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Abstract. We analyze how the dynamics in a current-biased mesoscopic Josephson junction
can be probed by an additional smaller Josephson junction (probe). The probe is connected to
a small island in between the Josephson junction and a resistor R À RQ = h/4e2. The current
through the resistor results in an effective current bias to the larger JJ. We model the steady state
properties of the system under thermal and quantum fluctuations of the feed current. We use a
density matrix approach based on the Born-Markov equations treating the current fluctuations
perturbatively. The probe is also treated perturbatively assuming the regime of incoherent
Cooper-pair tunneling. We find that the I − V characteristics across the probe shows traces of
energy bands, Bloch oscillations and Zener tunneling in the current-biased Josephson junction.

1. Introduction
A current-biased Josephson junction (JJ) can perform Bloch oscillations in appropriate
conditions [1-3]. The oscillations correspond to a periodic charging of the JJ due to the bias and
discharging due to coherent Cooper-pair tunneling. If the balancing Cooper-pair tunneling does
not occur, the average charge of the JJ starts to increase as the JJ makes transitions to higher
bands (Zener tunneling). If Cooper-pair tunneling does not occur at later times either, at some
point the quasiparticle tunneling or a current through a parallel shunt compensates the incoming
current. In experiments the current-bias is provided by a nearby resistor and a voltage source
in series with the JJ, which is equivalent to a parallel resistor and the current-bias. The related
phenomena have been studied extensively [4] and important applications including a quantum
metrological triangle [2] and a mesoscopic amplifier [5] have been proposed.

In this paper we demonstrate how to probe these effects by measuring a current through
an additional smaller JJ (probe) connected to the island between the JJ and a resistor
R À RQ = h/4e2. In this case the well known energy-band picture of the JJ is valid and quantum
fluctuations of the quasicharge can be neglected (we do not model quasiparticle tunneling) [4].
The quasicharge is the variable playing the role of the quasimomentum in Bloch oscillations and
corresponds to the gathered charge

∫
Ĩdt to the JJ. However, the current Ĩ flowing to the JJ is

quantum state dependent, as different eigenstates are characterized by different voltages across
the JJ. This leads to a “measurement” of the JJ’s voltage in certain timescale due to parallel
(incoherent) shunt current, and is then fought back by the coherent quantum evolution due to
the Josephson effect aiming to superposition of charges. Therefore for quantitative modeling
also coherences of the density matrix are important in order to obtain a consistent description
of the interplay between the coherent Josephson effect and the incoherent shunt current. We



model the dynamics of the system using a density matrix approach based on the Born-Markov
equations treating the shunt current perturbatively. It allows us also to model the evolution,
in principle, in many energy bands and for arbitrary Josephson coupling energies. Also the
current across the probe is treated perturbatively using the model of incoherent tunneling [6].
The probe causes transitions between the JJ’s energy bands resulting in I − V characteristics
that show traces of energy bands, Bloch oscillations and Zener tunneling in the current-biased
Josephson junction.

2. Theory
The starting point is the Hamiltonian of the current-biased Josephson junction [1,2,4]

H =
Q2

2C
− EJ cos(ϕ)− Φ0

2π
ϕI, (1)

where Q is the charge of the JJ, a conjugated variable to the phase-difference ϕ, C its
capacitance, EJ the Josephson coupling energy and I the bias current. We represent the
density matrix in the eigenbasis of H0 = Q2/2C−Ej cos(ϕ) which has an energy band structure
En(q) as a function of the quasicharge q, or the quasimomentum k = q/2e, and the band
index n. The quasicharge is the charge fed to the JJ by the external circuit and does not
exist in superpositions (α = RQ/R ¿ 1). Therefore the components of the density matrix
ρ =

∑
nn′

∫
dk

∫
dk′ρnn′(k, k′)|n, k〉〈n′, k′| take the form ρnn′(k, k′) = ρnn′(k)δ(k − k′). In the

following, for simplicity, we group the density matrix equation of motion due to the feed current
to similar terms as ρ̇ = ρ̇L + ρ̇δI + ρ̇T + ρ̇δI+T .

2.1. The Liouville equation of motion
The Hamiltonian (1) leads to the Liouville equation of motion ρ̇ = i

h̄ [H, ρ] = i
h̄ [H0, ρ]+ i

h̄ [HI , ρ],
where HI = −Φ0ϕI/2π. The commutator with H0 produces oscillations of the superpositions
as we work in the eigenbasis of H0. For commutating with HI one can use the expression
ϕnn′

kk′ = iδnn′∂δ(k − k′)/∂k + ϕnn′
k δnn′δ(k − k′) [2], leading to the equation of motion

ρ̇nn′
L (k) = −iωnn′

k ρnn′(k)− I

2e

∂ρnn′(k)
∂k

+ i
I

2e


 ∑

ni 6=n

ϕnni
k ρnin

′
(k)−

∑

n′i 6=n′
ϕ

n′in
′

k ρnn′i(k)


 , (2)

where ωnn′
k = [En(k) − En′(k)]/h̄. The first term in the r. h. s. of Eq. (2) corresponds to the

oscillations of the superpositions, the second one is due to the current-bias and results in a
movement q̇ = I, and the last one describes interband (Zener) tunneling due to the same term.

2.2. Including the current noise
The fluctuations of the feed current due to the shunt are taken into account as a perturbation,
producing both classical (thermal) and quantum noise to the system. We add to the constant
current I a fluctuating component Î satisfying the quantum mechanical equilibrium correlations

D(ω) = Re

{(
Φ0

2π

)2

lim
s→0

∫ ∞

0
dt〈Î(t)Î(0)〉eiωt−st

}
=

h̄2

2π

RQ

R

ω

1− e−h̄ω/kBT
, (3)

where the restriction to the real part is justified by the assumption α ¿ 1 (causing the diagonality
in q). The noise is accounted for by additional terms in the density matrix equation of motion.
The Born-Markov equations [7] result in three kind of contributions, the first one describing
quasicharge dynamics with no interband tunneling [4]

ρ̇nn′
δI (k) =

αkBT

2πh̄

∂2ρnn′(k)
∂k2

+
α

4πh̄

∂

∂k

{
ρnn′(k)

[
∂En(k)

∂k
+

∂En′(k)
∂k

]}
, (4)



the second one describing interband transitions with no quasicharge dynamics

ρ̇nn′
T (k) =

1
h̄2

∑

ni 6=n,n′i 6=n′
ρnin

′
i(k)ϕnni

k ϕ
n′in

′
k (Dnin

k + D
n′in

′
k )

− 1
h̄2

∑

ni,nv(ni 6=nv 6=n)

ρni,n
′
(k)ϕnvni

k ϕnnv
k Dninv

k

− 1
h̄2

∑

n′i,nv(n′i 6=nv 6=n′)

ρn,n′i(k)ϕnvn′
k ϕ

n′inv

k D
n′inv

k , (5)

where Dnn′
k = D(ωnn′

k ), and the third one describing the mixing of both the processes

ρ̇nn′
δI+T (k) = − i

h̄2

∂

∂k

∑

ni 6=n

ρni,n
′
(k)Dnin

k ϕnni
k +

i

h̄2

∂

∂k

∑

n′i 6=n′
ρn,n′i(k)Dn′in

′
k ϕ

n′in
′

k

+ i
∑

n′i 6=n′
ϕ

n′in
′

k

{
αkBT

2πh̄

∂ρnn′i(k)
∂k

+
α

4πh̄
ρnn′i(k)

[
∂En′i(k)

∂k
+

∂Enf (k)
∂k

]}

− i
∑

ni 6=n

ϕnni
k

{
αkBT

2πh̄

∂ρnin
′
(k)

∂k
+

α

4πh̄
ρnin

′
(k)

[
∂En′(k)

∂k
+

∂Eni(k)
∂k

]}
. (6)

2.3. Incoherent Cooper-pair tunneling across the probe
Assuming that the Cooper-pair tunneling across the probe is weak (if compared, for example,
to the shunt current), it can be treated perturbatively as incoherent [6]. The tunneling occurs
mainly nearby degenerate situations, where the energy 2eVp released in a tunneling of a Cooper
pair, Vp being the bias voltage of the probe (see figure 1), matches to an energy level difference of
a populated and an arbitrary eigenstate. This results in a Lorentzian type (forward or backward)
tunneling rate between diagonal elements of the density matrix

Γ±fi =
E2

p

h̄
|〈f |e∓iϕ|i〉|2 ∆

4(Ef − Ei ± 2eVp)2 + ∆2
, (7)

where Ep is the Josephson coupling energy of the probe and ∆ the broadening of the resonances.
The matrix elements are calculated in the basis of fixed quasicharge [4,6]. The corresponding
decay terms in the density matrix equation are then ρ̇ij = −ρij ∑

f (Γ+
fi + Γ−fi + Γ+

fj + Γ−fj)/2.

2.4. Discretizing the quasicharge and calculating the steady state properties
For numerical simulations the quasicharge and derivatives with respect to it have to be
discretized. We do this in a symmetric manner ∂ρ/∂k → n(ρk+1/n − ρk−1/n)/2 and ∂2ρ/∂k2 →
n(ρk+1/n−2ρk+ρk−1/n), where n is the number of points in the discretized quasimomentum space
0, 1/n, 2/n . . . 1− 1/n and ρk the value ρ(k). The derivatives of the energies have to discretized
carefully, in order to balance transition and decay rates of the quasicharge states. For example,
the definitions ∂E/∂k → n(Ek+1/n−Ek) and ∂2E/(∂k2) → n(Ek+2/n−Ek+1/n−Ek + Ek−1/n)
lead to this property and preserves the trace of the density matrix. As our equation is
not of Lindblad type, the positiveness of the density matrix is not guaranteed either, but
according to our numerical simulations it holds for dense enough discretation. For calculating
the average properties of the system, we deduce the steady state of the density matrix by Laplace
transforming the equations of motion and using the limit s → 0. The average voltage V across
the JJ is 〈Q〉/C and the the current across the probe is obtained from the transition rates (7).



3. Numerical results
If Ep = 0 (no probe) the model reproduces the results of Refs. [2,4]. For small I the quasicharge
fluctuates, due to thermal noise characterized by kBTRQ/R, in the lowest band nearby the point
which leads to a shunt current I. For larger currents Bloch oscillations become possible and the
distribution extends to the whole band. For high currents Zener tunneling occurs until the JJ is
in a band which can cause high enough voltage to compensate the bias current I. Also incoherent
Cooper-pair tunneling across the larger JJ emerges and induces downward transitions.

If Ep 6= 0, the dynamics are modified by new transitions between energy bands. Again, for
low I the distribution settles nearby a point in the lowest band, except when 2eVp matches to
an energy level difference to a higher band (at this point). Then Cooper-pairs tunnel across the
probe exciting the JJ. The tunneling can occur to both directions (different signs of Vp) but for
EJ < EC one of the directions dominates, because the eigenstates are close to the charge states.
After the tunneling, the quasicharge travels back to its original position by “sliding” down the
excited bands and making downward transitions nearby the Zener tunneling regions. As I is
varied, the mean position of the quasicharge, and also the resonant voltage, is changed (figure
2). For larger I Bloch oscillations emerge and the excitation can occur at any point of the band
for a fixed I. The probe current is enhanced for a wide range of voltages (figure 2). If EC > EJ ,
higher I causes Zener tunneling and a narrow distribution in one of the excited bands, which
is detected by a similar but opposite direction tunneling (transition to the ground band). The
resonances are seen for opposite values of Vp (figure 2). For EJ À EC interband tunneling is
weak for reasonable I but can be induced by the probe.

Figure 1. The schematic diagram of
the circuit modeled (upper diagram)
and the one used in the simulation
(lower). The crossed boxes represent
JJs and the dotted region is treated
perturbatively.
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Figure 2. Numerical results for the absolute value
of the probe current as a function of Vp and I. The
simulation is done for three lowest energy bands using
a quasicharge discretation n = 200. The parameters
are EC = 2EJ = 20Ep = 6.5∆ = 100 µeV, T = 50
mK and R = 200 kΩ.
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