancellous bone (48, 54). The ridge expansion 

osteotomy is achievable using osteotomes which have concave tips and sharpened edges. The 

instruments are shaped to allow progressively larger osteotome tips to fit into the opening created 

by the previous osteotome. Instruments are sensitive to changes in bone texture and density and 

allow excellent tactile sensation for the surgeon (49). The minimum alveolar width necessary for 

lateral alveolar widening by compression is 2-3 mm assuming that spongious bone is found between 

cortical layers (50). 

 

Alveolar ridges can also be widened using the crestal split technique using osteotomes and chisels to 

produce a “greenstick fracture” at the base of the alveolus. The remaining periosteum is left intact 

and attached to the bone. This pedicled buccal cortex is repositioned and a new implant bed is 

created without any drilling. Lateral widening by completely exposing the labial cortex has also 

been introduced (55). The major benefit of crestal widening is that it allows the thin alveolar bone to 

be utilized for implantation without grafting (37). Esthetics and implant positioning are improved 

and wider implants can also be used. The bone can be moulded to some extent due to its viscosity 

(48). Bone compression is achieved along with an increase in the density of trabeculations of the 

adjacent site (56). In addition the resulting gap can, if desired be covered by a nonresorbable 

membrane (57, 58) and filled with allogenic material (58). Interpositional autogenous bone grafts 

have been used to improve bony healing in the gap (59). 

 

Guided bone regeneration (GBR) has been used for minor augmentation procedures in the cranio-

maxillofacial skeleton and prior to dental implant placement (36, 60-63). GBR is a technique in 

which bone growth is enhanced by preventing soft tissue ingrowth into the desired area and 
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utilizes either resorbable or nonresorbable membranes. Metallic membranes (63) or membranes 

supported by a titanium frame (63) have been tested and have been successful. An acellular dermal 

matrix has been used as a barrier membrane with demineralized freeze-dried bone allograft (64).  

 

The use of membranes is a controversial issue in dental implantology and their use is certainly very 

technique-sensitive (65). The use of nonresorbable membranes requires a second operation for their 

removal (63). Resorbable membranes can be associated with inflammation (66). Intact periosteum, a 

split palatal or gingival flap are regarded by some as natural membranes and their use may obviate 

the need for a membrane (67). Nevertheless, good results with augmentation procedures using 

membranes have been presented (59, 62-64, 66).Vertical increase of a narrow alveolar crest has been 

shown to be possible with membranes (63, 64). 

 

Distraction osteogenesis (DO) of the long bones in growing children has been used for decades to 

gradually lengthen osteotomized bones without a bone graft. The resulting distraction gap is 

initially filled with callus, which later matures into bone (68). DO has also been adapted to the 

maxillofacial area and special devices and implants are being developed for that purpose (37, 69).  

 

The DO technique has also been adapted for limited augmentations of the alveolar crest prior to 

implantation. Some systems use hardware, which expands the jaw over time, and then is removed at 

the time of dental implant placement (69). Some have tried to utilize the implant itself as the 

distraction device (36, 70, 71). The daily rate of alveolar crest distraction ranges from 0.25-0.5 mm 

and is initiated from two days to one week after the primary osteotomy. DO is continued up to 30 

days and the final gain will be between 4 and 7 mm (37, 72). In some cases overcorrection is 

recommended (37). However some local limitations due to the lack of stretching of the palatal 

tissues, may not allow the distracted segment to move exactly as planned. Appliances allowing 

three-dimensional DO have been introduced (67, 69). The benefits of DO are that donor site 

morbidity from harvesting of bone grafts and dehiscences of grafted bone are avoided (71). 

However, a second surgery to remove and perhaps replace hardware is needed if dental implant-

based distraction is not used. While DO could eliminate a donor site and thereby limit morbidity, it 

is so labour intensive that the patient trades the morbidity of the bone graft donor site for the 

inconvenience of wearing and tolerating potentially cumbersome hardware for longer periods of 

time. 
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Autografts 

At the present time, autogenous bone grafting is the gold standard by which all techniques of 

osseous reconstruction of the cranio-maxillofacial skeleton must be judged. Autogenous cancellous 

bone grafts produce the most successful and predictable results (73).  Free bone grafts act mostly as 

scaffolds and are thus more osteoconductive than osteoinductive even though osteogenic activity 

may have remained in the spongious part of the graft (35). The major disadvantage of autogenous 

grafts is the need for a second surgical site and the morbidity resulting from harvesting. The source 

of autograft, however, is not limitless for the patient. A point may be reached in reconstruction 

where the donor site morbidity may exceed the discomfort of the presenting complaint. Moreover 

such potential discomfort is a serious reason for patients to avoid presenting themselves for 

reconstructive procedures. 

 

 There are essentially two forms of nonvascularized free autogenous bone grafts:  cortical and 

cancellous (74-76). Buchardt has summarized the three essential differences between the two. 

Cancellous grafts are revascularized more rapidly and completely than cortical grafts. Creeping 

substitution of a cancellous graft initially involves an appositional bone formation phase, followed 

by a resorptive phase, whereas cortical grafts undergo a reverse creeping substitution process. 

Cancellous grafts tend to repair completely with time whereas cortical grafts remain as an admixture 

of necrotic and viable bone (35). 

 

Cortical grafts are able to withstand mechanical forces earlier however, they take more time to 

revascularize. Cortical grafts are useful for filling defects where early mechanical loading is required 

(77). The cortical component can be incorporated into the fixation of the graft and can consequently 

be used in situations where bone is comminuted or where there are bony voids. In the cranio-

maxillofacial skeleton these forms of grafts may also be used to onlay areas such as decreased 

vertical or horizontal alveolar ridges, to improve facial contours or they can be inlayed within bone 

to fill bony voids. Common sites for the harvesting of cortical grafts are the cranial vault, ribs and 

the medial or lateral table of the anterior aspect of the iliac crest, the posterior iliac crest as well as 

the mandibular symphysis (78-80). 
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Cancellous grafts have more widespread applications, are generally easier to manipulate and 

revascularize more rapidly (81). The most abundant source of cancellous bone is the anterior or 

posterior iliac crest. Cancellous bone imparts no mechanical strength so that when it is used to 

reconstruct large continuity defects additional stability and rigid fixation is required. In the cranio-

maxillofacial skeleton these grafts are packed into bony defects such as alveolar clefts and maxillary 

sinus floor elevations (82). The Corticocancellous graft usually produces the best results by 

combining the attributes of both graft forms and can be place easily into an interpositional location 

(83, 84). These grafts allow for mechanical stabilization while at the same time providing for good 

revascularization. Others will particulate Corticocancellous bone creating a mixed graft which can 

be used for the restoration of continuity defects in the jaws (85-88). 

 

Particulate bone grafts can be very advantageous. They can easily be harvested from intra oral sites 

using a specialy designed bone harvesting device or suction trap to collect the bone chips produced 

by drilling over the surface bone of a donor site (Fig. 1). The more morbidity of such particulate graft 

harvests is low and the patient acceptance is very good (33, 78-80). The particulate grafts have the 

distinct advantageous of being easily molded to the contours of most defects, as long as there is 

some underlying bony support. The volume available for harvesting an intra oral particulate graft is 

much less than that available with traditional extra oral harvesting techniques (33, 79). Their main 

limiting factor, however, is the lack of inherent stability of such grafts, unlike cortical or cortico-

cancellous bone grafts. Particulate bone grafts are only as structurally stable as their underlying 

support from the already available alveolar bone for example. These particulate grafts can be packed 

around bony defects when dental implants are placed concurrently. Again the structural support for 

such grafts is also derived from the underlying bone and the stable dental implant fixtures 

themselves. Particulate bone grafts therefore have no structural integrity of their own, at the time of 

their placement (78-80). 
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Potential Autogenous Bone Graft Donor Sites 

 

Autogenous bone grafts can be vascularized or non-vascularized. Vascularized bone grafts are much 

more complex to harvest and have a great deal of donor site morbidity associated with their use. 

Non-vascularized grafts are considerably simpler to harvest and use if they are placed into a well 

vascularized recipient bed (81). 

 

Both intra-oral and extra-oral bony donor sites have been used successfully as sources of non-

vascularized autogenous bone for grafting of maxillofacial defects (81). The volume of bone graft 

required determines the choice of the donor site. 

 

If the defect is small, often local, intra-oral sources can be used (89). Intra-oral sites are often 

preferred since they allow harvesting of bone from the area adjacent to the reconstruction. A second 

distant surgical site and the extra-oral scar can be avoided. Intra-oral harvesting can mostly be 

performed on an outpatient basis under local anaesthesia. These intra-oral sites can include 

mandibular symphysis, mandibular ramus and retromolar area, coronoid process, maxillary 

tuberosity, maxillary torus palatinus or mandibular tori, if they are present, and the zygomatic bone 

using a specially designed bone collector or suction trap (90, 91) (Fig. 1). However the volume of 

bone available in intra-oral sites may be insufficient for moderate to large defects (33). 
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Fig. 1: A specially designed bone collector used to harvest intra-oral cortical bone grafts of membranous origin, such 
as from the zygomatic bone. This collector is used as a suction trap. The surface of the donor site is drilled or 
trephined with a series of burrs producing a fine dust or slurry of bone. This is suctioned into the bone trap. Great care
is taken during an intra oral harvest to avoid suctioning saliva and dental plaque or other tooth debris into the 
harvested bone particles. The suction trap has two control features to avoid this potential harvesting problem. 

 
 

 

 

When a greater volume of bone is required, extra-oral sources are usually employed. These may 

include the anterior or posterior iliac crest, the calvarium, the rib and the proximal tibia (77, 78, 92) 

(Fig. 2 a, Fig. 2b).  

 

In fact specially designed devices have been developed to minimize the morbidity at the second 

surgical site, made necessary by the harvesting of such grafts. The motorized trephine shown in 

Figure 2a consists of a pre-cutter, an internal bone forcep, and a trephine that is capable of ejecting 

the harvested cancellous bone core from the anterior iliac crest. This motorized trephine can be used 

through a small, 1 cm stab incision over the anterior iliac crest. Up to 7 cores of bone measuring 4.1 

mm in diameter by 30 mm in length can be harvested from each anterior iliac crest (Fig. 2b). The 

intervening bone between the harvested bone cores can also be removed, doubling the size of the 

harvest. The harvested cores (Fig. 2c) appear to be well trabeculated in the histologic section that 

is shown. The grafts can be seen to be quite cellular, containing many osteogenic elements. This is 
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one of the main advantages of such an autogenous bone graft. The morbidity of this technique is 

much lower compared to traditional open anterior iliac crest harvesting techniques. Open 

procedures generally require inpatient hospital admission of patients; the closed trephine approach 

is routinely performed in day surgery, as an outpatient procedure without hospital admission (78, 

80). 

 

 

 

 
 



G.K.B. Sàndor et al.           Bone Regeneration of the Cranio-maxillofacial and Dento-alveolar Skeletons in the Framework of Tissue Engineering 

 
Topics in Tissue Engineering 2003.   Eds. N. Ashammakhi & P. Ferretti 

     

15

Fig. 2: Minimizing the morbidity of extra-oral bone graft harvesting using a percutaneous power-driven trephine to 
procure bone graft material from the anterior iliac crest.  
 
In figure 2a, the components of the motorized trephine are shown. The device consists of a motorized drilling unit, an 
internal forceps, a bone pre-cutter and a trephine. The device easily ejects the cores of cancellous bone which it can 
easily harvest from the anterior iliac crest.  
 
In figure 2b a small 1 cm stab incision has been made and the trephine engages the anterior iliac crest through this 
simple percutaneous approach. A funnel or propeller shaped retractor is shown keeping the soft tissues away. In 
figure 2c there is a photomicrograph of a bone core harvested from the anterior iliac crest. Note the well trabeculated 
nature of this cancellous bone graft, and its great cellularity. 

 

 

Allografts 

 

Allogeneic bone is non-vital osseous tissue taken from one individual and transferred to another 

individual of the same species.  There are three forms of allogeneic bone:  fresh frozen, freeze-dried 

and demineralized bone matrix (DBM).  Fresh frozen bone is rarely used today for the purposes of 

bony reconstruction in the cranio-maxillofacial skeleton because of concerns related to the 

transmission of viral diseases (35). The risk of transmitting HIV with a properly screened 

demineralized freeze-dried bone allograft has been calculated to be 1 in 2.8 billion (93). Bone 



G.K.B. Sàndor et al.           Bone Regeneration of the Cranio-maxillofacial and Dento-alveolar Skeletons in the Framework of Tissue Engineering 

 
Topics in Tissue Engineering 2003.   Eds. N. Ashammakhi & P. Ferretti 

     

16

harvested from a patient who died from AIDS related disease was tested for the p24 core protein 

and reverse transcriptase and found to be positive. When this same bone was processed to make 

DBM, no evidence of either was found (94). It is therefore assumed that the process to make DBM 

eliminates or inactivates the p24 core protein and reverse transcriptase. 

 

Freeze-dried allogeneic bone is processed to remove the moisture from the bone.  This results in an 

implant with mechanical strength that can be used to onlay areas or as a crib to retain autogenous 

bone (81). This implant, while osteoconductive, has no osteogenic or osteoinductive capabilities and 

consequently requires a source of osteocompetent cells. Therefore freeze-dried allogeneic implants 

are usually placed in conjunction with autogeneic grafts when reconstructing the cranio-

maxillofacial skeleton. 

 

By demineralizing the freeze-dried bone to create DBM, the implant loses its mechanical strength 

but may retain some osteoinductive properties (95-97). Removal of the mineral component from the 

bone matrix may expose native proteins, such as bone morphogenetic protein (BMP). The potential 

osteoinductive capabilities of DBM make it a valuable tool for the surgeon.   

 

Recent advances have seen DBM incorporated into various carriers such as collagen or selected 

polymers (98-100). These forms are either sponge-like or gel/putty-like in consistency. Putties are 

simple to apply and are well retained within the recipient tissue bed. These products could 

potentially be used in the treatment of periodontal infrabony defects, extraction sites to prevent 

ridge resorption, alveolar ridge reconstruction, bone reconstruction associated with dental implant 

placement, bone reconstruction associated with dental implant complications and cysts or bony 

defects of the jaws (101, 102, 103, 104, 105, 106, 107, 108,109). If larger volumes of bone are required, 

such as in maxillary sinus augmentation prior to dental implant placement, then DBM may be used 

as a bone graft expander to reduce the volume of bone graft required to fill an osseous defect (110-

112). This reduced graft volume may allow the use of an intra-oral harvest site. While reducing 

patient morbidity by avoiding an extra-oral donor site, the major disadvantage of this technique is 

the cost of the DBM material. 
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Xenografts 

 

Xenogeneic bone grafts consist of skeletal tissue that is harvested from one species and transferred to 

the recipient site of another species (113, 114). These grafts can be derived from mammalian bones 

and coral exoskeletons. Bovine derived bone has been commonly used (115, 116), even though other 

sources are such as porcine or murine bone are available. Xenogeneic bone was popular in the 1960's 

but fell into disfavour due to reports of patients developing autoimmune diseases following bovine 

bone transplants (35, 117). The re-introduction of these products in the 1990's comes after the 

development of methods to deproteinate bone particles (118). This processing reduces the 

antigenicity making these implants more tolerable to host tissues (119). The result is that the organic 

component of bone, referred to at the beginning of this chapter, is almost completely removed.   

 

This inorganic bone matrix then has the structure of bone making it osteoconductive without the 

osteoinductive abilities imparted by the organic elements. Eventually xenogenic bone should be 

replaced by host tissue, which would make it useful for defect or extraction site filling in the 

alveolus prior to dental implant placement or prosthetic rehabilitation (120-126). Resorption of 

bovine derived bone has been observed in animals studies (127) but not consistently in human 

clinical trials (125, 126, 128). Since the material is usually a powder it may require some form of 

retentive structure such as a membrane to keep the xenograft in the desired location (129-132). While 

bovine xenografts may reduce morbidity by eliminating the donor site, their disadvantage is the 

concern with the possibility of future bovine spongiform encephalopathy due to potential slow virus 

transmission in bovine-derived products (133, 134). 

 

One interesting xenogeneic transplant, Biocoral, is derived directly from the exoskeletons of corals 

from the Group Madrepora of the genus acropora (135). These corals are harvested from the 

relatively unpolluted waters of the reefs off New Caledonia, a point of importance since corals from 

contaminated waters can contain petrochemical impurities. Both solid blocks and particulated 

implants fashioned from this material are composed largely of calcium carbonate and are 

osteoconductive. They are simultaneously incorporated into the human bony skeleton and replaced 

by human bone. The enzyme carbonic anhydrase, liberated by osteoclasts is responsible for the 

breakdown of this material. The time for total replacement of this implant by bone in the human 
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craniofacial skeleton is approximately 18 months (136). Since the use of coral-derived granules gives 

rise to bone with the material’s eventual replacement, it could decrease morbidity by avoiding a 

bone graft harvest donor site (137). 

 

 

Synthetic Bone Substitutes 

 

Alloplastic bone substitutes are synthetic substances that have been processed for clinical use in 

osseous regeneration. There are three types of alloplastic substances in clinical use today:  

hydroxyapatite, other ceramics and polymers.  

 

Hydroxyapatite (HA) is a ceramic. HA can be divided into two groups depending upon its ability to 

resorb (138, 139, 140, 141). Some refer to the internal pore size as a means of differentiating between 

various types of hydroxyapatite (142-144). The porous form of HA allows rapid fibrovascular tissue 

ingrowth, which may stabilize the graft and help resist micromotion (145, 146). HA can be machined 

to many shapes or consistencies (147-149). HA has several potential clinical applications including 

the filling of bony defects, the retention of alveolar ridge form following tooth extraction and as a 

bone expander when combined with autogenous bone during ridge augmentation and sinus 

grafting procedures (150-154). Although the use of HA can eliminate donor site morbidity, the 

tendency for granular migration and incomplete resorption has become a long-term problem (155-

158). 

 

Apart from HA, there are three other types of ceramics: tricalcium phosphate (TCP), bioglasses, and 

calcium sulphate (159, 160, 161, 162, 163). TCP is a similar to HA being a calcium phosphate with a 

different stoichiometric profile (164, 165). TCP has been formulated into pastes, particles or blocks, 

which have demonstrated an ability to be biocompatible and biodegradable (166). Clinically the one 

disadvantage with TCP is its unpredictable rate of bioresorption. Its degradation has not always 

been associated with concomitant deposition of bone (167, 168). Two products (Norian SRS®, Norian 

Corporation, Cupertino, California, USA and Bone Source®, Leibinger, Dallas, Texas, USA) have 
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been used for the repair of cranial vault defects. Calcium salts are mixed with water to form a paste 

having an isothermic setting reaction and placed into the defect. Early versions of these materials 

tended to be easily washed out of the wound by haemorrhage. The materials tend to fracture and are 

resorbed unevenly in cranial vault defect studies (169). 

 

Bioactive glasses are silico-phosphate chains that been used in dentistry as restorative materials such 

as glass ionomer cement. These materials have the ability to chemically bond with bone (170). 

Bioactive glasses may have osteoinductive properties and have been tested in animal trials (171). 

Bioactive glasses have been used in the treatment of periodontal bony defects (172, 173). In order to 

preserve the form of the alveolar ridge after tooth-loss, bioactive glass root replicates have been 

introduced (67). While these are able to preserve the crestal width and height of the alveolus, they 

may impair the later placement of dental implants due to incomplete resorption 

 

Polymers by their nature can be fashioned in seemingly endless configurations (152, 174, 175). 

Combinations of polyglycolic acid (PGA) and polylactic acid (PLA) have been successfully used in 

the form of bioresorbable sutures for many years (176) and more recently as bioresorbable fixation 

materials (177, 178). Giant cell reactions presented as a problem with earlier combinations of this 

material (179). As with bioglasses, root replicates have been introduced to preserve the form of the 

alveolar ridge after tooth-loss. These are made of PLA (180). The ability of PLA implants to preserve 

the crestal width and height is an advantage. Unfortunately because of incomplete resorption they 

may impair the later placement of dental implants (180). The future of bone regeneration could lie 

with this class of synthetic materials (85). These materials could be better utilized once their ability 

to resorb at variable rates, over set periods of time is better understood and an appreciation for their 

compatibility with the emerging bioactive agents is developed. The ideal would be a completely 

synthetic bioimplant, which is predictably degradable and is innately osteocompetent (85). Such 

synthetic materials could also play a very important role in tissue engineering (181), serving as 

bioactive scaffolds. 

 

One important advantage related to all xenogenic and allogenic materials is that they could 

potentially be used as bone graft expanders by mixing them with autogenous bone chips. This 
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mixing could decrease the volume of autogenous bone graft needed, which in turn could convert an 

extra-oral harvesting procedure to an intra-oral harvesting procedure potentially reducing donor 

site morbidity (33, 128). 

 

 

Osteoactive Agents 

 

An osteoactive agent is any material which has the ability to stimulate the deposition of bone (85). 

The phenomenon of osteoinduction was first described in the works of Urist and co-workers in (40, 

95, 182). Bone matrix was shown to induce bone formation when implanted within muscle pouches 

of a number of different species of animals. Urist’s group identified a specific extract from bone, a 

protein now referred to as Bone Morphogenetic Protein (BMP), as that factor which caused the 

phenomenon (41-43). Since then, many other entities have been found with a variety of effects on 

bone (44). These may be classified as osteoinducers, osteopromotors or bioactive peptides (45). 

 

The compounds in the first two categories are growth factors, a group of complex proteins of 

approximately 6 to 45 kilo Daltons which function to regulate normal physiological processes and 

biological activities such as receptor signaling, DNA synthesis, and cell proliferation (183, 184). 

Growth factors that are referred to as cytokines have a lymphocytic origin, being nonantibody 

proteins released by one cell population on contact with a specific antigen and act as intracellular 

mediators. Other growth factors are described as morphogens. These are diffusible substances in 

embryonic tissues that influence the evolution and development of form, shape or growth. Still other 

growth factors are mitogens. They induce blast transformation by regulating DNA, RNA and 

protein synthesis (185). 
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Bone Morphogenetic Protein 

 

Bone morphogenetic protein (BMP) has been shown to have osteoinductive properties (186, 187). It 

is recognized to be part of a larger family of growth factors referred to as the TGF- β superfamily 

(188) with a 30-40% homology in amino acid sequence with other members in the family. BMP acts 

as an extracellular molecule that can be classified as a morphogen as its action recapitulates 

embryonic bone formation. The identifying pattern of the BMP subfamily is their seven conserved 

cysteine residues in the carboxy-terminal portion of the protein and this is where the unique activity 

of BMP’s is thought to reside (188). 

 

Bovine & porcine sources were used in much of the original work attempting to purify the BMP 

molecule, a protein less than 50 kilo Daltons in size (189-193) and a number of recombinant human 

forms of BMP (rhBMP) have been derived. Interestingly the amount of human rhBMP necessary to 

produce bone induction in vivo is more than ten times higher than that of highly purified native 

bone extracted BMP (194). This difference was also demonstrated between human BMP derived 

from human bone matrix and human rhBMP (195), suggesting that native BMP is a combination of 

different BMP’s or represents a synergy between them (193). This has revived interest in xenogenic 

derived native BMP’s (196). Although concern regarding the immunigenicity of interspecies BMP 

has been raised in the literature, moose-derivered BMP showed strong osteoinductive capacity and 

weak immunogenicity in a sheep study (197). 

 

Large and small animals have been used to study the influence of BMP on bone regeneration (198-

201). Critical sized osseous defects are defined as bony defects of a specific size, which will not heal 

spontaneously with bone tissue alone (202-204). Defects larger than the critical size will not fill in 

with bone alone but may contain fibrous scar tissue. BMP has demonstrated the ability to heal many 

different varieties of critical sized defects including cranial vault defects, long bone defects and 

mandibular continuity defects (202, 204-206) without the addition of a bone graft. 

 

One of the challenges in the use of BMP is in its delivery to a site of action. As a morphogen BMP is 

rapidly absorbed into the surrounding tissues dissipating its effectiveness. Many different carrier 
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vehicles have been used to deliver BMP including other noncollagenous proteins, DBM, collagen, 

HA, PLA and or PGA combinations, calcium carbonate, calcium sulphates and fibrin glue (207-214). 

More recently biodegradable gels, collagen sponges impregnated with BMP and silica glass have 

been used as carriers (215, 216, 217, 218, 219). DBM has been shown to contain BMP and may be 

used as a bone graft substitute with predictable healing in critical sized rabbit calvarial defects (169, 

220) and has been used successfully in a human mandibular defect in vivo with native human BMP, 

a poloxamer carrier and bank bone (220, 221). Further success has been reported more recently with 

different types of BMP (222) and the reconstruction of mandibular defects and the treatment of 

pathologic fractures of the mandible with BMP as well (223).  

 

One problem with the use of BMP’s in general has been the regulation of their effects. BMPs are 

currently being used in “super-physiologic” concentrations. The resulting tissue effects are 

occasionally overwhelming when viewed from a clinical point of view. The reaction of the soft 

tissues with notable edema, erythema and inflammation is most remarkable (222). The effects of 

BMP must therefore be regulated. One substance which may hold some promise as a BMP regulator 

is the serum protein fetuin. There is increasing evidence that fetuin may serve as one regulator of 

BMP’s effects (222, 224). 

 

 

Transforming Growth Factor 

 

The proteins in the family of transforming growth factor β (TGF-β) should be considered as 

osteopromotors, agents, which enhance bone healing. TGF- β is found in the same supergene family 

as BMP. TGF- β has been shown to participate in all phases of bone healing (225). During the initial 

inflammatory phase TGF- β is released from platelets and stimulates mesenchymal cell proliferation. 

It is chemotatic for bone forming cells, stimulating angiogenesis and limiting osteoclastic activity at 

the revascularization phase. Once bone healing enters osteogenesis then TGF- β increases osteoblast 

mitoses, regulating osteoblast function and increasing bone matrix synthesis, inhibiting type II 
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collagen but promoting type I collagen. Finally, during remodelling it assists in bone cell turn-over 

(222-229). 

 

While less work has been undertaken to explore the applications of TGF- β than with BMP’s as an 

adjunct to bone healing, TGF- β may be more effective than BMP in those situations where enhanced 

bone healing is preferred to bone induction (85). Moreover, combinations of BMP and TGF- β, may 

enhance the osteoinductivity of an implant while, at the same time, making it osteopromotive. As 

with BMP, carrier vehicles for the delivery of TGF- β are under development. 

 

 

Platelet-Derived Growth Factor  

 

Platelet derived growth factor (PDGF) is angiogenic and is known to stimulate the reproduction and 

chemotaxis of connective tissue cells, matrix deposition (230-233). These properties are all crucial to 

bone healing. 

 

Insulin-like growth factor (IGF) has demonstrated a capacity to increase bone cell mitoses and 

increase the deposition of matrix. PDGF and IGF have shown an ability to work together during the 

reparative stages of bone healing. PGDF-IGF impregnated devices have proven to increase bone 

healing in defects associated with dental implants and teeth (234, 235, 236). 

 

Platelets are known to contain a number of different growth factors of which TGF- β, and PDGF are 

two. As platelets degranulate they release these factors which may play a role in initiating graft 

healing. Platelet rich plasma (PRP) is one potential source of concentrated platelets that could be 

used in bone regeneration (237-239). A single unit of freshly harvested autologous blood is 

centrifuged at 5,600 rpm to separate the platelet poor plasma from the erythrocytes and the buffy 

coat (platelets and leukocytes). Once platelet poor plasma is removed, the specimen is further 

centrifuged at 2,400 rpm to separate the packed red blood cells from the PRP. The remaining PRP 

contains 500,000 to 1,000,000 platelets, which are mixed with a thrombin/calcium chloride 

(1,000units/10%) solution to form a gel (238). This gel can then be used in conjunction with bone 
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regeneration materials such as HA or DBM as a source of autogeneic growth factors (237). When 

used in combination with autogenous bone, PRP is reported to increase the maturation rate of a 

bone graft up to 2 fold and also increase the bone density of the graft (32, 238).  

 

 

Other Bioactive Molecules 

 

The last category of bioactive molecules is the polypeptide group. They may act as osteoinducers or 

osteoenhancers. Two short amino acids chain peptides that have demonstrated a bone activity are 

known as P-15 and OSA-117MV. The P-15 polypeptide was designed to take advantage of a 

conformational arrangement known as the "beta bend", which was found to have an influence on 

bone induction and growth when utilized in some in vitro studies (240, 241). The OSA molecule is 

even smaller than P-15 and was discovered in relation to the treatment of osteoporosis where OSA's 

effect is concentrated in areas of high stress.  Researches have started to explore the local effects of 

this peptide and initial reports (85) suggest that it may enhance the osteoinductive effect of 

demineralized bone matrix. 

 

 

Stem Cells and Hybrid Grafts as Applied Tissue Engineering 
 

The area of tissue engineering has brought to the forefront, the possibilities of hybrids of 

biomaterials seeded with osteocompetent cells to be used as an implant. The hybrid could consist of 

a porous matrix, on which bone marrow cells could grow (242). 

 

The use of bone marrow as the source of cells is logical as bone marrow contains stem cells which 

have the potential to differentiate along various pathways and lines, including the direction of 

bone producing osteocompetent cells (243, 244, 245, 246, 247). Seeding a porous matrix with bone 
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marrow cells could enhance the osteogenic potential of the matrix as a hybrid. Another possibility is 

the tissue culturing of bone marrow cells to further expand their numbers (242). Bone marrow 

derived cells are responsive to the influence of dexamethasone and 1, 25 dihydroxycholecalciferol 

(242, 248) and can be influenced to differentiate in the direction of bone cells. Human bone marrow 

cells have been reported to adhere to porous coral matrices (242) and to matrices made of HA and 

TCP (249, 250, 167). Osseous cells could be colonized onto or combined with such matrices, 

producing hybrid grafts. The source of bone cells could be suction trap harvested (Fig. 1) cortical 

membranous bones rather than stem cells (Fig. 3) (91). In the case of suction trap harvested bone 

cells, future hybrid grafts for the same individual could be made at the time of harvesting, or from 

the same harvested but stored froze cells at a later date (251-253) (Fig. 4). The development of such 

hybrids, culturing and storage methods may be the way of the future and could also diminish donor 

site morbidity by the total elimination of the donor site. 

 

While many of these particular concepts were regarded a visionary a few years ago, they have now 

reached clinical reality, in planned phased clinical trials (253). As this chapter in surgical history is 

re-written, over and over again, there will be frequent additions to this exciting area of knowledge. 
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Fig. 3: Bilateral zygomatic bone graft harvest sites are visible as the bony defects on this CT-scan. The harvested 
sites are visible as the bony defects of the anterior zygoma donor site. Because the soft tissue covering this part of the
cranio-maxillofacial skeleton is thick, there is no deformity visible extra orally in a patient who has undergone such a 
procedure. 
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Fig. 4: A 21 day cell culture of osteocytes harvested from human cortical bone of membranous origin, the zygomatic 
bone. Note confluence of the cells. 
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