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Abstract. We have calculated the I −V characteristics of voltage biased asymmetric single-Cooper-pair transistors (SCPT),
resulting from coherent Cooper pair tunneling across both the Josephson junctions (JJ), weak dissipation due the electromag-
netic environment (EE) satisfying Re[Z(ω)] � RQ, and quasiparticles. Due to the asymmetry, the smaller JJ is effectively
probing the macroscopic quantum states of the island. A resonance occurs whenever the energy released in a tunneling of a
single, or several, Cooper pair(s) across the smaller JJ matches to the energy needed to excite the island.
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INTRODUCTION

Coherent tunneling of Cooper pairs across voltage biased
SCPTs, disturbed by a dissipative environment, can lead
to various phenomena [1]. A lot of research has been fo-
cused on charging effects of symmetric SCPTs, but also
the I−V characteristics across highly asymmetric SCPTs
have been measured [2, 3], in order to probe the quan-
tum states of mesoscopic JJs. In this paper we analyze
the current across asymmetric SCPTs due to coherent
Cooper pair tunneling, perturbed by an electromagnetic
environment satisfying Re[Z(ω)] � RQ, and quasiparti-
cles. Instead to what has been done before, we assume a
quantum coherence across both of the JJs and focus on
the parameter range EJ1 � EJ2 ∼ Ec and the undergap
region V < 2∆gap/e.

THE MODEL

We start the analysis from the Hamiltonian of the voltage
biased SCPT, which is usually written as [1]

HSCPT =
(Q1 −Q2 +Q′

0)
2

2CΣ
−

1
2
(Q1 +Q2)V

−EJ1 cos(ϕ1)−EJ2 cos(ϕ2).

(1)

The first term is the charging energy of the island, char-
acterized by the energy Ec = e2/2CΣ. The second term
gives the energy fed by the voltage source and the last
two terms describe the Josephson currents across the
two JJs. Q′

0 = CgU + (C1 −C2)V/2 is the polarisation
charge due to the applied voltage V and a gate voltage
U , CΣ = C1 +C2 +Cg where Ci is the capacitance of the
i:th JJ, and Cg is the gate capacitance. The phase differ-
ence ϕi and the charge (gone through the junction i) Qi
are canonically conjugated variables.

For the case of asymmetric Josephson junctions
(EJ1 � EJ2), it is convenient to do a linear change of
variables such that Q = Q1 −Q2, QΣ = Q2, ϕ = ϕ1 and
ϕΣ = ϕ1 +ϕ2. The Hamiltonian (1) is now

HSCPT =
(Q+Q0)

2

2CΣ
−EJ1 cos(ϕ)

−VQΣ −EJ2 cos(ϕΣ −ϕ).

(2)

Physically Q is the island charge, QΣ the charge tun-
neled across the small JJ (probe) and Q0 = CgU − (C2 +
Cg/2)V is the new polarisation charge. We see that the
first two terms describe the Hamiltonian of the Cooper
pair box [3] (CPB), whereas the third term describes the
charge gone through the probe. The last operator mixes
these two subsystems weakly.

An EE satisfying Re[Z(ω)] � RQ perturbs the system
by small voltage fluctuations V f across the system, which
can be included by a transformation V → V +V f in the
Hamiltonian (2). Also quasiparticles can tunnel, if an en-
ergy 2∆gap is released in a proper relaxation process. We
calculate the resulting current due to these perturbations
by using the golden rule, similarly as in Ref. [1].

RESULTS

At first, we neglect the quasiparticles, and analyze the
effect of the dissipative EE. Typical I−V characteristics
obtained by numerical calculations are shown in Fig. 1.
The nonresonant current, decreasing as a function of V ,
and the positions and the widths of the resonant peaks
can be understood by analysing the eigenstates of the
Hamiltonian (2) for EJ2 = 0. These are |α ,Q0〉|n〉, with
the eigenenergies Eα,Q0,n = Eα,Q0 −2eVn, where |α ,Q0〉
is the eigenstate of the CPB Hamiltonian with the qua-
sicharge Q0, eigenenergy Eα,Q0 and index α = 0,1,2 . . .,
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FIGURE 1. I −V curves for different values of EJ2. No
quasiparticles are taken into account. The first order resonances
betwen the CPB ground |0,Q0〉 and its excited states |α,Q0〉 are
seen as current peaks at the voltages V1 ≈ 100 µV, V2 ≈ 190 µV
and V3 ≈ 270 µV. The resonance |1〉↔ |2〉 (at V12) is also seen
nearby the voltage V1. Higher order resonances (for example at
V1/2, V2/2 V3/2 etc. ) become stronger for larger values of EJ2.

n tells the number of Cooper pairs tunneled across the
probe. For small values of EJ2 these states are very close
to the correct eigenstates, expect for the degenerate situa-
tions Eα,Q0,n ≈ Eβ ,Q0,m, when the degenerate states (with
the same quasicharge) are mixed srongly.

By taking the last term in the Hamiltonian (2)
into account only perturbatively, one obtains for
the nonresonant current an approximative result
I ∼ 2(eEJ2/h̄)2Re[Z(2eV/h̄)]/V . A resonant current can
flow in a situation, when the CPB ground and its excited
state are mixed strongly, i. e. when E0,Q0,0 ≈ Eα,Q0,N .
Resonances between two excited states do not usually
produce I−V peaks, since populations of them are small.
Exceptions are the situations, when the ground state and
two excited states are simultaneously in resonance.

By using a two-state approximation for a resonant
situation between the states |0,Q0,0〉 and |α ,Q0,1〉 (a
first order resonance) one gets the energy level splitting

∆E0,α,Q0 =
√

(EJ2c0,α,Q0)
2 +(Eα,Q0 −2eV)2, (3)

where c0,α,Q0 = |〈α ,Q0|exp(iϕ)|0,Q0〉| and we have set
that E0,Q0 = 0. The strong mixing of states |0,Q0,0〉 and
|α ,Q0,1〉 occurs when the first term inside the square
root of eq. (3) is dominant. The corresponding I −V
peak has then a width ∆V ≈ c0,α,Q0EJ2/2e. Higher order
resonant situations (N > 1) will also produce I−V peaks
but with much smaller widths, since the states are usually
connected by terms ∝ EN

J2.

A physical picture of a resonant situation is the fol-
lowing. Single, or several (= N), Cooper pairs tunnel
coherently back and forth across the probe, and the
CPB jumps simultaneously between the states |0,Q0〉
and |α ,Q0〉 cancelling the energy gain. Due to dissipa-
tive environment, this coherent process is from time to
time interupted by an incoherent tunneling from the state
|α ,Q0〉 to some other state |β ,Q0〉. For EJ1 � Ec the
fastest transition is |α ,Q0〉→ |α −1,Q0〉, which then re-
laxes to |α −2,Q0〉 and so on, until the system is again in
the ground state, expect that N Cooper pairs has tunneled
across the probe. The slowest is the |1,Q0〉 → |0,Q0〉
transition, and therefore the maximum current is of the
same order for every same order resonance. Furthermore,
I −V areas A0↔α,Q0 of the first order resonances sat-
isfy A0↔α,Q0/A0↔1,Q0 ≈ c0,α,Q0/c0,1,Q0 , i. e. the ratio of
the linewidths. For comparison, if the tunneling across
the probe is only incoherent [2], one gets that the areas
∝ (c0,α,Q0/c0,1,Q0)

2 drop faster with increasing α , and
the linewidths increase ∝ α .

A new channel for the charge transport can open,
whenever the energy 2∆gap needed for a quasiparticle
to tunnel, is released in a process. A quasiparticle tun-
neling across the probe (to the positive direction) is as-
sociated with an energy release eV and a quasicharge
change Q0 → Q0 − e, whereas the tunneling across the
larger junction changes only Q0 to Q0 + e. A simultane-
ous quasiparticle tunneling across the probe and a tran-
sition |α ,Q0〉 → |β ,Q0 − e〉 is possible if δE = Eα,Q0 −
Eβ ,Q0−e + eV > 2∆gap and occurs with a rate Γqp

α→β ≈

δE|〈β ,Q0 − e|exp(−iϕ/2)|α ,Q0〉|
2/e2R2, where R2 is

the normal state resistance of the probe. From this it fol-
lows, that the current in the resonant situations above
V > 2∆gap/3e can be strongly enhanced due to quasipar-
ticle tunneling.

In conclusion, Cooper pair tunneling across an asym-
metric SCPT perturbed weakly by a dissipative EE, leads
to resonant current peaks whenever the energy released
in the tunneling of a single, or several, Cooper pair(s)
across the probe equals the energy needed to excited
the equivalent CPB circuit. Compared with the case of
only incoherent tunneling across the probe, stronger res-
onances due to the higher excited states of the CPB are
obtained. Quasiparticle tunneling can increase the tun-
neling rates in resonant situations above V > 2∆gap/3e.
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