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C H A P T E R  7  

espite the early promise of tissue engineering, researchers have faced significant challenges in 

regenerating tissues with normal ultrastructure and function. In the present chapter, we will review 

the current state of research in manipulation of cellular mechanotransduction and the design of 

biomimetic tissue engineered matrices in the context of small diameter vascular graft tissue 

engineering. A variety of synthetic materials have been evaluated for use as vascular prostheses 

when suitable autologous tissue is unavailable. The two major synthetic graft materials are 

polytetrafluoroethylene or polyethylene terephthalate. However, their use is limited to high-flow/low 

resistance conditions, i.e., to > 6 mm ID vessels, because of their relatively poor elasticity and low 

compliance and their tendency to stimulate thrombosis and neointima formation. Tissue engineering 

represents a potential means to construct grafts in situations where autologous tissue is unavailable 

and current synthetic materials fail. While initial results with many of the tissue engineered vascular 

grafts (TEVGs) constructed to date are very encouraging, risk of thrombosis, hyperplasia, and 

mechanical failure have limited the general success of these grafts. The disparity in mechanical 

properties between TEVGs and native vessels is largely due to differences in the amount, 

composition, and microarchitecture of the extracellular matrix (ECM) produced by associated cells. 

Research into biomimetic scaffolds and mechanical preconditioning is aimed at improving ECM 

synthesis and organization in TEVGs. 
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INTRODUCTION 

Cardiovascular disease is the leading cause of death in the United States and claims more lives 

each year than the next five leading causes of death combined.
1
 In 2000, coronary artery disease 

alone resulted in more than 20% of deaths in the United States and required approximately 

500,000 coronary artery bypass graft surgeries. Similar trends in vascular disease and the need 

for bypass grafts are increasingly observed in industrialized nations worldwide.  

At present, autologous saphenous veins or mammary arteries are preferred graft 

materials.
2
 Unfortunately, approximately 10-20% of patients requiring coronary artery bypass 

grafts do not have suitable vessel material for grafting,3, 4 either due to prior procedures or poor 

peripheral vessel health. As a result, alternative conduits constructed from synthetic materials, 

including a range of porous, woven, and knitted fabrics, have been investigated since the 

1950’s.
5
 Of the examined materials, polytetrafluoroethylene or polyethylene terephthalate have 

seen the most widespread use due to clinical success in large diameter (ID > 6mm) graft 

applications. However, these synthetic grafts fail in small diameter applications (ID < 6 mm) due 

to resulting thrombosis and scar tissue formation.6-10 Thus, a clinical need exists for alternative 

vascular prostheses. Tissue engineering represents a potential avenue to construct vascular grafts 

when autologous tissue is unavailable and conventional synthetic materials fail.
11
   

Tissue engineering is generally defined as a tool that uses living cells to form or 

regenerate tissues, frequently using a scaffold to support, guide, and stimulate cells.
11
 Most tissue 

engineered vascular graft (TEVG) strategies have focused on developing prostheses that mimic 

the structure, function, and physiologic environment of native vessels.12-15 Normal arteries 

possess three distinct tissue layers: the intima, media, and adventitia. The intima consists of an 

endothelial cell monolayer, which prevents platelet aggregation and regulates vessel 

permeability, vascular smooth muscle cell (SMC) behavior, and homeostasis. The medial layer is 

composed of SMCs and circumferentially aligned elastic fibers and is considered to be primarily 

responsible for arterial cyclic distension under physiological loading conditions.
16
 The adventitia 

is comprised of fibroblasts, connective tissue, microvasculature, and a neural network that 

regulates vasotone.  

In developing a functional TEVG, regeneration of all of the vessel layers may prove to be 

necessary. However, at a minimum, an intimal and medial layer will likely be required to achieve 

long-term TEVG patency and mechanical integrity. Based on previous research, generating 
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functional TEVGs is expected to involve the following steps: 1) harvest of the desired cells, 2) 

potential genetic modification of isolated cells followed by in vitro expansion, 3) scaffold 

selection followed by cell seeding, 4) in vitro culture of the cell-containing scaffold (construct) 

under conditions designed to induce tissue formation, and 5) construct implantation in the 

patient. Each of these steps appears to critically impact the resultant graft, and a number of 

options exist at each phase of this process.  

While initial TEVG results are very encouraging, a number of technical hurdles remain 

before TEVGs can be considered a viable vascular replacement option.
9, 10

 The potential for 

thrombosis due to issues with retention of endothelial cells following implantation or to 

inappropriate endothelial cell function must be addressed.
10
 In addition, the potential for burst or 

aneurysmal failure is a significant concern, since the mechanical strength of TEVGs is generally 

less than that of the arteries they replace and may not be maintained as the scaffold degrades. 

Thus a number of approaches are currently being investigated to address these issues. All of the 

strategies discussed above—cell source, genetic modification, scaffold materials, and culture 

conditions—will likely play a role in the fabrication of a clinically-relevant TEVG. The present 

work focuses on the impact of the selected scaffold and of construct culture conditions on 

resulting TEVG outcome. 

 

SCAFFOLDS FOR VASCULAR TISSUE ENGINEERING 

TEVG scaffolding is intended to provide initial mechanical support and integrity and to direct 

cell behavior as neotissue is produced. TEVG efforts have explored a variety of scaffolds, 

including synthetic materials such as poly(lactic-co-glycolic acid)
12
 and polyglycolic acid 

(PGA)
17, 18

 and natural materials such as collagen
17, 19, 20

 and fibrin
21, 22

. Natural scaffolds 

materials are often comprised of typical extracellular matrix (ECM) components and thus 

provide many of the biochemical signals necessary for the cell. However, the difficulties that are 

often involved in natural scaffold processing, the potential for disease transmission, and the often 

poor mechanical properties of natural scaffolds have led some groups to concentrate on the 

development of synthetic biomaterials as TEVG scaffolds. Although degradable synthetic 

polymers usually lack desired cell stimuli, they generally offer greater control over scaffold 

structural and mechanical properties as well as degradation rate than natural materials.
23
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An alternative path is the development of biomimetic synthetic scaffolds which combine 

the specific cell-material interactions provided by natural materials with the control over material 

properties and ease of processing offered by synthetic polymers. As such, biomimetic derivatives 

of synthetic macromer polyethylene glycol (PEG) are currently being studied as vascular tissue 

engineering scaffolds.
14
 Aqueous solutions of acrylate-derivatized PEG can be rapidly 

polymerized into complex geometries in direct contact with cells and tissues
24, 25

 (Figure 1). 

Similar to many other synthetic materials, the mechanical properties of hydrogels can be tuned 

over a broad range by manipulation of PEG molecular weight and concentration (Table 1). PEG-

based materials are also intrinsically resistant to protein adsorption and cell adhesion, in contrast 

to most other synthetic materials, which adsorb a range of bioactive proteins from serum. Thus, 

unmodified PEG hydrogels present a “blank slate” 
26-28

, essentially devoid of biological 

interactions, to cells.  

 

 

Fig. 1. Demonstration of the ability to modulate PEG hydrogel bioactivity and to create geometrically 

complex PEG hydrogel scaffolds. PEG hydrogels with (A) 0, (B) 0.5, and (C) 1 µmol/mL cell adhesive 
RGDS peptide. (A) Cells do not spread onto a pure PEG hydrogel; it is, thus, resistant to serum protein 
adsorption, presenting a “biological blank slate” to cells in absence of modification. (B) and (C): As the 
amount of acrylate-derivatized cell adhesive peptide RGDS tethered to the PEG network increases, cell 
adhesion and spreading increases. Thus, the biochemical landscape of PEG hydrogels can be tuned by 
controlling the identities and concentrations of added biochemical moieties. (D) PEG hydrogels can be 
readily prepared as seamless tubular grafts by pouring the PEG precursor solution into a cylindrical mold 
and polymerizing.  

 

  Table 1. The dependence of scaffold mechanical properties and experienced strain (at 120/80 mm Hg  
  pulsatile pressures) on PEG hydrogel composition. Adapted from Hahn et al, 2006.

14
 

 

Formulation  Modulus (kPa) UTS (kPa) Strain (%) 

  100 mg/mL 3.4 kDa 92.1 + 2.7 67.0 + 6.7 6.2 + 0.4 

  100 mg/mL 6 kDa 81.2 + 1.2 69.8 + 8.2 6.4 + 0.5 

  200 mg/mL 6 kDa 140.4 + 5.3 101.7 + 12 2.9 + 0.4 

  100 mg/mL 10 kDa 48.4 + 1.7 66.2 + 11 10.9 + 1.3 

  200 mg/mL 10 kDa 76.3 + 2.0 69.8 + 4.3 3.6 + 0.4 
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Although the inability of cells to interact with pure PEG hydrogels may at first appear 

undesirable for tissue engineering applications, this property allows for the controlled 

introduction of bioactivity.
29, 30

 For example, the acrylate-derivatized cell adhesive peptide 

RGDS is often covalently bonded to PEG hydrogels to introduce defined levels of cell-material 

interactions in tissue engineering applications
14, 31

 (Figure 1). In addition, PEG-based materials 

have been rendered bioactive by inclusion of proteolytically degradable peptides into the 

polymer backbone
32
 and by grafting cell-specific adhesion peptides

33
 or growth factors

34
 into the 

hydrogel network during the photopolymerization process. PEG hydrogels that mimic many of 

the properties of collagen have been recently developed.
35, 36

 The ability to spatially and 

systematically tune and control PEG hydrogel biochemical and biomechanical properties over a 

broad range is expected to permit exploration of scaffold property impact on resulting TEVG 

outcome toward identification of optimal scaffold properties. 

The photoactivity of acrylate-derivatized PEG macromers allows the principles of 

photopatterning to be applied to PEG hydrogels. Thus, the incorporation of bioactivity into a 

PEG hydrogel network can be tightly controlled in both 2D and 3D via simple mask-based or 

laser-scanning photopatterning (Figure 2).
29, 30, 37

 Also, desirable for TEVG applications, PEG 

based hydrogels permit the ready formation of multi-layered scaffolds by successive 

polymerizations of PEG macromer solutions containing desired cell interaction moieties and/or 

cell types (Figure 2). The ability to tailor the microscale biochemical and biomechanical 

properties of 3D scaffolds is anticipated to be important to the regeneration of complex, multi-

layered tissues such as arteries. 

 

 

Fig. 2. Demonstration of the ability to spatially control the microscale biochemical landscape of PEG 
hydrogels and to create multi-layered gels. (A, B) Grayscale fluorescent images of PEG hydrogels 
patterned with fluorescent acrylate-derivatized cell adhesion peptide RGDS using conventional 
photolithographic and laser scanning patterning techniques, respectively. (C) A multi-layered PEG 
hydrogel in which a second 3D layer was formed in rectangular patches using a photomask. In each 
hydrogel layer, different biochemical ligands and cells can be entrapped.   
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IN VITRO CULTURE CONDITIONS 

Following cell seeding within the selected scaffold, an in vitro culture period is usually needed to 

allow for neotissue formation and development of appropriate mechanical and functional 

characteristics. During the culture period, the construct should receive necessary chemical and/or 

mechanical signals for cells to synthesize proteins and to remodel their environment such that the 

construct develops into a functional graft with mechanical properties similar to native vessels. 

Thus, the use of culture media supplements and/or physiological mechanical conditioning has 

been explored to improve TEVG outcome. 

 

Media Additives  

A range of media additives have been investigated for their impact on TEVG outcome.
12, 18, 21

 

SMCs grown in cultures supplemented with ascorbate synthesized three times as much collagen 

as SMCs incubated without ascorbate.
38, 39

 Unfortunately, ascorbate also decreased elastin 

production by up to 25% over four weeks in culture.
38
 TGF-β has been reported to stimulate 

expression of several matrix components, including elastin, collagen, fibronectin, and 

proteoglycans.
40-42

 Combined, TGF-β1 and ascorbate have been shown not only to increase net 

SMC collagen deposition and fibril thickness but also to increase elastin production
21
, improving 

graft mechanical properties. Other media additives including PDGF and copper sulfate have been 

explored to enhance TEVG ECM synthesis and crosslinking.
12, 43

 

 

Bioreactors for Mechanical Conditioning 

In vivo, the pulsatile nature of blood flow subjects SMCs within the medial layer to cyclic stretch 

and transmural shear. Mechanical stretching of TEVGs in vitro has been shown to have profound 

effects on cell phenotype,
44, 45

 orientation,
45
 and ECM deposition.

46-47
 Thus, investigators have 

begun to exploit the ability of SMCs to sense and respond to mechanical stimuli to improve the 

mechanical strength of the resulting construct. 

To develop a blood vessel substitute, Niklason et al.
12
 cultured PGA constructs over thin 

walled silicone sleeves in a pulsatile bioreactor generating 165 beats per minute (bpm) and 5% 

radial strain. The pulse frequency of this system was chosen to mimic a fetal heart rate, believed 

to possibly provide optimal conditions for new tissue formation.  More recently, tubular collagen 
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constructs seeded with SMCs were cultured over thin-walled silicone sleeves and exposed to 

regulated intraluminal pressures for eight days. The 10% cyclic (60 bpm) distension induced by 

the applied pressure caused SMCs and collagen fibers to align circumferentially, resulting in 

enhancement of the scaffold mechanical properties.
48
 This model system was also used to 

investigate the increased capacity for encapsulated SMCs to remodel their environment 

following mechanical stimulation.
49
 

 

             

 
Fig. 3. Pulsatile flow bioreactor schematic. A peristaltic pump draws media from a reservoir and 
creates the desired flow rate. The compliance chamber removes pulsation induced by the peristaltic 
pump from the flow stream, permitting the desired pulsatile waveform to be imposed by the pulsatile 
pump. This system has been designed so that media never contacts pump head components, 
significantly reducing the potential for contamination. The resulting flow stream is channeled through 
constructs which, in contrast to most bioreactors, are not insulated from the shear flow by a silicone 
sleeve.  

 

These analyses indicate that cyclic strain may be critical for improved TEVG outcome. 

However, further studies are needed to identify optimal bioreactor culture conditions for TEVGs. 

Towards this end, a novel pulsatile flow bioreactor was recently designed to allow for 

examination of the separate and combined effects of shear and pulsatile stimuli (both fetal and 

adult) on TEVG outcome (Figure 3).
14
 When this custom reactor is combined with PEG-based 

hydrogel scaffolds, a highly versatile platform is created for the systematic exploration of the 

impact of scaffold properties and applied mechanical stimuli on TEVG outcome.
14
 For example, 

the impact of hydrogel modulus and crosslinking density on TEVG outcome can be studied 
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independently of experienced strain, pulsatile waveform, and shear by appropriately selecting the 

composition of the hydrogel precursor solution (Table 1). Studies using this flexible bioreactor 

system should greatly enhance our ability to identify optimal scaffold and culture conditions for 

TEVGs. 

 

CONCLUSION 

The past twenty years have seen significant progress toward the development of clinically-useful 

TEVGs. Still, many challenges remain and are currently being addressed, particularly with 

regard to the prevention of thrombosis and the improvement of graft mechanical properties. A 

number of variables can be manipulated to improve TEVG outcome, including cell source, cell 

gene expression, scaffold properties, and construct culture conditions. Systematic investigation 

of the effects of specific scaffold properties and applied mechanical stimuli on TEVG outcome 

should permit the optimization of TEVG preparation.  
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