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Chapter 1

Introduction

After quantum mechanics was formulated in the beginning of the 20th cen-
tury, it was discussed whether or not quantum effects could be present at the
macroscopic scale too. Could a certain macroscopic system have a quantized
energy spectrum and quantum evolution of a superposition of states, even
if it describes the collective state of a macroscopic number of particles? Or
does quantum mechanics always reduce to classical mechanics at the macro-
scopic scale? The question was fascinating but it took many decades before
it was a matter of experimental physics. The idea was boosted again in the
beginning of the 1980s, when it was discussed that macroscopic quantum
phenomena could finally be realized in experiments also [1, 2]. The realiza-
tion was based on the Josephson effect, an important phenomenon originally
found in the 1960s.

The Josephson effect can occur between two superconductors, if they
are separated by a thin insulator. Such a connection is called the Joseph-
son junction. In the superconducting state, a metal has no resistance and
a current can flow when no voltage is applied. This is a consequense that
electrons tend to form bound pairs in certain metals at very low temper-
atures, T' ~ 1 K. One bound pair, called a Cooper pair, has the charge
—2e and zero spin. So one could view that a Cooper pair is a boson and
therefore it tends to be in exactly the same state with other Cooper pairs,
resulting an unanimous and nondissipative current flow. The system is very
coherent, even though it is formed from a macroscopic number of electrons,
all the Cooper pairs are in the same ”phase” state. In the Josephson effect,
if V' # 0 between the leads, there is a coherent ac-supercurrent through the
insulating barrier, resulting no net current over time. If we maintain V' =0,
a dc-current will flow through the system, depending sinusoidally on the
phase difference between the superconductors. This weird current-voltage
behaviour is a result of a quantum mechanical coupling between the Cooper
pairs at different sides of the insulating barrier.

The Josephson phenomenon in itself is described by a semiclassical the-



ory, but it was later predicted that new effects should arise at low temper-
atures for mesoscopic junctions. In that case, the behaviour of the junc-
tion should be described completely quantum mechanically rather than by
using the semiclassical theory. In this limit the collective state of a macro-
scopic number of electrons should show quantum effects. Manufacturing
such mesoscopic junctions and establishing suitable conditions for observing
the macroscopic quantum phenomenon (MQP) was not possible until at the
beginning of the 1980s. Afterwards, there has been plenty of experimen-
tal evidences for the fact that MQP is present in small Josephson junction
systems. There has been observations of energy level quantaziation (ELQ),
macroscopic quantum tunneling (MQT), macroscopic quantum coherence
(MQC) of two states and of many states also. Most of the research has been
done for observing MQT of the phase difference ¢ between two supercon-
ductors. SQUID devices (which consist of two Josephson junctions parallel
in a magnetic field) coupled to an inductor have also verified the existence
of MQT, ELQ and MQC.

The Josephson effect is based on a coherent Cooper pair transfer over
the insulating barrier. In the semiclassical model of the Josephson effect, the
discreteness of its basic event, the transfer of a single Cooper pair over the
insulating barrier, can be forgotten. But when dealing with small junctions
and for example a weak Josephson coupling energy, it can have a major
impact on the current-voltage charasteristics of the system. Observation of
a Coulomb blockade is a manifestation that a change of a single charge in
the tunneling region can be forbidden and it therefore blocks the current
from a macroscopic number of Cooper pairs, resulting in a total absence
of the tunneling. Another important phenomenon when dealing with the
small Josephson coupling energy is the inelastic Cooper pair tunneling. It
manifests the energy exchange between the Josephson junction and its elec-
tromagnetic environment when a Cooper pair tunnels over the insulating
barrier. As a result, the tunneling leaves traces from the environment’s en-
ergy structure to the current-voltage characteristics of the system. Thus
inelastic Cooper pair tunneling can be used to probe the energy levels of the
environment.

The MQP is not only interesting to study, but it could also have effec-
tive applications in future. For example, it is thought and partly shown that
small Josephson junctions could be used as a basis of quantum computers [3].
Increase of the calculation power in ordinary computers is achieved by de-
creasing the size of a transistor. But at the end there’s a limit when going
to smaller and smaller sizes, the wave property of electrons. At some stage,
the transistor cannot work anymore without errors. If one wants to increase
the calculation power even further, the quantum computing is the answer.
The basic idea in the quantum computer is to use the quantum evolution of
a superposition of states as a calculation method. Josephson junction based
systems could be ideal for acting as quantum bits in the quantum computers,



or in other this kind of applications, because they are easily coupled to the
electrical circuit. There has been a lot of similar research for normal state
junctions (not superconducting) also in which electrons, instead of Cooper
pairs, tunnel incoherently over the insulating barrier. However, normal state
junctions are not the subject of this thesis.

My master’s thesis is motivated by the experiments and research done by
R. Lindell et al. for mesoscopic Josephson junctions, in Low Temperature
Laboratory of Helsinki University of Technology. In the experiments, an
inelastic tunneling of Cooper pairs is probably observed and with the help of
that one is able to study the energy level structure of the SQUIDs. This is the
first time when ELQ of the Josephson junctions is studied using this method.
Surprisingly, also the semiclassical treatment of the same situation gives
raise to very analogous current-voltage characteristics, even the two cases
manifest completely different phenomena. Therefore a comparative analysis
needs to be made. The purpose of this thesis is to study the behaviour of
voltage biased many Josephson junction systems both semiclassically and
quantum mechanically. I — V characteristics of the systems are calculated
numerically for both of the cases and then compared with the experimental
data. Also the effect of an energy band structure of the SQUID, which was
interpreted to be seen in these experiments, to inelastic tunneling of Cooper
pairs is analyzed.

The stucture of the thesis is as follows. Chapter 2 gives the introduction
to the semiclassical Josephson effect. Chapter 3 considers the peaks in the
I — V characteristics arising under rf-irradiation or in asymmetric many
Josephson junction situations, numerical results for the I — V curves are
analyzed for different parameters. In chapter 4 we switch to the quantum
mechanical treatment of the Josephson effect which is relevant when dealing
with small Josephson junctions. Chapter 5 concentrates to the theory of
inelastic Cooper pair tunneling. In chapter 6 we describe many Josephson
junction systems in the same fashion as done in the P(E)-theory and discuss
the effect of the gate voltage and the band structure. Chapter 7 contains
the comparison between the models and experiments. A discussion is given
in chapter 8.



Chapter 2

Classical Josephson Effect

We start our discussion from the semiclassical Josephson effect, which we
will now on call simply the classical Josephson effect. It can be understood
qualitatively with the help of the macroscopic view of superconductivity,
the Ginzburg-Landay theory. Therefore we start by discussing the basics
of superconductivity and then show how the Josephson effect arises. After
that we show the equivalence between an isolated Josephson junction and
an LC-oscillator. The SQUID is probably the most important application of
superconductivity and will be discussed next. Finally we take into account
the effect of quasiparticles and describe the junction’s dynamics using the
RCSJ-model. The treatment of this chapter is partly based on the discus-
sions made by Feynman and Tinkham [4, 5], which are nice literature for
beginners to read.

2.1 Macroscopic View of Superconductivity

The Josephson effect was originally predicted by Brian D. Josephson in
1962 [6]. At first, this brave derivation gave rise to a lot of sceptism, but
a year later when Anderson and Rowell reported the very first observation
of the Josephson effect [7], the theory was accepted. It turned out to be
so crucial effect of superconductivity that Josephson shared the 1975 Nobel
Prize for his work.

The Josephson effect can be understood using the ultimate coherence of
superconductors. According to the microscopic model of superconductivity,
the BCS-theory [8], in a superconducting state electrons form bound pairs
due to a weak attractive force resulting from complicated electron-phonon
interactions. These bound pairs are called Cooper pairs, they carry a charge
—2e and have zero spin. One can now interpretate that because Cooper
pairs have no spin they act as they were bosons. As a result, the system is
analogous to the Bose-Einstein condensation at low temperatures: all the
Cooper pairs are in the same quantum mechanical state. In other words,



we could describe every Cooper pair using the same wave function 9 (x,t).
This is the macroscopic view of superconductivity!

Let us now write this wave function (which is equivalent to Ginzburg-
Landau theory’s order parameter) in the form which separates the absolute
value and the phase of a complex valued function

b(@,t) = V/p(t, )2, (2.1)

assuming that p(t,z) > 0. We are now free to choose any normalization one
wants, but because we are dealing with a macroscopic number of bosons,
p(t, x) is clearly proportional to the pair density. We can therefore lock the
normalization and identify that p(x,t) is the pair density. Normally the
phase of a wave function has no effect on anything, but now the situation
is different. Using the probability current of a wave function (which is
proportional to the electrical current in this case) one obtains the coordinate
dependence of the phase

rV§(t, x) = mov — 2eA. (2.2)

Here A is the vector potential of the system, v is the velocity of Cooper
pairs and m is some effective mass of one Cooper pair. If we assume that the
vector potential can’t penetrate into the superconductor, like in the Meissner
effect, deep inside the leads the derivate of the phase is proportional to the
effective momentum of a Cooper pair and therefore to the supercurrent also.
If this current is vanishing, the phase has the same value everywhere in the
superconductor!

2.2 Classical Josephson Effect

When two superconductors are brought close together but are coupled only
by a weak link (in this case a thin insulator), new effects can arise. This is
because the probability amplitudes of Cooper pairs at the different sides of
the insulator will couple to each other and start to oscillate. Similar effects
are discussed in quantum mechanics quite often and they can be pictured
quite simply. In figure 2.1 we introduce a voltage biased Josephson junction,
it consist of two superconductors that are separated by a thin insulator and
are attached to an ideal voltage source.

Let us assume that there is no magnetic field, the junction is symmetrical
and no quasiparticles are present (that means no "normal electrons” are
contributing to the system, all electrons are bounded). If the insulator is
too thick, the states at the different sides of the insulator do not interact and
nothing happens. If the insulator is thin, but not too thin, the probability
amplitudes can interact with each other slighty. The system can be described
by two coupled differential equations for the probability amplitudes [5, 9] at
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Figure 2.1: A voltage biased Josephson junction. The probability ampli-
tudes 1; of Cooper pairs couple to each other and start to oscillate.

the points opposite sides of the junction, as drawn in figure 2.1. We have

i % — eV + Kby (2.3)
) 8_¢t2 =eViho + Ky, (2.4)

where K is certain coupling constant depending on the materials of the
superconductors and the thickness of the insulator. Making the change of
variables as in equation (2.1), taking into account the voltage source and a
background charge pg of ions, one arrives after some algebra into two basic
equations describing the Josephson effect

I, = I .sin(p) (2.5)
b= % (2.6)

I, is the Josephson (super)current through the system and ¢ is the phase
difference across the junction, defined as

¢ =01 — 0. (2.7)

The time dependence in equation (2.6) is a result of an energy difference
when a Cooper pair lies at the different sides of the junction. I. is called
the critical current and can be presented in the form

4eAK
I. = TPOa (2.8)

where A is the cross sectional area of the electrodes and pg is replaced by
py which only differ in dimensions, [pg] = #, 5] = # I, lies normally

in the range of a microampere to milliampere, depending on a situation.



Notice that the macroscopic phases are now ”locked” to each other unlike
in the totally noninteracting case, where the idea of the phase difference is
unsound.

Using the microscopic theory of superconductivity to the Josephson junc-
tion geometry, Ambegaokar and Baratoff worked out an exact result for the
critical current [10] as a function of the BCS gap function A(T") (which de-
scribes the energy needed to excite an electron from the BCS ground state)
and the normal state (not superconducting) resistance R,. When T = 0
this can be written in the form

wA(0)

I = . 2
2eR, (29)

Equations (2.5) and (2.6) can now be easily solved to obtain the be-
haviour of the system as a function of time. Assuming that the voltage V'
between the superconductors is a constant we have

D
I, = Isin (%Vt + c> , (2.10)

where ¢ is an arbitrary constant resulting from the integration of equation
(2.6). If now V = 0, we have a dc-current, even if there’s an insulator
between the conductors. The current depends sinusoidally on the constant
¢, it can have any value between [—I;,I.]. The phenomenon is called the
dc-Josephson effect. If V' # 0, the phase difference starts to travel as a
function of time. This results in an oscillating supercurrent with an angular
frequency % and an amplitude I. over the insulator, so the net current
integrated over time vanishes. This is called the ac-Josephson effect. We
see that the Josephson junction behaves just the opposite than an ohmic
resistor. If a nonzero voltage is applied, no net current is obtained. If a zero
voltage is applied, a current flows through the system.

2.3 The Josephson Coupling Energy

In further analysis, the Josephson effect has to be described by a Hamil-
tonian formalism. This is crucial for example when going to the quantum
mechanical treatment of the phenomenon. To do this, we have to find an en-
ergy which is released when the superconductors are brought close together,
the Josephson potential energy. This can be deduced by considering the
energy exchange between the junction and the voltage source when V' # 0.

If there’s a current I over a constant voltage V and it lasts time dt, the
voltage source does the work IV dt. This energy has to be absorded in the



Josephson potential energy. The work done between the times ¢y and ¢ is

t t 2 tl
wy= [ 1vdt = [ Lsin (2L 1+ c)var
to to h

——EI cos ﬂt—i— —I—ﬁf cos ﬂt + (2.11)
2 € h ¢ 2 ¢ n 0 ¢

= —Fj cos(p) + constant,

where we have introduced the Josephson coupling energy

E;=—1I. 2.12
J %2e c ( )
The constant in (2.11) is not important, it just shifts the zero point of energy.
We can set it to zero and define

U = —E;cos(p), (2.13)

as the Josephson potential energy.

2.4 The Capasitance and Inductance of the Joseph-
son Junction

In the last sections we assumed that there is a potential difference between
the superconductors. This is possible if there’s a charge gathered at the ends
of the leads. Therefore, the Josephson junction can be seen as a capasitor
whose charge is described by the capasitance C

Q=CvV. (2.14)

The capasitor stores a Coulomb energy in the junction region which can be
written in the form
Q2

Eog=—. 2.15
Q=50 (2.15)
This is called the Josephson kinetic energy. A charging energy is the funda-
mental unit of electric processes present in Josephson junctions. It is defined

as the energy when there’s effectively one electron charge in the electrodes

62

20"
We can now relax the assumption of a voltage bias and study a system
which has no contact to the outer world. Its dynamics are then controlled

by the Josephson potential energy and the Josephson kinetic energy. We
write the Hamiltonian as a sum of these two terms

B, = (2.16)

2

Q
H=—-FEjcosp+ Yok (2.17)

10



If one assumes that ¢ is localised nearby one of the local minima of —FE; cos ¢
potential (equivalent to that I; < I. for all times), one can approximate the
cosine-function by the first two terms of its power series. We have

2
Ej o @Q

©° + — + constant. (2.18)

H== 20

We will again forget the constant. Equation (2.18) can be written in a more
familiar form using the approximation I = I.sin(p) = I.¢
QQ L 2

P+ =14 2.1
tc~= 3" T (2.19)

h2

H =
8Ej62

where we have introduced L, the inductance of the Josephson junction

h2

L=——. 2.2
462Ej ( O)

The Hamiltonian (2.19) is the same as for an LC-oscillator, familiar from
alternating current circuits, so its solution is a harmonic oscillation around
the mean value. The phase difference is therefore oscillating around the
local minimum of the Josephson potential energy with an angular frequency
wp, called the plasma frequency of the Josephson junction

/1 1

2.5 Superconducting Quantum Interference Device

New effects will occur when a magnetic field is applied to the Josephson
junction area. We will now concentrate on the effects which will come into
existence in a superconducting ring interrupted by two Josephson junctions,
shown in figure 2.2. The system is called a SQUID (Superconducting QUan-
tum Interference Device).

We know that the magnetic field ”shifts” the phases of the probability
amplitudes in a path integral description of quantum mechanics. As a result,
it turns out that instead of ¢ one has to use so-called gauge-invariant phase
difference to describe the tunneling across the insulator. It is defined as

2
by = —2—”/ A - ds, (2.22)
Dy /4

where the integration path is between the points at the opposite sides of the

insulator (as shown in figure 2.1) and ¢9 = 2 is the flux quantum. The

2
Josephson current is now

I, = Isin(g,). (2.23)

11
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Figure 2.2: Superconducting QUantum Interference Device. Two Josephson
junctions interrupt a superconducting ring.

Let us assume that the leads are thick enough, so the magnetic field can’t
penetrate inside the electrodes. However, because of this special situation,
the vector potential A doesn’t have to vanish inside them. If there were no
Josephson junctions in the superconducting ring, the magnetic flux enclosed
by the ring would be quantized and a basic quantum would be ®3. With
the help of equation (2.2) and assuming that v is vanishing we obtain [4]

)
A=—-—_2V§ 2.24
oS, (224
inside the electrodes. Thus
)
=9 A -ds=—— Vé-ds+ A - ds. (2.25)
T Jelectrodes links

The integral across the electrodes gives the phase difference of one loop
(which must be n27, where 7 is an integer), minus the finite phase differences
across the weak links

/ Vé-ds =n2r + p1 — @o. (2.26)
electrodes

Combining this with equations (2.22) and (2.25) we obtain

g2 — g1 = 2£—(I> + n2m, (2.27)

0
where ¢g41 are ¢yo are the gauge-invariant phase differences across the junc-
tions 1 and 2. Unlike in the case of the superconducting ring, the flux can
have any value and therefore is not quantized but the phase differences are
suffering, they are not independent. If we now calculate the current, we see

12



that the contributions through the different junctions are partly cancelling
each other. Especially if I.; = I.o then

I =2I,cos (@> sin(dy). (2.28)
0

This shows that the SQUID can be seen as a single Josephson junction with
an adjustable coupling energy. Because of this remarkable feature, SQUIDs
have had a huge amount of applications in building very sensitive magnetic
field detectors and, for example, in macroscopic quantum physics. It is ar-
gued that the SQUID is the most important application of superconductivity
so far.

In future, if dealing with the magnetic field, we will simply mark ¢,
by ¢ to keep the equations simple and in harmony with the literature. To
complete the analogy with a single junction case, we would like to know the
effective capasitance of the SQUID. It is obtained by considering the SQUID
as two capasitors in a parallel configuration

C=C1+4Cs. (2.29)

Especially if Cy = Cy (and there is no magnetic field), then the SQUID has
douple the coupling energy and the capasitance of the single junction. This
results in that the charging energy is half of the original and thus the plasma
frequency in equation (2.21) stays constant.

2.6 The RCSJ-Model

So far, we have considered Josephson junctions which are voltage biased or
not biased at all. Also no quasiparticle current is included yet. However,
in practical experimental situations a small quasiparticle current is always
present and it will introduce a dissipation into our system. We will first
include this effect in a situation where we have a current bias. This leads
to an analogous differential equation as for a particle in certain effective
potential field. Thinking the Josephson junction as a single particle, will help
us to understand its dynamics. It is called the Resistively and Capasitively
Shunted Junction model, shortly the RCSJ-model.

The key idea in the RCSJ-model is to describe the Josephson junction
with an equivalent model which contains a capasitor, a resistor and the
Josephson supercurrent in a parallel configuration, as shown in figure 2.3.
Because the charge is conserved, an input current must be in a balance
with the current through the junction. There are three channels which are
contributing to it. This leads to the differential equation

I =1I.sin(p) + GV + C(fi—‘t/, (2.30)

13
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Figure 2.3: The RCSJ-model of the Josephson junction. The resistor is
described by its conductance G.

where I is the input current and G is the conductance of the quasiparticle
current. Using equation (2.6) we can eliminate the voltage by the phase
difference and obtain the second order differential equation

E\?. h AN :
C (2_e> Y= 2_eI - <%> G¢ — E;sin(yp). (2.31)

The differential equation is the same than for a particle of mass C (2—2)2
moving along p-axis in an effective potential

U(p) = —Ejcos(p) — 2—ZI<p, (2.32)

with a friction factor (%)2 G. A useful quantity describing the damping is
the quality factor D defined as

D= Zuw,. (2.33)

The effective potential contains the Josephson potential energy but it
also contains the input current which just tilts the potential. If the friction
and the current are vanishing, we obtain harmonic oscillations at the bottom
of some local minimum, as derived in section 2.4 (supposing that the particle
hasn’t got enough energy to escape from the local minimum). If a low
friction is applied (D > 1), we obtain underdamped oscillations: after some
period of time (long compared to the plasma oscillations) the particle stops
at the bottom of the local minimum. If the potential is tilted (increasing
the input current) and it has the energy to ”climb” at the local maximum
of the potential, the particle can escape without never stopping. Its energy
is dissipated but the particle obtains it back from the tilt of the effective

14



Figure 2.4: The particle is localized at the bottom of the tilted potential
when I = 11_OI . The local minimum isn’t exactly 2.

potential, supposing that the friction is not too large (or the tilt too low).
This corresponds to an oscillating supercurrent with a presence of a small
quasiparticle current. If the friction is too large (for example overdamped
junction D < 1), the particle jamms at the local minimum of the effective
potential and finally stopps. This is not the minimum of the Josephson
potential because of the tilt. As a result, there is a supercurrent flowing
through the junction, which exactly cancels the current bias. Situation is
shown in figure 2.4.

One should note that in the real situation the quasiparticle conductance
is not necessary ohmic, its a function of a voltage G = G(V). It’s ohmic
in the region V > %@ when the corresponding resistance approaches the
normal state resistance. The voltage can now easily break Cooper pairs to
obtain the quasiparticle current. However, when dealing in the undergap
region (V < QAéT)), the conductance drops dramatically because thermal
activitation is needed for the quasiparticle tunneling to occur. In this region
the conductance is not ohmic and lowers expenentially when lowering the
temperature. In our situations of interest the leads are made of aluminum
and the gap function of them has the value =~ 200 peV at low temperatures.
This defines the undergap region to be at V' < 400 uV.

In the RCSJ model we clearly see the ultimate coherence of the super-
conductors. Despite the fact that we have a macroscopic number of electrons
participating in the junction’s dynamics, it behaves as it would be a single

15



particle. Cooper pairs act as an entity, not statistically like fermions. This
is the key fact why macroscopic quantum phenomena is possible to achieve
in the Josephson junction based systems.

16



Chapter 3

Current Voltage Peaks in
Classical Many Josephson
Junction Systems

The purpose of this chapter is to study current-voltage peaks appearing in
voltage biased many Josephson junction systems. Especially we are study-
ing peaks in a situation where there are two classically behaving mesoscopic
junctions with different Josephson coupling energies in series with the volt-
age source. Then in chapter 7 we compare the results with the theory
of inelastic Cooper pair tunneling, which gives rise to similar peaks. We
start by historical introduction of closely related topics, Shapiro and Fiske
steps. Then later we write down the differential equations of dissipative two
Josephson junction systems. After that we show the results of our numerical
calculations for the current-voltage characteristics. Finally we extend the
model to many Josephson junction systems.

3.1 Shapiro Steps

In 1962 it was discussed by Josephson [6] also that in the presence of mi-
crowaves, the Josephson current might be nonvanishing for special values of
the dc-voltage. First detection of this was made by Shapiro [11] a year later
in an experiment where a clear step structure was found in the dc I — V
curve. This was also an indirect detection of the ac-Josephson effect.

The Shapiro steps arise when a Josephson junction is biased by a rf-drive
which has both the ac- and dc-components. Let us now analyze in detail,
how this can be possible. We assume that we have an ideal voltage source
and [4]

V(t) = Vo + V1 cos(wi ). (3.1)

With the help of equation (2.6), the phase difference across the junction can

17



be written in the form

2
mﬂ:c+2dﬁr%gw

h w1

sin(w1t), (3.2)

where c is an arbitrary constant resulting from the integration. Assuming
an ohmic conductance for quasiparticles, we can use equation (2.30) and
have

2eV) 2eV;

I(t) = I.sin <c+ - t+ o sin(wyf)) (3.3)

-I—G(Vo +W COS(&)1t)) — CViwy sin(w1t).

To get the observable current, we need to time average (3.3). The first
term (which is the supercurrent) can be written with the help of Bessel
functions J,,

2eV;

I, =1, Z(—l)"]n ( ;wol) sin(c + wot — nwit), (3.4)
where we have defined wy = % Timeaveraging (3.4) leads to a nonvan-
ishing value only when V; has one of the Shapiro step values

huw

As in the dc-Josephson effect, its value is sinusoidally dependent on the
constant ¢. We see that the time average of the current (3.3) is distributed
to values

2
G%—k%(iw

) <I<QV,+1J, <@> . (3.6)

w1 hw1

To get it simple, the Shapiro steps are arising when the ac-Josephson
effect is in harmony with the alternating voltage source. Their magnitude
can be calculated with the help of Bessel functions. The name ”step” be-
comes from the fact that when V is plotted as a funtion of I, one obtains a
steplike I — V structure.

Same kind of phenomena can occur even at a constant voltage bias if
some internal cavity mode is present and it can interact with the Josephson
current. In 1964 Fiske observed peaks which were interpreted as resonances
with electromagnetic cavity modes in long Josephson junctions [12]. These
can occur if the electromagnetic field can penetrate deep enough in the
junction resulting an interaction with the Josephson current. As a result,
steps are formed in the I — V curve of the system as in the previous case.

Recently the Josephson effect was investigated in a situation where the
insulating potential was coupled to a harmonic oscillator [13]. As a result,
the Josephson ac-current coupled to these harmonic oscillations forming
a step structure in the dc I — V curve, similar as in the Shapiro effect.
Investigations of such a systems are vital because of possible applications to
nanoelectronics and quantum information processing.
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3.2 Resonances in Many Josephson Junction Sys-
tems

We start now to seek Shapiro structures which come into existence in many
Josephson junction systems. The phenomenon can occur if there are many
junctions with different coupling energies in series with a dc-voltage source.
Reconances don’t need an alternating voltage or electromagnetic cavities
present in the junction. Effectively one junction can act as the alternating
voltage source to another, leading to a peak structure in the I — V curve.

Dynamics for a voltage biased classical multijunction system are easily
generalized from the case of a single junction introduced in chapter 2. The
current through the i:th junction is

dv;

I, =1I,si ; Ci—
i clen((Pz)‘l‘ U

where ¢; is the phase difference across the i:th junction and so on. The
voltage source "locks” the phase difference ¢y over the whole system but
the local phases can have arbitary values, within the limits that ¢y is as
expected. The time dependences of the phase differences are as before

e

25 A (3.8)
. 2eV;
pi= % : (3.9)

Py = Z%‘ (3.10)
V=> V. (3.11)

Let us study a simple situation where there are two Josephson junctions
in series with a voltage source. Let us assume that one junction has much
larger Josephson coupling energy than the other. We call the little one a
probe junction, the name will become clear in the later chapters. We assume
also that the quasiparticle conductances vanish, G; = 0. Using equations
(3.7) and (3.9), we obtain the currents flowing through the junctions

' B

I Sln((Pl) + Cl% =1 (3.12)
g

Lo sin(py) + 022%2 ~ . (3.13)

We know that I; = I, = I(t) because the charge doesn’t disappear. These
equations are actually two equations for the same phase difference, since
under a voltage bias the phase differences are not independent, as seen from
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equations (3.8) and (3.10). We can eliminate I(¢) by substracting equations
(3.12-13) from each other and have

iy

I sin(<p1) + (Cl + 02)2—6

— I 9sin (2€TVt +c— <p1> =0. (3.14)
Solving the differential equation (3.14) and then using the relation (3.12)
one can calculate the current as a function of the voltage and the constant
c.

Let us now derive an approximate solution. We shall assume that the
larger junction’s phase difference is stucked at the bottom of its local mini-
mum, as in figure 2.4. If there’s a net current flowing, we could say that its
mean position deviates from the bottom of the cosine-potential a little, as in
the tilted washboard case. We assume that the mean position is ¢, and the
little deviation from this is ¢. Then equation (3.12) can be approximated
in the form

b
Log+ 012—‘: = I(t) — L1om. (3.15)

If I3 > I.9, the right hand side of equation (3.15) is assumed to be a small
perturbation and will be set to be zero. Then the solution of equation (3.15)
is harmonic and independent of ¢, (which is not true!). So it can be written
in the form

¢ = asin(wpt +b), (3.16)

where wj, is the plasma frequency of the larger junction and a and b are some
"arbitrary” constants (of cource a < 1). As a result, ¢; oscillates around
its mean position, acting as an effective rf voltage source to the smaller
junction. The time dependence of @9 can be written in the form

2 2
g = GTV -1 = 6}:/0 — Vi cos(wpt + b), (3.17)

where we have identified aw, = V; and V =V}, showing the equivalence for
the Shapiro step case. Now the calculaction continues in a similiar way as
done in the previous section, resulting steps in the I — V curve.

We eliminated the other junction to act as an effective ac-voltage source
of an angular frequency w;,. The approximation clearly gives raise to Shapiro
like steps which are spaced by % in the voltage axis, but we cannot know
anything about the magnitudes of the resonant currents because the crucial
parameter g is undetermined. Also the "relative” phase difference constant
between the junctions, which gives raise to the step-like behaviour, is as-
sumed to be arbitrary (corresponds to the constant ¢ in the Shapiro step
case) and this might not be true for this case. Actually, in the same fashion

20



as done before, it could be argued that the asymmetric two Josephson junc-
tion system is analogous to a damped harmonic oscillator under a sinusoidal
external force. The larger junction forms the harmonic oscillator and the
smaller junction gives rise to almost sinusoidal force. In this model, there
will be a resonance at 2eV = hw, but with no dependence of the ”Shapiro
constant” ¢ to the current and no higher resonances are present.

From numerical calculations we obtain that the real situation for the
Josephson junctions is somewhere between these two cases. To obtain a
current when V # 0, we have to introduce also a dissipation mechanism
(the reason for this will be discussed in section 3.3). At V = 0 the phase
difference relaxes to the bottom of the Josephson potential, no dynamics are
present. The current depends sinusoidally on the constant ¢, just like in the
dc-Josephson effect. When V' # 0, the ¢ dependence weakens and finally
disappears. Because of the quasiparticle tunneling, the "noise” current rises
linearly as a function of the voltage. At 2eV = hw, there is a clear resonance.
However, the current has two solutions for the same voltage, depending
from which direction we are coming to the region. This means that the
solution is hysteretic. If we replace the larger junction’s potential energy by
harmonic oscillator approximation, the hysteresis disappears and the peak is
almost a Lorenzian curve, as shown in figure 3.1. The hysteretic behaviour
is discussed more detailed in section 3.6. Parameters for the calculation
were partly taken from an experinment made by R. Lindell et al. [14] for
mesoscopic Josephson junctions.

3.3 Energetic Point of View

One could ask how the Shapiro steps are even possible to appear because
the situation in section 3.1 had no dissipation. We have a net current when
there’s a voltage applied across the system and no dissipation is present.
Where does the energy go? The answer is simple: the alternating voltage
takes care of the energy conservation. When a resonance occurs, the ac-
source absorbs the energy which the dc voltage source is feeding. The mean
voltage is still V' but the current won’t vanish.

Thinking of this one sees a difference for the two Josephson junction
system. In section 3.2 there was a dc-voltage applied over the whole system
and still a current was obtained. Our system absorbs the energy as in the
Shapiro step-case, but it has to dissipate it also (for example by quasiparticle
tunneling). Otherwise its oscillation amplitude would start to rise contin-
uously (which was forgotten in the heuristic approach) and no net current
would be finally obtained. This shows that to obtain resonances in the volt-
age biased many Josephson junction system, also a dissipation mechanism
has to be taken into account.
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Figure 3.1: The I —V curve of the parabolic approximation. The main pa-
rameters in the calculation were c = §, G1 = 20 /A%, Gy =2 u%, hwp = 213.8
peV . The current is increasing continuously because of the quasiparticle cur-
rent. As seen from the figure 3.1b, the resonance is a Lorenzian peak and
locates near '22% = 106.9 pV but not exactly there. Its location is deter-
mined by an effective plasma frequency of the system w, = 2 x 103.7 peV
(we will use this notation for the plasma frequencies because then the posi-
tions of the peaks are easy to see just by eliminating the factors 2 and e),
defined as using capasitance Cx, = C; + C5 instead of C; in (2.21). This

frequency is introduced in chapter 6.
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3.4 Differential Equations for the High Frequency
Limit

When performing an experiment, we have to attach current or voltage leads
to the junction. Even if there isn’t any resistance in the dc-current flow of
superconductors, it will be present at high frequency prosesses and of order
R =~ 50 — 100 © when w ~ 10* 1 [30]. For large junctions and normal volt-
ages the quasiparticle resistance is smaller than this and the leads won’t give
any extra contribution to the system (now the effective dissipation source is
a parallel configuratation of the lead and the quasiparticle resistance). How-
ever, because we are dealing with small junctions (implying that R,, > k)
and in the undergap region this effect shouldn’t be vanishing, as a matter
of fact it should be the dominant dissipation mechanism. We will therefore
add a resistor to our system to describe the effect of the leads. We will also
include the quasiparticle current and keep the assumption of a voltage bias,
as shown in figure 3.2. To be sure that these two resistance sources are not
mixed up, we have used throughout the thesis a conductance to describe
the quasiparticle current and a resistance to describe the high frequency
resistance of the leads.

Vv
!
‘\
R sy o
=1 =
[ ] [ ]
L L
G G2

Figure 3.2: A model for dissipative two Josephson junction system. The
resistor in series corresponds to the high frequency resistance of the leads
and the conductors in parallel correspond to the quasiparticle currents.

We start by writing three coupled differential equations for the current
through the system, corresponding to two Josephson junctions (equation
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(3.7)) and the resistor (Ohm’s law)

hy h
Ly sin(p1) + G Lo 2“;1 = I(t) (3.18)
h h
Lo sin(ip2) + Ga 2902 Oy 2“’2 = I(t) (3.19)
Vr
1), 2
1) (3.20)

Only two of them are independent which can be seen by transforming (3.20)
with the help of relation V = V; 4+ V5 4+ Vi into the form

U R L T I (VNN

Putting the left hand side of equation (3.21) into the right hand sides of
equations (3.18) and (3.19) we obtain

1 |2V 2¢\ 2 . (1 P2

= RR T (E) Evsin(e1) — 1 (E + Gl) “wm| G2
1 [2eV 2¢\ 2 . (1 »1

?2=0, | hR - (E) Basin(pz) = ¢2 (E * G2> “Rm| B

These are the two coupled differential equations which describe the dynamics
of a classical voltage biased two Josephson junction system. To solve them
we have to use numerical methods.

3.5 The Harmonic Oscillator Approximation

As mentioned before, calculating the current of two Josephson junction sys-
tem with F; > Fs is very analogous to measuring an amplitude of a pe-
riodically forced harmonic oscillator with damping. This is because firstly,
the Josephson potential energy of the larger junction is close to a harmonic
potential for the relevant values of ¢1, and secondly, measuring the ampli-
tude of damped oscillations with certain forcing frequency is equivalent to
finding the amplitude of a current as a function of the dc-voltage.

In harmonic oscillator approximation we describe the larger Josephson
junction’s potential energy purely by a harmonic potential (which means
replacing sin(y1) by @1 in equations (3.18) and (3.22)). In the limit B4 > E»
the ”drive force” is almost sinusoidal for large voltages because the smaller
junction’s phase difference is moving with a high velocity in its Josephson
potential curve, resulting in an almost sinusoidal energy oscillation. Under
a sinusoidal force, the damped oscillator’s energy dissipation as a function
of the driving frequency is a Lorenzian curve. So we expect that the (net)
current as a function of the voltage is more or less a Lorenzian curve.
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Figure 3.3: The I-V characteristics of the harmonic oscillator approximation
for two different quasiparticle conductances. A solid line corresponds to
R =1009, G; = Go =0 and a dotted curve to G; = 20/;%, Gy = 2/1%. The
second peak (the first harmonic) disappears smoothly when increasing the
quasiparticle conductance. The peaks are located at hQ—“;e and % and no
resonances are found for higher voltages.

Numerical results for the I — V' characteristics are plotted in figure 3.3
for two different quasiparticle conductances. We are only interested of the
high frequency area V > 0 because the model doesn’t apply for V = 0.
Parameters of the Josephson junctions are the same as before.

As we see, there are clearly two resonances. The quasiparticle current in-
creases linearly as a function of the voltage which gives a rise to a constantly
increasing current. The magnitude of the second reconance (we can call this
the first harmonic) is of the same order than the first one when G; = 0.
In figure (3.4) we plot the I — V' characteristics of the first resonance (usu-
ally called the fundamental resonance) for different resistances. As we see,
the curve is almost Lorenzian and becomes wider when the resistance is
increased, as expected. However, the maximum of the resonance starts to
shift to the right for higher resistances and the peaks become hysteretic for
lower resistances.
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Figure 3.4: The I-V characteristics of the first resonance for different resis-
tances. The solid curves whose maximum is at 104.25 pV corresponds to
R =1 kEQ. Its shape is asymmetric and tilted to right. The solid curves
whose maxima are near 104 yV correnpond to R = 300 2. The solution is
multivalued depending on from which side we are approaching the resonance
region. The dotted curves correspond to R = 100 €2 and they also manifest
a slight hysteresis. For all curves G; = G2 = 0.
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3.6 Effect of Anharmonic Oscillations

It is well known that adding small higher order (anharmonic) terms to a
damped harmonic oscillator under a periodic force, the fundamental res-
onances start to shift [15]. As a concequence of this, if the higher order
components are strong enough, there might be two possible solutions for
the same voltage. Also multiples of the fundamental resonances can appear
(which already happened in the previous situation as the existence of the
second peak). When we will describe the larger junction’s potential energy
with its original form, —E; cos(1) the shape of the resonances will greatly
change from the previous situation. This can be understood qualitatively by
thinking the power series of the cosine potential. In the resonance region,
the amplitude of the oscillation is larger than in the non-resonance case and
also the higher order terms of the power series will be signifigant. How sig-
nificant, depends of course on the specific parameters of the junctions. As
a result, this gives rise to anharmonic terms and hysteresis.

Since there was a second resonance already in the harmonic oscillator
approximation, one can deduce that the ”drive force” introduces some an-
harmonic terms also. This is natural since the movement of ¢ affects the
movement of @9 and therefore the drive force has a small dependence of ;.

In figure 3.5 is shown the I —V characteristics calculated using equations
(3.22) and (3.23). Everywhere else than in the resonance region the I — V
curves for different conductances are similar than in the harmonic oscillator
approximation. When arriving from the left side to the resonance, the solu-
tion jumps discontinuously to higher value and then smoothly lowers when
increasing the voltage. Prosess is a mirror image of the one seen in figure 3.4.
Shift of the right side solution is huge and it disappears (or is not found) for
higher conductances. Keeping the plasma frequency constant but changing
the other variables of the junction so that the harmonic approximation is
more valid, we can decrease the hysteresis in the numerical modelling, just
as expected. No resonances are found for higher voltages.

For comparison, the numerical results when not taking the lead resistance
into account (the model in section 3.2) show that the I—V curves for different
conductances are similiar than when arriving from the left side in figure 3.5.
Two resonances are found but the magnitude of the latter is very small.
Similar multi-valuedness is observed when arriving from the right side but
it lasts only for a very short distance. Probably this is because of its weak
nature to crash into the lower current solution.

3.7 Many Josephson junction systems

Coupled differential equations (3.22) and (3.23) can be easily generalized to
many Josephson junction systems. Looking at the procedure done in (3.18-
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Figure 3.5: The I-V characteristics of the dissipative two Josephson junction
system for different quasiparticle conductances. Solid lines correspond to
arriving from the left to the resonances and the dotted curves correspond to
arriving from the right. When G; = G5 = 0 (curve is at the "bottom” of the
plot) the resonances are ”streched” for huge distances when arriving from
the right to left. Situation Gi = 2 pug, Go = 0.2 pug is even more wild, the
hysteresis of the second resonance lasts beyond the first one. Three solutions
are possible in the region V =~ Aw. and the first resonance streches all the
way to 60 pV. The hysteresis disappears for G; = 1 u%, Gy =10 u% (the
highest solid curve). Peaks start from the positions fiw, and 2kiw, as in the
previous cases.
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23) one can deduce that the differential equation for the i:th phase difference
in n Josephson junction system is

..._1 ﬂ_ 2e
Yi=C. | R

2 n
. . 1 .
E) Ejsin(yp;) — Gigi — 7 jEZl @5 | - (3.24)

As a result, we have n coupled second order differential equations which
have to be solved by numerical methods. A special case of this, using two
large junctions in series with the small one, is solved numerically in chapter
7.

As a summary, we have clearly shown that an asymmetric situation in a
voltage biased classical many Josephson junction system gives rise to peaks
in the current voltage-characteristics of the system. The peaks are not step-
like as in the Shapiro step case, they are mostly unique functions of the
voltage. But also many solutions for the same voltage are possible resulting
from the hysteresis of the solutions. The model is only an approximation
of the practical behaviour of a real system, the conductances might not be
really ohmic and correct values for them are hard to deduce. The effect of
the high frequency lead resistance for small Josephson junctions might also
be a little different. The overall behaviour however should be close to the
one described above.
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Chapter 4

Secondary Quantum
Macroscopic Effects

In this chapter we will discuss the quantum mechanical treatment of the
Josephson effect. In the treatment we will replace all ”classical” parame-
ters, like the phase difference across the junction, by quantum mechanical
operators and solve the eigenfunctions of the relevant Hamiltonian. The
new effects that arise are then called the ”secondary” quantum macroscopic
effects because the ”primary” macroscopic quantum effect is the classical
Josephson phenomenon itself. At first we will study when these secondary
effects can be significant. After solving the Hamiltonian, discussion of a dis-
crete charge transfer is needed. With the help of that we explain the Bloch-
wave oscillations for small Josephson junctions under a weak current bias.
Finally we will discuss the experimental and the theoretical disagreements
of the Josephson coupling energies for mesoscopic Josephson junctions. The
chapter is based on similar discussions made in Refs. [32, 30, 16, 26].

4.1 Insufficiency of the Classical Treatment

In chapter 2 we derived an interpretation that the Josephson junction can
be viewed as a single particle in certain potential field. Just like for a ”real”
particle, there’s a certain limit after which the classical describtion of the
Josephson junction is insufficient. The particle delocalizes and starts to go
all the possible paths which lead to the same event, resulting in a wave be-
haviour. Beyond this limit we are led to use quantum mechanics to describe
the state of the Josephson junction, as discussed first by Anderson [17] in
1964. But when will this behaviour become significant?

Let us analyze this problem for a current biased Josephson junction [32],
the system discussed in section 2.6. In order to achieve quantum mechanical
behaviour, we don’t want that the Josephson junction is too much perturbed
by its environment: incoherent processes with the surroundings lead to the
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localization of the phase difference. We assume that the perturbation can
be described by two sources: a thermal fluctuation and a damping of the
environment. The first one is approximated by an average fluctuation of
the energy kgT. To avoid the incoherent mixing of the quantum states we
demand that this is much lower than fw,, the energy difference of the states
in the effective Josephson potential energy. Thus

hwp > kgT. (4.1)

For example if T ~ 1 K, then we need w, ~ 10!} % We want also that the
uncertainly in the energy, corresponding to a finite lifetime % of the state,

is much lower than the energy level separation. Therefore

hewy, > g, (4.2)
or equivalently D > 1 when using the definition (2.33). So we want an
underdamped junction and a low temperature compared to the energy level
separations of the states.

In practise, because the leads are attached to the junction, the shunting
conductance will be determined by a parallel configuration of the quasiparti-
cle and the high frequency lead resistance. The latter will be of an order 0.01
% and will usually determide the value for D. Also a ”stray” conductance
of the leads can be larger than a capasitance of a Josephson junction and
has to be taken into account when determining the effective conductance of
the system, but will be assumed to vanish in this situation. To fullfill all the
demands, one needs a capasitance ~ 1 pF for a temperature 100 mK. This
means that the dimensions of the junction are very small, of an order 1 pym.

The demands were achieved at the early 1980’s [1, 2] and most of the
first experiments studied MQT of the phase difference, which corresponds
to the tunneling of ¢ across the tilted potential of the Josephson junction.
The MQT was seen in various experiments [18, 19]. Afterwards there has
been plenty of experimental verifications to the macroscopic quantum phe-
nomenona. Observation of energy level quantization is a proof that the
eigenstates of the Hamiltonian can be viewed as the basic states of the sys-
tem. The ELQ has been observed using an rf-irradiation [20] and a method
called rapid current ramping [21, 29]. A resonant tunneling between macro-
scopically distinct quantum states [22] has also been detected.

The recent study of small Josephson (or normal state) junctions has been
focused on so-called single electronics, a study of charging effects caused by
single electrons or Cooper pairs [42]. The charge variable @ is continuous
even at the elementary scale because it describes the effective charge of
Cooper pairs and ions placed nearby the electrodes. A change of this variable
resulting from a tunneling is however discrete because only whole Cooper
pairs can tunnel. If we want to see the effects resulting from the charging of
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a single particles, the thermal or quantum fluctuations cannot average the
charge variable. Therefore we can make analogous demands than (4.1) and
(4.2) for the observation of the charging effects

2

e

€2 1

— o —. 4.4
C<H~ Re (4.4)

If for example 7 = 1 K, then equation (4.3) reads C' < 10~'5 F, which
means that A < (0.1um)?, where A is the area of the junction. This
shows that the behaviour is relevant only for mesoscopic Josephson junc-
tions, which are usually called ultrasmall Josephson junctions.

Now we have problems: as discussed before, the effective conductance
will become much larger than RI—Q and will lead to large fluctuations in the
charge and no charging effects can be seen! Also the stray capasitance will
mostly be much larger than the capasitance of an ultrasmall junction. These
difficulties can be overcome by isolating the junction, extremely small high-
impedance resistors must be inserted in the leads directly at the junction [24]
or we have to study a system which contains many small junctions in series
where the island left between the junctions is effectively isolated by the
quasiparticle conductances of the nearby Josephson junctions. Especially
if we now apply a voltage bias across the many Josephson junction system
(actually mostly we have to assume a voltage bias because of the high stray
capasitance), dynamics of the island can have quantum properties even if the
collective state between the leads is assumed to be classical. A description
for the special case of such a system is considered in more detailed in chapters

5 and 6.

4.2 Hamiltonian and its Eigenstates

Let us now consider how to write down the Hamiltonian of an isolated
Josephson junction. Starting from the Lagrangian treatment we would ob-
tain that ¢ and ) are conjugated variables. This is natural when thinking
of the RCSJ-model, ¢ corresponds to a coordinate variable and @ to a mo-
mentum variable. One is led to the commutation relation

We see that the ”delocalization constant” in this system is 2e. The commu-
tation relation implies that there is an uncertainly relation

ApAQ = 2e, (4.6)
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which reflects the fact that for small Josephson junctions the state must
be described by a wave function. For an isolated Josephson junction the
operators can be presented in the y-space

=9 (4.7)

Q= —i2e%. (4.8)

The Hamiltonian is the same as in equation (2.17) and we obtain

82

H — —4Eca—(102

— Ej cos(p). (4.9)
It turns out that the states must be distinguishable after a translation
@ = ¢ + 27 [16]. Therefore, the corresponding Schrodinger equation is the
same as for electrons in the ion lattice, well known from solid state physics.
Eigenfunctions are Bloch wave functions and the corresponding eigenvalues
are periodic functions of the quasimomentum &

P(@)k = up(p)e™ (4.10)
L + 2m) = () (4.11)
E"(k + 1) = E™(k). (4.12)

In our case a more convenient variable is the quasicharge ¢ (nothing to do
with quasiparticles) defined as

q = 2ek. (4.13)

It is interpreted as a charge which is given to the junction, for example by
a current bias or some other doping mechanism. The junction can loose the
charge @) by ”collisions”, which are described by the Josephson current in
our case, but the value of ¢ is changed only by an external doping.

4.3 Energy Bands

n

The shape and the energy of the eigenfunctions 1 (y) q are crucially depen-
dent on the relative magnitude of the charging and the coupling terms

N (4.14)

If s > 1, the Josephson potential energy dominates the Hamiltonian (4.9)
and in the ground state zp(go)g, ¢ is localised at the bottom of the Josephson
potential. The interaction with the nearby cavities is vanishing and the
system can be approximated locally by a harmonic oscillator. As a result,
the energy of the state will have an exponentially small dependence on the
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Figure 4.1: Energy bands and the Josephson potential energy when s = 10,
the picture is taken from Ref. [16].

quasicharge. Energy bands are now energy levels, with the spacing of the
harmonic oscillator’s energy quantum hw,. However, high enough bands
can interact with each other and delocalize. That introduces a periodic
dependence of the quasicharge to the energy, as seen in figure 4.1.

If s « 1, the charging energy dominates the Hamiltonian and new be-
haviour is present. Now @ is localised and ¢ delocalized. The energy bands
could be viewed to be formed from ”local” parabolic momentum-energy
curves placed on (Q = 0, 2¢e, 4e... These are then combined in a quantum me-
chanical superposition to form the energy band, as in figure 4.2. The energy
of the band is 2e periodic and one period is called the Brillouin zone. Near
the minimum of one parabolic curve, the fluctuation of the charge is very
small and only some constant differs the quasicharge and the real charge of
the electrodes

Q = q + 2en, (4.15)

where n is an integer. In the vicinity of the points e + 2em, where m is
an integer, the state is a superposition of two charge states coming from
different parabolic centers and equation (4.15) is not valid.

One should note also that we cannot anymore think of a ”classical volt-
age” % across the junction at some given time, the charge can be highly

delocalized and so is the voltage also. Of course we cannot do this ideally
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Figure 4.2: Energy bands and the Josephson potential energy when s = %,
the picture is taken from Ref. [16].

in the classical limit either, but there the charge of a single electron doesn’t
mean anything (typical capasitances C' > 10~ '°F) and a wave packet can be
easily constructed with a vanishing relative error on the voltage. In all the
limits there is however a well defined mean voltage V (quantum average)
across the junction which can be a function of time, if the state is for some
reason changing.

4.4 Discreteness of the Charge

We have solved the Schrodinger equation for an isolated Josephson junction
in ¢ space by using ”continuous” operator —iZeai for the charge of the
electrodes. Especially in the limit s < 1 one can consider the justification for
the procedure because in elementary processes of the Josephson tunneling,
the charge isn’t a continuous parameter, unlike the momentum of a real
particle. Also when we will describe the two Josephson junction system in
series, the charge variable can have only discrete values. Does the continuous
solution describe also the discrete system?

One can get rid of this ”problem” by using the BCS theory. When the
superconductors are far away, the particle exchange between them is not
possible. When they are brought close together, the tunneling can occur
with the help of the Josephson potential energy. Assuming that there were
originally M Cooper pairs in the left conductor and N cooper pairs in the
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right one, we can describe the state of an isolated junction with the help of
two basic set of states, the phase difference eigenstates |1,,) and the particle
(Cooper pair) exchange eigenstates |¢;) [30]. These could be viewed to be
a subspace from the particle number and the phase eigenstates of the two
superconductors. In the state |1,) the macroscopic phase difference between
between the superconductors is determined but the particle exhange number
is undetermined. This describes the classical state of the Josephson junction.
The state [1;) corresponds to the determined number of exchanged Cooper
pairs and undetermined phase difference. The uncertainly of the states
reflects the relation (4.6).

Eigenstates of the Hamiltonian can be written as a superposition of the
particle exchange eigenstates

la) = a5l4), (4.16)
i

where j is an integer and denotes for how many Cooper pairs are exchanged.
In the same basis, the Hamiltonian can be written in a form

> (25 — Qo/e)’Ecli) (] — < (3 + 141+ 15 = D), (4.17)
J
where () is a charge injected from outside to the electrodes. The first term
in (4.17) describes the Coulomb interaction between the electrodes and the
second term is the Josephson potential energy —FE; cos(¢). The latter can
be deduced by writing

—Ej cos(p) = —% (e + 7). (4.18)
In quantum mechanics e is a momentum shift operator, which increases
the momentum by one ”quantum constant”, which in our case is simply
2e. We see that the Josephson potential energy in (4.17) takes care of the
tunneling to both directions across the insulating barrier. We assume now
that solving the Hamiltonian (4.9) is equivalent to solving equation (4.17)
with ¢ = Qo + n2e, where n is some integer.

Assuming that F, = 0 we obtain that the eigenstates are just the
phase difference eigenstates with the eigenvalues —FEj cos(p), no kinetics
are present. When s > 1 but E. # 0 the solution is a superposition of
the phase difference states. The amplitudes can be obtained from harmonic
oscillator’s eigenfunctions, which are Gaussian and independent of ¢, as dis-
cussed before. In the limit s < 1 the eigenstates are close to the charge
eigenstates and the quasicharge has a crucial contribution. Now if we are in
the local bottom of the parabolic potential (for example ¢ = 0), the ground
state eigenfunction is approximately [16]

D)8 =1+ Z (e +e%) =1+ %cos(go). (4.19)
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Using the relation (4.18) we deduce the corresponding BCS solution
s
[¥)o = 10) + 7(11) + | = 1)) (4.20)

This gives a physical insight to the solution. Because s < 1, the (virtual)
Cooper pair exchange between the electrodes is almost vanishing and the
system is in the state where practically no particles are exhanged. If we are
in the region ¢ = e, the solution is almost degenerated as seen from figure
4.2. The Bloch wave functions for the ground state and the first excited
state can be approximated by [16]

% (e +¢7°) (4.21)
b(p)e = % (e%v - e?) : (4.22)

The corresponding solutions in the BCS theory are
1
V2
1
V2

We see that in each of the two solutions there is a linear combination of two
charge states. This explains why the quasicharge and the true charge @) are
not equivalent in this region. The antisymmetric combination of the states
is more energetic and the symmetric is the ground state. The energy FE;
differs the two solutions.

The charge state in the limit ¢ = e is a possible candidate for the reali-
sation of a quantum logic state, the qubit [27]. For possible applications in
the quantum computing or in the nanotechnology Josephson junctions are
nice devices since they are easily coupled to the electrical circuit and that
way to other devices also. However, true realisations in these fields are far
from today.

[9%)e = —=(10) + 1)) (4.23)

[$he = —=(10) — [1)). (4.24)

4.5 Bloch Oscillations in Small Josephson Junc-
tions

The Bloch oscillation is a phenomenon well known from the theory of elec-
trons in solid [23] and it basicly reflects the quasicharge dependence of the
Bloch wave functions. The Bloch oscillations have been very hard to ob-
serve in metals but fortunately the same phenomenon can occur in other
kind of systems also. One of these is a current biased small Josephson junc-
tion where observations of the Bloch oscillations have been made [24]. The
identification can be made by applying a small ac-current component to the
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dc-biased Josephson junction which will phase-lock the oscillations, result-
ing steps in the I — V curve. This is a quantum analog effect of the Shapiro
steps. Possible applications of the Bloch oscillations in the nanotechnology
have been also proposed [25].

Let us discuss shortly how the Bloch oscillations could occur. Suppose
that there is a weak current bias to the system discussed in section 4.2.
We will also take into account a small quasiparticle conductance G. From
the tilted Josephson potential energy (2.32) we know how the drive current
affects the Hamiltonian, thus [16]

H = — — Ejcos(p) — %I(t)go + 2—21,1(30)(,0 + Hy(z), (4.25)
where %I (t) describes the drive current, Q—ZIq(w) the quasiparticle current
and H,(z) is the Hamiltonian of the quasiparticle space. The coordinate
symbolizes the fact that the quasiparticle current can’t be described in the
(-space, it has its own coordinate representation. However, it changes () so
the two subspaces have a coupling, which is described by the term %Iq(t)go.

Using the assumption of a weak current bias and a low quasiparticle
conductance, we can obtain the solution by using the perturbation theory
when taking the Bloch eigenstates as the unperturbed states. Let us assume
that kpT < A? where A is the (lowest) energy difference between the
ground state and the first excited state. Then the effect of the perturbation
can be written in a very simple Langevin-type equation for the quasicharge
operator in the Heisenberg picture

g=1(t) - G—==2L—1I(t), (4.26)

where I(t) describes fluctuations of the current.

Let us assume that I(¢) = 0, which can be made if the quasiparticle con-
ductance and the temperature are low enough [16]. We can now interpret
that ¢ is a semiclassical variable and ddi‘? is the voltage across the junction
(at least a quantum average of it). If I(¢) is low, the system can have a
stable solution when the quasiparticle current and the drive current cancel
each other (I(t) = GV (t)). The quasicharge, the voltage and the current
are now constants, no Josephson supercurrent is present because its quan-
tum average vanishes. If I(¢) is high enough, the quasicharge will have a
permanent motion in the energy band and the energy of the state will be
a periodic function of time with an angular frequency wg. Time averaging
the components in equation (4.26) we obtain the Bloch frequency

wp = g(I —GV). (4.27)

The voltage and the quasicharge are oscillating with the frequency (4.27) and
there’s a nonvanishing net current through the junction. The phenomenon
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is called the Bloch oscillation. Physically one oscillation corresponds to a
tunneling of one Cooper pair.

The tunneling process can be viewed in detail when using the BCS so-
lution. Let us assume that s < 1 so the energy is highly dependent on the
quasicharge. When ¢ = 0 equation (4.15) is valid and equation (4.26) can
be written in the form

Q=1I(t) - GV(t). (4.28)

At this stage the drive current is recharging the capasitor. When the system
arrives in the reqion ¢ = e, there’s an intense reflection of the Bloch waves
from the top of the Josephson potential and the quantum average of the
Josephson supercurrent won’t vanish. In the BCS solution this means that
the system starts to move from one charge state to another, single Cooper
pair tunnels across the junction. After this stage, the drive current starts to
reload the capasitor again for another tunneling event to happen at g = 3e.

In the case s > 1 situation is more complicated. The quasicharge de-
pendence of the energy is small but not vansihing. The wave function is
localized in one of the wells so the charge is highly delocalized, the state is
a superposition of many different charge states. However, the process must
be analogous to the previous one, when the quasicharge has moved from
the region ¢ = 0 to ¢ = 2e the state has moved from one brillioun zone to
another. This means that there has had to be effectively one Cooper pair
transfer across the junction to the current source between the states ¢ = 0
and g = 2e.

In simple terms, the Bloch oscillation in a current biased Josephson
junction is a periodic and discrete Cooper pair transfer over the insulating
barrier joined with a charge transfer from the capasitor to the current source.
This is an example of a phenomenon which deals with a single charging of
Cooper pairs.

4.6 Effect of the charging to Josephson Coupling
Energy

In chapter 2 we discussed that the critical current of a Josephson junction
can be written in the form (2.9). We can calculate I, by measuring the
normal state resistance and the BCS gap function of the system and then
compare this to the experimental results of I.. The agreement with large
junctions is exellent but for mesoscopic junctions disagreement is found [14,
31, 40] and many possible explanations for the effect is given [26]. For
example, it has been proposed that this phenomenon arises because of the
charging effects present in the junction and a formula for the new critical
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current I is given [28]

(4.29)

However, even this isn’t consistent with the experimental results and there
are still open questions. Generally the exact value of E; has to be fitted
using the experimental data. This lowers the ”purity” of the theoretical
part.
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Chapter 5

Inelastic Cooper Pair
Tunneling

In this chapter we will concentrate on describing a voltage biased small
Josephson junction by using so-called P(F)-theory. We want to calculate
the I — V curve resulting from excitations and dissipations of macroscopic
quantum states present in the circuit. In the P(FE)-theory a dissipative
environment of the Josephson junction can be described in a relatively simple
form and the current-voltage characteristics are easy to evaluate. As a result
we will see that a small Josephson junction with s < 1 could be used as a
probe for the macroscopic quantum phenomena. At first we will discuss the
time dependence of a voltage biased many Josephson junction system when
no dissipative tunneling processes are present. Then we show how these can
be included using the P(FE)-theory. After that we discuss the properties
and interpretation of the P(E)-function and important cases of low and
high impedance environments. Finally we will solve the P(E)-function for
an inductive environment. This chapter is mostly based on the discussions
made by Ingold & Nazarov [33] and Ingold & Grabert [36].

5.1 Exact Nondissipative Solution

In the current biased Josephson junction case the leads had an huge impact
to the system, actually the ultrasmall junctions (C < 10~!5 F) are now
overdamped! The easiest way to circuimwent this problem is to use two
Josephson junctions in series. Because of the high stray capasitances of the
leads, this system is usually effectively voltage biased. As a result, one can
assume that the phase difference accross the system is a classical variable and
the phase related to the island between the conductors can have quantum
fluctuations.

We want to solve the time evolution of this system and then calculate
the current as a function of the voltage. For two Josephson junctions in
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series one is forced to describe the system in the interaction picture (or using
some other time dependent method), because the Hamiltonian becomes time
dependent (effect of the voltage bias). In the same fashion as in chapter 2,
we would finally obtain an oscillative quantum mechanical system. Then
we could take the quantum average of the Josephson supercurrent operator
I.sin(yp;) and obtain the current. As a result, the net current vanishes for all
voltages V # 0. Why? Because there is no dissipation mechanism present. If
there’s a current over some constant voltage difference, energy is released to
the system. If no dissipation is present, the energy increases until the current
must turn back to conserve the energy. In order to calculate a nonvanishing
value for the net current, we need to include dissipative current processes.
Because all the Cooper pairs are in the same state and they won’t give any
rise to the dissipation, this leads to the idea of an energy exchange between
the junction and its electromagnetic environment.

5.2 Electromagnetic Environment

In this section we will construct a dissipative electromagnetic environment
which describes the space (and therefore also the coupling) between a voltage
source and a probe junction. This space contains all the possible compo-
nents near the probe junction and the leads to the voltage source. The
environment and the applied voltage will then determine the dynamics of
the system when time goes on. This will include energy exchange between
the tunneling Cooper pair and the environment and finally dissipation of this
energy. Classically the dynamics can be calculated by using an impedance
of the environment and the same thing is the aim in the P(F)-theory. Us-
ing the same kind of model, MQT of the phase difference (partly discussed
in section 4.1) was studied under dissipative processes leading to a damp-
ing [1, 38]. However, we are now dealing with a voltage bias and that model
won’t be valid for this case.

Before writing down the Hamiltonian of the environment, we will study
a voltage biased LC-circuit which will be the basic building block for the
environment. We won’t take the Josephson potential energy in account yet,
but we assume that ¢ across the junction is well defined. We also assume
that the phase difference between the leads is a classical variable but the
phase difference across the junction can have quantum fluctuations. We
obtain for the Lagrangian

c(hn N\ 1 (h\’ 2¢\?

The first term in (5.1) is the familiar charging energy of the capasitor and
the second is the (magnetic field) energy of an inductor which can be written
with the help of the phase difference across the inductor (2—;Vt — ¢). From

42



(5.1) we deduce that the mean value of ¢ starts to move with a velocity 2—;V,
implying that there’s a mean voltage V across the junction. We do a change
of variables to eliminate the time dependence and obtain the Hamiltonian as
a function of fluctuations around the mean values. We could view that we
are going to the local coordinate reference of a moving harmonic potential.
We insert

2
0=¢+ §Vt, (5.2)

C[h - 21 (),
Turning now to the Hamiltonian formalism, we obtain (by neglegting the
irrelevant constants)

and obtain

1 1 (RN
where

is the fluctuation of the charge around the mean charge and Q) = C %(p The
fluctuations can be now viewed as conjugated variables in the Hamiltonian
formalism (to be precise we do a canonical transformation of the momentum
to enter the fluctuation basis because in equation (5.3) @ is the conjugated
variable of ¢). The commutator between the new variables is as before

(6, Q] = 2ei. (5.6)

The Hamiltonian (5.4) demonstrates the equivalence between an LC-circuit
and a harmonic oscillator. The harmonic behaviour is now obtained for the
fluctuations around the mean values.

To describe the dissipation, we phenomenologically introduce a Hamil-
tonian which couples the fluctuations to infinite many LC' circuits

H _2+§: (R L (5.7)
T 0 " | 2C %) 2L, Pl :

The voltage source is taken into account in the definitions of Q and @ as
shown before. g, can be viewed as the charge operator of the n:th oscillator
and so on. Using the Heisenberg equations of motion for the operators Q,
@, qn and @, we can show that this Hamiltonian effectively describes the
classical relaxation of the charge. The relaxation can be described using the
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”classical” impedance Z(w) of the environment, which can be calculated in
the form

Z(w) = (/000 e Wit Z_:l Lin cos(wnt)dt> , (5.8)

where w,, is the plasma frequency of the n:th environmental LC circuit. This
is a Fourier transform of an arbitrary cosine series which indicates that any
impedance can be achieved.

The Hamiltonian (5.7) is now on used as an environmental part of the
total Hamiltonian when deriving the results for the current voltage char-
acteristics of the system. At the end, we don’t need to use this complex
Hamiltonian, all we need to know is the impedance of the environment
which can be evaluated quite easily for the most of the situations.

5.3 Tunneling Hamiltonian

We will now write the total Hamiltonian of the system shown in figure 5.1.
When no quasiparticles are present, it is just the sum of the environmental

Z (w)

Figure 5.1: Environmental impedance Z in series with capasitor.

part and the Josephson potential energy. So we have
H = Heyy — Ejcos(yp). (5.9)

We rewrite the Josephson term as done in equation (4.18) and identify the
Cooper pair transfer operators in the two directions. Our aim is to use
Ejcos(¢) as a small perturbation which affects tunneling across the junc-
tion and calculate the current by using the golden rule approximation for the
transition rates. This means that we have to assume a small F; and a fast
dissipation to the ground state between the transitions. The environmental
Hamiltonian therefore takes the control of the unperturbed state and the
mean voltage across the junction is V. As described before, the Hamilto-
nian couples to the fluctuations around the mean values and therefore the
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perturbation is written in an analogous form than in equation (5.2). Using
the transition rate calculus for a harmonic perturbation (e*** dependence)
we obtain

(V) = %Eg 3" [(R'[e¥|R)[2P(R)6(Eg — Eg £2V).  (5.10)

R,R'

Here |R) and |R') are eigenstates of the environmental Hamiltonian and
Py is the thermal propability distribution for the unperturbed state. As
we see, the d-function takes care of the energy conservation. The harmonic
perturbation induces an energy absorbation or emission (just like in the case
of the stimulated emission) and it introduces a term %h = 2eV into the
d-function. This can be interpreted that because there’s a voltage across the
junction, the energy change in the Cooper pair transition across the junction
is 2eV and it must be absorbed or emitted by the environment, depending
on the tunneling direction.

We want to eliminate the explicit dependence of the environmental states
and describe them only by using a classical impedance of the system. The
first step in this direction can be made by transforming the J-function to
the integral form

1

1 o
S(Ep — Ep +26V) = —— / exp (L(Bp — B + 26Vt ) dt.  (5.11)
2rh J_ o h
Now we can write the part of (5.10) containing the environmental depen-
dence in the form
e%(ER—ER/)t|<Rl‘e$z’¢|R>|2 _ e%(E‘R—ER,)t<R‘e:I:z’¢|RI><R/|eq:i¢|R)

:<R|6%Henvtej:i¢e—%Henvt‘Rl><R/|e:|:i¢a|R> (5_12)

=(R|e*?O| R)(R TP O|R),
where

) = e%Henvtei¢e_%Henvt, (5.13)

is the operator e® in the Heisenberg picture. Using equations (5.11) and

(5.12) one can trace out the environmental freedoms in equation (5.10) and
obtain

E? oo ; - -
(V) = ﬁ/ exp (i%Zth) <e:t“p(t)e:F“p(0))dt, (5.14)
—0Q

where (A) means an equilibrium correlation function of the operator A. Us-
ing the generalized Wick theorem we can define the phase-phase correlation
function J(t)

(210 FiB0)) = ((HO-ROO) = (I 5.15
J(t) = ([¢(t) — ¢(0)]5(0)). (5.16)
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The P(E)-function is defined as a Fourier transform of the correlation func-
tion
1 o0

" 2rh [

P(E) exp [J(t) + %Et] dt. (5.17)
It is interpreted as a probability to emit energy E from the probe junction
to the environment. Using (5.14-17) we obtain

s

r(v) = %E]?P(iZeV). (5.18)
We can now write the total current across the junction with the help of the
transition rates. One transition corresponds to the tunneling of one Cooper
pair, so we have

en

h

What is left is to obtain the dependence between P(E) and Z(w). The
effect of the environmental degrees of freedom on the charge and the phase
degrees of freedom is twofold. Firstly, they produce a damping term which
relaxes the charge to the equilibrium after a tunneling event. This effect
can be described by a classical impedance Z(w) due to Ehrenfest theorem.
Secondly, the quantum fluctuations in the environment will have an effect to
the correlation functions, for example the one in (5.16). Since the damping
and fluctuations have the same microscopic origin, they are not independent
and are related by so-called fluctuation-dissipation theorem. With the help
of that we would finally obtain

I=2e(I'" —=T7) = —E;[P(2eV) — P(—2¢V)]. (5.19)

* dw ReZ 1

J(t) = 2/ dw ReZi(w) [coth (—ﬂhw) (cos(wt) — 1) —isin(wt)|, (5.20)
0 w RQ 2

where Z;(w) is the tunneling impedance, an effective impedance of the cir-

cuit as seen from the junction. It consist of a parallel contributions of the

capasitance C' (described by an impedance ﬁ) and the impedance Z(w)

1

200 = e 7@y

(5.21)

For any external impedance, we can calculate the P(E)-function by inte-
grating equations (5.17) and (5.20). Then we can obtain the current as a
function of the voltage using (5.19).

5.4 General Properties of P(FE)

We interpreted P(FE) to be the probability to emit an energy E to the ex-
ternal circuit. Correspondingly, P(—FE) is the probability for an absorbtion
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of an energy E. If for example T = 0, then P(—F) = 0 for all F > 0 and
therefore P(E) is proportional to the current. This is natural because in
the superconducting state, there are no ”electronic” degrees of freedom for
Cooper pairs as there is for quasiparticles. Cooper pairs have only one state
to "land” on the other side of the junction and the energy released has to
be absorbed elsewhere, it excites a reservoir state. As a result, P(2eV) is
proportional to I which is the most important feature of the P(E)-function
in the superconducting case. Measuring the I — V curve at T' = 0 we are
actually measuring P(FE) and therefore also the energy level structure of
the electromagnetic environment. This is the reason why we call this small
Josephson junction as the probe junction.

Using equation (5.16) we obtain for the general temperature case the
first sum rule

/ P(E)dE = ¢’ = 1. (5.22)

This confirms our interpretation of P(E) as a probability. The second sum
rule is obtained by a partial integration

/ ~ BP(B)AE = ihJ'(0) = AE,, (5.23)

which means that the mean value of F is 4F,, the charging energy of one
Cooper pair. The thermal dependence of the backward tunneling can be
derived in the form

P(—E) =e¢PEP(E), (5.24)

which reflects the thermal distribution Pg(R) of the initial states.

5.5 High and Low Impedance Environments

We will now solve the P(E)-function for two simply, but very important
cases: high and low impedance environments. The low impedance environ-
ment is defined as Z(w) = 0. This is practically achieved if Z(w) = R < Rg.
The phase fluctuations described by equation (5.20) almost vanish and we
can approximate

P(E) = §(E). (5.25)

This corresponds to the fact that in the absence of environmental modes
(which could absorb energy), only elastic tunneling is possible. The voltage
source transfers the tunneled Cooper pair almost immediately through the
circuit and the system acts as it would be connected only to an ideal voltage
source. This is called the global rule of tunneling: the circuit acts as an
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entity and all the energy prosesses needed happen in the voltage source,
no local energy transfers are present. The P(FE)-function (5.25) violates
equation (5.23) because the impedance is assumed to be zero. For a small
impedance the rule becomes valid but still the P(F)-function is close to the
d-function.

The opposite limit to the previous case is the high impedance envi-
ronment. It is defined as an impedance which is much larger than Rg.
This could be achieved when Z(w) = R, R > Rg, ie. the external
impedance is formed from a ”large” ohmic resistor. We obtain for the tun-
neling impedance (5.21)

R
7, =
Hw) 1+ iwRC

The real part of this aproaches to &d(w) when R — oo. It can be shown
that for very low temperatures P(E) can be approximated by

(5.26)

P(E) = 6(E — 4E,). (5.27)

This implies that the tunneling is possible only when 2¢V = 4FE,. It can
be understood qualitatively when considering the junction region only lo-
cally. The voltage source cannot balance the electrodes immediately after
the tunneling because the resistor inhibits a fast recharging. As a result, the
Coulomb energy of the electrodes changes

Q?  (Q—2e)?
2c 20

Practically the interaction to the outer world vanishes and the resistor won’t
generate any ”quantum states” which could help the tunneling (equivalent to
that there are no resonances at Z; expect at in w = 0). Therefore this energy
change has to vanish. That is equivalent to that 2eV = 4F,.. Afterwards, the
voltage source recharges the capasitor and the system is finally at the same
state than before the tunneling. This is called the local rule of tunneling
since the relevant events occur only locally.

The fact that tunneling cannot occur below V = is a result from
that the Coulomb interaction would increase the energy of the state. The
phenomenon is called the Coulomb blockade of tunneling. There are many
phenomena under this name, but they all have a common feature: the tun-
neling of a single charge is forbidden (or highly suppressed) because it in-
creases the energy. One could view that when s <« 1 the ground state of
an isolated Josephson junction is suffering from the Coulomb blockade, a
quantum fluctuation even of a single Cooper pair is very unlikely because it
is energetically unfavorable. The Coulomb blockade of tunneling has been
detected experimentally in various experiments [34, 35| and it is clear that
the possibility of the controlling of a single charge might have important
applications in the future.

AE, = (5.28)

25,
e
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A phenomenon close to the Coulomb blockade is a Coulomb gap which
is present in the normal state behaviour. The tunneling in these junctions
is possible for all voltages after the region 2eV = E, because of electronic
degrees of freedom. However, the normal state resistance is ”shifted” by an
amount of 5% resulting in a shift in an ohmic I —V-curve. This phenomenon
can be used to measure the capasitance of the junction.

5.6 Inductive Environment

Let us consider a situation when the external circuit consist only from an
ideal inductor. In this case we could take the environment (5.7) rather
literally. We start by writing down the tunneling impedance of the circuit.
The inductor is described by an impedance iwL so we have

1 )

Zi(w) = =—— 0
) C w2 — (w—ie)?’

(5.29)

where wj, is the plasma frequency of the corresponding LC-oscillator. A
small complex variable ie is added to w to get the correct result for the real
part, for which we obtain (in the limit € — 0)

ReZi(w) 0w — wp) + §(w + wp)]. (5.30)

™
2C
There are clear quantum mechanical resonances present in the environment,

arising from the LC-oscillations. Using equations (5.17), (5.20) and (5.30)
we can obtain

1 o
PE)=— | d
27h J_ oo
Bhuw ; (5.31)
exp [p (coth(Tp)(cos(wpt) -1) - isin(wpt)) + ﬁEt] ,
where
4F,
=— .32

compares the charging energy and the plasma frequency of the environment.
We are interested in the situation when T" = 0 because then its simple phys-
ical origin becomes apparent, no thermal activitations are present. Then
the solution of (5.31) can be expressed analytically

P(E) = ppd(E — khwy), (5.33)
k=0
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where

k
P
Pk =¢ pH, (5.34)

is the probability to emit & oscillator quanta. We see that p; obeys the
Poissonian distribution, therefore quanta are emitted independently. The
interpretation is as follows. The environment is analogous to a harmonic
oscillator and its energy levels are therefore spaced by fiw,. The probabilities
for the excitations to the higher levels under the perturbation are obtained
from equation (5.34). The effect of the temperature is to form a distribution
of the initial states from where the system absorbs or emits quanta. This
effect is however vanishingly small if Aiw, > kpT.

We can generalize the result (5.33) for two or even more environmental
modes present in the system at 7' =~ 0 (assuming a Poissonian distribution
for them). If our system has effectively two independent LC oscillators in
series, i.e. the tunneling impedance shows resonances at two different places
for w > 0, the P(E)-function can be deduced by multiplying the probabilities
of the two independent events

o
P(E) = ¢ Pamt M(5(E' — nhwg — mhwy). (5.35)

We see that not only there are transitions from the individual cases, but
also multiphoton transitions where n quanta are absorbed to the oscillator
a and m quanta to the oscillator b. The P(FE)-function shows resonance
whenever the energy E can be expressed as a sum nhw, + mhws, and the
corresponding probability is the product of the two probabilities. One should
however note that, for example, the case of two inductors in the environment
doensn’t give rise to a tunneling impedance with two modes, it needs a more
complex system.

When also a resistance is included, one is forced to use numerical meth-
ods when calculating the P(FE)-function. The integrals (5.17) and (5.20)
converge slowly but for finite temperatures one can calculate the P(E)-
function easier with the help of the integral equation found in Ref. [38].
The effect of a small resistance in series with an inductor is approximately
to broaden J-functions to Lorenzian peaks and make the current finite. To
describe this effect, we define the quality factor @

1

©= Rew,

(5.36)

We see that the quality factor is the inverse of D defined in equation (2.33)

in the context of a current biased Josephson junction, () = %. This is

because of the difference in the drive sources. When having a voltage source
we want a fast recharging to the equilibrium to have clear ”voltage states”,
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Figure 5.2: The P(E)-function calculated in Ref. [40] using the integral
equation taken from Ref. [38].

the resistor is analyzed in a series connection and therefore it has to be
small. When having a current source we want as slow relaxation as possible
to have no quantum fluctuation of the energy, the resistor is analyzed in a
parallel connection and therefore it has to be as high as possible. We see
now that the high frequency impedance (which was a big problem in the
current biased model) won’t usually give arise any difficulties in this case.
Example of a P(E)-function when @ > 1 is shown in figure 5.2.

An impressive indication of the inelastic tunneling was made by Holst [37]
in a situation where two load resistors were used to form a tranmission line
resonator environment for the probe junction. In this situation a tunneling
impedance of the leads shows clear resonances at certain frequencies. These
were then seen in the experinment as current peaks. The peaks could be
identified with the help of the P(E)-function to a single and multiphoton
transitions in the environment.
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Chapter 6

Peaks due to Inelastic
Cooper Pair Tunneling

The purpose of this chapter is to describe the inelastic tunneling in a situ-
ation where there are one or two large SQUIDs used as an environment for
the probe junction. The situation is equivalent to the one studied in chapter
3. The calculation there was purely classical but now we are dealing with
a completely different phenomenon, the excitation of macroscopic quantum
states. To derive the I — V characteristics we use a perturbative method in
the same fashion as done in the P(FE)-theory. This situation was recently
realised in the experiments and interesting phenomena were seen [14, 40, 41]
interpreted as a proof of inelastic Cooper pair tunneling and the band struc-
ture of the Josephson junctions. We will analyze these experiments in more
detail in chapter 7.

At first we will show how to calculate the current-voltage characteristics
in the limit s > 1 using the P(E)-theory. After that we will analyze the
matrix elements used in the perturbation theory to describe the system
more generally. Then we will add another SQUID to the system and find an
approximate solution. After that we will discuss the spectroscopic methods
available when using SQUIDs as an environment. Finally we will discuss
the influence of the gate voltage and show how the Bloch bands should be
seen in the experiments.

6.1 Current Using the P(E)-theory

Let us assume that we have a SQUID (or equivalently a tunable Josephson
junction) acting as an environment for the probe junction. If s > 1 for
the SQUID, we can describe the situation with the help of the P(E)-theory.
This is because now the SQUID acts as it would be an LC-oscillator whose

impedance could written as a parallel contributions of 1wl and ﬁ, SO we
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have

1
Z(w)=+———7-
szl + iwl
The tunneling impedance (5.21) is now

N 1 N 1 1 iw
iwCy+iwC + o wls + o  Crwi — (w —ie)?’

Zi(w) (6.2)

where C), is the probe’s capasitance, Cs, = C), + C1 and w), is the plasma
frequency (2.21) of L and Cy. The tunneling impedance is now the same as
in equation (5.29) except that the capasitance in (6.2) is the sum Cy. Peaks
appear in the I —V curve with a separation

hw

V=2 6.3

2e (6:3)
We will from now on call this w, as an effective plasma frequency of the
system. Usually C, < C7 so the plasma frequencies of the SQUID and the
system won’t differ a lot. Using (5.32) and (2.21) we obtain the probability
density parameter

AE,

_ 4B AB.  _ 2 (6.4)
P oy BEE, Vs’ '

where sy, is now the ratio of the SQUID’s coupling energy and the system’s
charging energy (using C = Cy). The area of the k:th peak is as before
(5.34).

6.2 Matrix Elements of the Perturbation

Let us now derive the current-voltage characteristics of the previous situation
directly by a perturbative method. This analysis is needed for example when
the assumption s > 1 for the SQUID is no longer valid.

First we will calculate the unperturbed Hamiltonian. The Josephson po-
tential energy of the probe will be neglected and the probe will be described
at first only by a capasitor. The Hamiltonian can be written in the form

_ Q12 Qp2

H=*L 4+ _E : :
20 Tac, I cos(¢1) (6.5)

We assume an ideal voltage source (could be viewed as a consequence of a
large stray capasitance) so we demand that

Q9

Gte v (6.6)
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This says that the charges are not independent and only one charge variable
is needed. We define an island charge

Q= Qp— @1, (6.7)

which describes the charge of the middle electrode between the capasitors.
Using equations (6.5-7) we obtain [42]

2
H = —— — F; cos(¢p1) + constant. (6.8)

2Cs,
Again, we forget the constant.

What about the phase variables ¢ and ¢,, are they independent? No
they are not. We could view that the assumption of a constant voltage
results in the relation (3.8) for the total phase difference across the junctions.
It is now assumed to be a classical variable, the phase difference between
the macroscopic superconductors. The phase related to the island however
can have quantum fluctuations.

The basis of coordinates can be choosen arbitrary and they will all lead
to the same result. For this situation it is conventional to identify that —¢;
(rather than ¢ because @1 has a negative contribution in equation (6.7)) is
the conjugated variable to the island charge and mark —¢; = ¢, leading to
the relation

[, Q] = 2ei. (6.9)

Usually it is chosen that ¢ = %((,02 — ¢1) but at the end, after a similar
change of variables as done in section 5.2, we would be dealing with exactly
the same equations than with this choice of basis. The exact derivation
of the correct variables should be done by starting from the Lagrangian
function under a voltage bias, but it is not presented here. The Hamiltonian
(6.8) becomes now similar as in (4.9) and the eigenfunctions are therefore
the Bloch wave functions (4.10-12).

We assume that the current can be calculated with the help of the transi-
tion rates, as done in chapter 5: the excited state must have a short lifetime
compared to the tunneling rate. The perturbation for a positive sign current
is

H, = —%e—w? = —%e—i<¥t+¢’). (6.10)

The perturbation is harmonic (e ~** dependence) so it induces an absorbtion

2eV of energy to the unperturbed system, corresponding to a Cooper pair

tunneling. The transition amplitude from the state ¢ to f is obtained from
By

Aisy = =2 fle ), (6.11)
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which describes an excitation of the unperturbed system from the state i to
f- The transition rates are

E, 2 .
(V) = 5f ZZPﬂ (FleF2li) 2By — By 26V).  (6.12)

The current is found as before (5.19). We see that the matrix elements
are similar as in the P(E)-theory derived in chapter 5. However, the basic
states are no longer just the harmonic oscillator’s eigenstates, they are gen-
erally the Bloch eigenstates with a quasicharge q. The quasicharge is now
interpreted to be the charge which is given to the middle electrode and with-
out any doping this is always zero. Also the perturbation doesn’t change ¢
(equivalent to that the Josephson tunneling won’t change the quasicharge)
and therefore the initial and the final states don’t have to be summed over
different values of the quasicharge. All the matrix elements with differing
quasicharges vanish. We could write equivalently

7B, 2
TE(V) = 5 303 Palni, o)l(ng, ale™ i, @)P5(Fny g — Faig F 26V).

nf,q ng,q

(6.13)

The probability distribution can contain many different values for ¢ if the
state is for some reason changing in time. Then Pg(n, q) gives the probability
that the island has the quasicharge ¢ and is in the n:th energy band. The
quasicharge dependence is discussed in more detail in sections (6.5) and
(6.6). For simplicity we won’t usually mark explicitely the quasicharge of
the states.

Using the approximation 7" = 0 we can identify the P(FE)-function from
(6.12)

= > 1(f]e[0) 26(Ey — By — B). (6.14)
!

The peaks are now infinitely high because no dissipation is taken account
(a possible resistance of the leads). A small dissipation will broaden the
resonances and is described by replacing the é-function by a Lorenzian curve

2 A;
Ef—Ey—E) = =
o(Ef — Ey )_>7T4(Ef—E()—E)2+Af2’

(6.15)

where Ay is the line width of the final state’s energy level. The area of the
peak (6.15) is still unity. Using equations (6.14) and (6.15) we obtain

2 . A
— —ip 2 f
W%:Kfle Loy vy v SR CSL)
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If s > 1 we should obtain the P(FE)-theory’s LC-oscillator model, de-
rived in section 6.1. This can be shown directly by approximating the Bloch
wave functions locally as harmonic oscillator’s eigenfunctions. These are in
the Josephson junction ”language”

$u(p) = NyHey (y)e 2¥’ (6.17)
= (%) Yo =ap (6.18)

1
_(szys /L
Nn = (87r2> 2npl’ (6.19)

are

Hep(y) =1 (6.20)
Hei(y) =2y (6.21)
Hey(y) = 4y% — 2 (6.22)
Hes(y) = 8y — 12y. (6.23)
Now we can calculate the transition amplitudes, for example
1 )
—i Sy \1 2 —
Ao = (0]e7)0) = | = / e Ve ¥dy
0= 00e7410) = (5%5)" [
1 oo
= (8—22) ! / e ’¢’ (cos(p) —isin(p))dy (6.24)
8T oo

1 [ee) s
=2 (%) 4 /0 eV cos(p)dp.

The P(E)-theory stated that the k:th peak has the area pg. This leads to
the demand

pr = |Aoss]*. (6.25)

Calculating the transition amplitudes numerically one sees that indeed they
give the same result as using (6.4) and (5.34).

6.3 Double SQUID Environment

In experimental situations there can be many SQUIDs placed around the
probe to obtain a better control of the experiment. We want to know if the
theory is valid in this situation also. Let us now consider the configuration
shown in figure 6.1, two SQUIDs are placed on the different sides of the
probe junction and the circuit is voltage biased.
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Figure 6.1: Two SQUIDs at the different sides of the probe junction.

We calculate the current in the same fashion as done before. The Joseph-
son potential energy of the probe junction will be included by a perturbative
method. The assumption of an ideal voltage source leads to

Q1 Q2  Qp
artete v (6.26)

We now define the left and the right island charges

@p—-Q1=Qr (6.27)
Q2 — Qp = Qr, (6.28)
and obtain for the unperturbed Hamiltonian
H = — FEycos(p1) — E9cos(yp2) + QiLQ
Qr’ QrLQrCi23
-+ constant,

+ +
2(C12 + C3) C1Cj3
1 1\ 7! 1 1 1) 7!
where C;; = (@ + C—J_) and Cjj, = (@ + for + C_k) . Let us assume
that C), < C7,C3. This is probably true because the probe junction usu-
ally the smallest from its dimensions (to have a small Josephson couling

energy). Then we can eliminate the second last term in (6.29) and obtain
(by neglecting the constant)

Qr? N Qr?
(Cl + Cp) 2(017 + 03) '

H = —FE cos(p1) — Eo cos(ypz) + 5 (6.30)
We can now interpret that —p; and @ are conjugated variables and the
same is true for ¢y and Qr. But —¢; and QQr do commutate and are
independent operators as are o and QJr. This could be viewed that we have
two particles, the left and the right one, which do usually have a coupling
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described by the second last term in the Hamiltonian (6.29), but in this
situation it is vanishing.
The Hamiltonian (6.30) consist of two independent parts

2
Hp = —F;cos(pr) + % (6.31)
p
2
HR = —EQ COS((pR) + % (632)
p

The total Hamiltonian’s eigenstates are therefore products from the eigen-
states of these two subspaces. We obtain

i) = lir)lir)- (6.33)

The perturbation contributing to the positive sign current can be written in
the form

—%e‘i‘” _ _%e i(2Y +or—pR) (6.34)

The transition rates can be written in the form

pr ZZZZPg i) Ps(ir)|{frleT|iL)

ir fr iR (6.35)
<fR‘eiWR|ZR>|2 (Ey, + Ef, — E;, — E;, F2eV).

The matrix elements aren’t dependent on the sign of the exponent eT*¥,
therefore we see that the main resonances occur when either the left or the
right island stays in its ground state and the other is excoted. This gives
resonances exactly at the same positions as in the previous situation. But,
there are also multiphoton prosesses where both of the islands are exciting.

If the SQUIDs are identical, s > 1 and T' = 0 the effect of the double
SQUID environment is easy to evaluate. For example, when calculating the
transition rate for the second peak (the first harmonic), one has to take
into account the contributions from that either the left or the right island
excites two quanta and the other one stays in the ground state, but also the
possibility that both the islands excite one quantum. This is the same thing
as we had two independent resonances in the P(E)-theory, as discussed in
section (5.6), but now with the same plasma frequencies. This will double
the tunneling impedance (5.21) leading to

p=1/—, (6.36)

which is double the value (6.4) obtained from the single SQUID calculation.
In a general situation however, the energy states are not equally spaced and
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new peaks should appear due to multiphoton transitions. This is because,
for example, the transition where either the left or the right island excites
two quanta needs a different energy than the transition where both of the
islands excite one quantum.

If the second last term in equation (6.29) wouldn’t be vanishing, it would
introduce a coupling between the two islands. We could take it into account
by using the time independent perturbation theory and it would lead to an
interesting effect: the degeneracy of the energy states would vanish and the
energy levels should split. If however C, Cy > C), this effect is very small.

6.4 Spectroscopy when using SQUID as an Envi-
ronment

The reason why SQUIDs, rather than Josephson junctions, are exellent tools
for a spectrometry in these kind of systems is that we can change the Joseph-
son coupling energy of the SQUIDs by applying a magnetic field to the sys-
tem, as shown in equation (2.28). This results in a different coupling of the
probe junction to the environment as measured in Refs. [43, 44]. In our case
of interest, the magnetic flux moves the resonances in the current-voltage
characteristics, if the resonances won’t move, they aren’t coming from the
SQUID.

Usually s > 10 and the relative magnitude of the peaks decreases very
rapidly, as can be seen from equations (6.4) and (5.34). However, decreasing
s by increasing the magnetic field, the harmonics should arise comparing to
the fundamental resonance. This is a good way to test the theory.

If our circuit consist of a SQUID and some arbitrary oscillator with a
smaller plasma frequency, extra peaks will show up nearby the resonances
of the SQUID due to multiphoton transitions, as discussed in section 5.6.
When applying a magnetic field, the main resonances will move, taking
the multiphoton transitions with them. But the multiphoton transition
will stay at a constant distance from the peaks, implying that the nearby
transition isn’t coming from the SQUID; if it were, the distance shouldn’t
be a constant. Therefore one can trace very effectively from where each of
the peaks is coming.

6.5 Voltage Biased Superconducting Single Elec-
tron Transistor

We can introduce an external coupling to the two Josephson junction system
by adding a gate voltage to the island as shown in figure 6.3, the system is
called a voltage biased Superconducting Single Electron Transistor (SSET).
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Figure 6.2: A voltage biased SSET. The gate voltage V; is coupled to the
island by a capasitance Cj.

Let us analyze the effect of the gate voltage when V = 0. After a similar
calculation than done in section 6.2, we would obtain the Coulomb energy
of the system is

QQ

U= 2Cs’°

(6.37)
where Cs, = C1 4+ Ca +Cy and @ is the island charge. However, this isn’t the
potential energy which determines the energy change in the circuit after a
tunneling event. For example if we had a voltage biased single junction, the
energy change of the Coulomb energy is zero (@ is a constant), but there is
2eV energy gain due to external work done by the voltage sources. In this
situation, the work done by the voltage sources when n Cooper pairs tunnel
from the lead j to the island can be written in a form [30]

G

W =-—n2e) (V; - V,-)CE

1

(6.38)

One sees that generally this depends on which of the leads the Cooper pair
is coming and therefore introduces problems when writing the Hamiltonian.
Assuming that V3, = V5 = 0 we obtain an unique value for the Hamilto-
nian (substracting (6.38) from the usual contribution of the two Josephson
junctions)
_ 2
H = —FE; cos(p1) — Facos(p2) + M, (6.39)
20y,
where Qo = —V,Cy is the gate charge. Because V = 0 the overall phase
difference @y, is some constant c¢. Thus equation (6.39) can be rewritten in
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the form

. 2
H = —Ej(c)cos(p —n) + % (6.40)
E;(c) = V/(E12 + Eo2 + 2E; B cos(c)) (6.41)
P = %(W - 1) (6.42)
n = tanl[% tan (g)] (6.43)

We see that if V' = 0, then the SSET acts as a single Josephson junction with
an adjustable island charge. This is the situation discussed in section 4.4,
the change of the gate charge is now our doping mechanism an it corresponds
to a change of the quasicharge in the eigenstate. We have now an external
control of the quasicharge. However, in practice, random charged impurities
near the island may shift the effective gate charge by an amount of QQgg. This
change is independent on V; but may drift continuously or discontinuously
in time, killing our precise control of the gate charge. Taking this effect into
account we define

Q() = —Cng + Qoo. (6.44)

When V' # 0, the situation is no more so simple. The phase difference
between the leads starts to travel in time leading to a time dependent Hamil-
tonian. A new term will appear into equation (6.39) which will describe the
energy gain when a charge has gone through the circuit. To describe a non-
vanishing current, we have to take into account the dissipation as discussed
in section 5.1. The experimental and the theoretical work of this kind of
systems has been active [45, 46, 47, 48] and usually they are done when
quasiparticles are present in the island leading to e or 2e periodic depen-
dence of the current as a function of the gate charge. The difference in
characteristics between the cases when there is an even or odd number of
electrons in the island, is called the parity effect.

6.6 Effect of the Gate Voltage to Inelastic Cooper
Pair Tunneling

Our system in study is very analogous to the cases studied in Refs. [45, 46,
47, 48]. The main difference is that we have no quasiparticle excitations and
we are treating one junction as a perturbation to the other. The role of the
gate charge is also a little bit different, we aim that a change in the voltage
will result in a change in the Bloch wave function. We add a gate voltage to
this system in the same way as done in section 6.5 and using (6.38) obtain
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for the unperturbed Hamiltonian

Q@ Q '
to0s T C—E(CPV +CgVy)
(@ — Qu)*

= — Ej cos(yp) + T + constant,

H = — Ej cos(p)
(6.45)

where we have defined Qo = C,V + GV, V, = ¥ —V, and —¢1 = o.
Again, we can manipulate the unperturbed Hamiltonian by the gate voltage
which changes the gate charge resulting in a change of the quasicharge. The
gate charge is a function of the gate voltage but also of the voltage between
the leads. We actually didn’t take this extra contribution into account in
sections 6.2 and 6.3, where it should be present but acting as a constant
(corresponds to case Cg = 0 in this model). One should note that again Qg
contains also the effect of the impurities as defined in equation (6.44). This
might partly decrease the total external control of the gate charge.

We use the perturbation (6.10) and obtain the same P(E)-function as
in equation (6.16) when 7' =~ 0. The situation is now however different, we
have the control of the quasicharge and we can manipulate it by using the
gate voltage. Therefore we can access the P(E)’s quasicharge dependence.
Normally when dealing in the region s > 1, this doesn’t bring any changes
to the lowest resonances but the higher bands may be dependent on the
quasicharge, as seen in figure 4.1. The gate charge will affect the inelastic
Cooper pair tunneling into these bands. Changing the gate voltage, we
change the energy of the excited state and therefore the position of the
resonance in the I —V curve. Also the transition amplitude is changed and
the height of the peak may rise or lower. The effect will become more and
more evident when decreasing the Josephson coupling energy of the SQUID
finally leading to a band structure even in the lowest energy states.

In figure 6.3 are plotted the numerical results for the transition prob-
abilities from the first band to the fourth band as a function of s = %
The probabilities were calculated for two cases, when ¢ = 0 and ¢ = e,
using the corresponding Mathieu functions [49] as wave functions of the
island. At these special points they are 27 or 47 periodic, so the matrix
elements could be calculated locally (for example by integrating from 0 to
4r). The perturbation doesn’t change the quasicharge so only the transition
|0,¢9) — |3,¢) has to be calculated. For comparison, figure 6.3 also shows
the corresponding transition probability of the harmonic oscillator.

6.7 Validity of the Model

The model is derived using the probe junction as a perturbation and clearly
in some limit it won’t be valid anymore. Heuristically we could say that
E, has to be small, smaller than the other elements in equation (6.8) and
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Figure 6.3: Numerical results for the transition probabilities to the fourth
band as a function of the Josephson coupling energy. The three curves
correspond to the coupling when ¢ = e (the dotted curve), ¢ = 0 (the solid
line, vansishes when s = 0) and when the system is a harmonic oscillator
(the solid line, doesn’t vanish when s = 0). The curves approach each
other when s — oo. However, when s = 50 the couplings between the
Bloch wave functions are a half larger than between the harmonic oscillator’s
eigenfunctions.

63



our theory is correct. Calculating the second order amplitudes for the time
dependent perturbation theory, one could argue that it is sufficient that
E, < E; even E, > E_ in the situation s > 1. We have to take into
account also the relaxation to the ground state. If the damping isn’t high
enough, the excited states might not relax to the ground state fast enough
and the model won’t hold. Now the basic states could even be formed from
the collective behaviour of the two SQUIDs, as in the SSETs generally. Then
the assumption that the current obeys the transition rate calculus may fail
before the perturbation theory even diverges.

It is also important to notice that the important relative magnitudes of
the energy won’t usually have any information of the probe’s capasitance.
The probe’s charging energy might be huge because of its small capasitance,
but what is important, is the charging energy of the island, obtained by
using the sum of all capasitances Cy. The charging energy of the island
might be an order of magnitude smaller than the probe’s charging energy.
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Chapter 7

Comparison with the
Experimental Data

In this chapter we will compare the two models introduced in chapters 3
and 6 and see how do they differ in I — V characteristics. After that we will
discuss the experiments done by R. Lindell et. al. for mesoscopic junctions
and see which model, if any, is valid for those cases. Finally we will discuss
the Bloch bands which were interpreted to be seen in these experiments.

7.1 Comparison Between the Models

We derived two models (chapters 3 and 6) for many Josephson junction sys-
tems in a situation where the junctions differ essentially in size. The first
one described a classical movement of the phase differences in the presence
of a quasiparticle current and possible high frequency lead impedance. The
second one described excitations of the quantum states using a probe junc-
tion as a perturbation source. They manifest completely different physics
but still similar 7 — V' curves were obtained. The classical model was pos-
sible only when taking into account a dissipation mechanism, the system
has to dissipate the energy gained from the voltage source. In the quantum
mechanical treatment the dissipation was also necessary. It takes care of
that the system is in its ground state before the next tunneling and takes
the energy gained from the tunneling of one Cooper pair.

The two models gave rise to peaks at the same positions in the I — V
curve in the limit s > 1. Why? Because both of the models include the
same important frequencies, the plasma frequency of the larger junction
(or the plasma frequency of the system) and the quantum mechanical time
evolution of the phase difference across the probe junction. In the classical
treatment these two frequencies are in a resonance when the current peak
occurs. In the latter treatment the probe introduces a perturbation which
leads to transitions between the harmonic oscillator’s eigenstates which differ
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in energy by multiples of the plasma frequency times /. This leads to a
current at certain voltages, the same ones as in the classical case.

However, the shape of the peaks differ greatly. The classical model reacts
more easily to the anharmonic nature of the Josephson potential energy,
leading to a hysteretic behaviour and a shift of the peaks. The quantum
excitations result in more symmetric curves, even when the anharmonicity
of the Josephson potential becomes crucial. The sinusoidal shape results
in closer resonances at the voltage axis at higher voltages (compared to
the harmonic oscillator approximation) and finally leads to a quasicharge
dependence of the energy and the current. An important difference was also
that the classical model didn’t give rise to the second or higher harmonics.
This could be due to our choice of parameters, they might be present in
other situations. This is however the clearest difference between the models
when using the parameters of our interest.

7.2 Comparison with the Experiments

We will now apply our models to two recent experiments made by R. Lindell
et. al. [14, 41] in an analogous double SQUID situation as discussed in
chapter 6. The two identical SQUIDs consisted of mesoscopic Josephson
junctions and the Josephson coupling energy and capasitance of the probe
junction were small compared to the other elements in the system. Also, in
one of the two experiments [14] the SQUIDs’ coupling energies were tuned
(with the help of the magnetic field) in the region s € [50 — 10] so the Bloch
band structure could also be studied. The temperature in the experiments
was kpT ~ 7 peV which was on the order of magnitude less than Aw,, so
to simplify modelling we can assume that T = 0. FE. of the system was in
the range 7 — 10 peV and therefore (4.3) is not satisfied. However, we are
not observing single charging effects, the relevant energy prosesses of the
inelastic tunneling are in the range 200 peV and this is not a problem for
that. But one could discuss if the band structure of the Bloch wave functions
suffer from the high temperature.

Figure 7.1 shows the experimental and theoretical I — V curves for the
experiment done in Ref. [41]. The experimental I — V curve is only an ap-
proximation from the original, we have omitted all the fine structure which
was present in the main resonances and concentrate only on the overall be-
haviour. Also the supercurrent behaviour (V' = 0) is not included. The
quantum mechanical I — V curve is calculated by using the harmonic os-
cillator’s wave functions as the basic states of the system and they lead to
the value (6.36) for the probability parameter describing the heights of the
peaks (5.34). The classical I —V curve is calculated by using a two SQUID
environment for the probe junction, the calculation is described in section
3.7. The values for the parameters of the junctions are obtained from the
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Figure 7.1: The experimental and theoretical I —V curves for the experiment
done in Ref. [41]. The dotted curve corresponds to the classical calculation,
the solid line which is the highest when V = 80 uV correspond to the quan-
tum mechanical calculation and the solid line which is the highest when
V =300 uV corresponds to the experimental curve. In the classical calcu-
lation we used fiw, = 2 x 80 peV, Gy = G3 =1 & (SQUIDs), G, =0.1 &
and R = 250 Q.

normal state behaviour of the system but have to be partly fitted to obtain a
better agreement with the experiments. The value for the SQUID’s Joseph-
son coupling energy, =~ 2 x 74 peV, is obtained from equation (2.9) and is
almost the same whether using the correction (4.29) or not. However, we
use a value hw, = 2 x 82ueV by increasing the Josephson coupling energy
of the SQUIDs by approximately 23 percent, which does match to the ex-
perimental value seen in figure 7.1. The precise value of E), is also unknown
but we used the value obtained from equation (2.9), the ”correction” (4.29)
would give way too small value for the observed currents. The line widths
in equation (6.15) are obtained from the experimental curve. Only region
0 <V <400 pV is available for the experimental studies since aluminum’s
gap function has the value =~ A = 200u eV and beyond % the quasiparticle
tunneling takes a dominant part of the tunneling prosesses.

From figure 7.1 we see that the curves somehow do fit in the peak po-
sitions but not in the heights. The harmonics are strong compared to the
fundamental resonance in the experimental curve and this is not the case
for the theoretical calculations. The classical calculation gives a strong first
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harmonic but there are no second one which is clearly present in the exper-
imental data. The quantum mechanical calculation gives the latter peaks
but the heights of the harmonics are low.

Could we obtain stronger harmonics by changing the parameters? The
classical calculation doesn’t give the second harmonic for any reasonable
values of the parameters. In the quantum mechanical calculation increasing
E, won’t help anything because it won’t change the relative heights of the
peaks. However, changing E; the latter peaks can be made higher but then
the positions of the peaks will be in disagreement with the experiments.
This could be corrected by changing the capasitance of the SQUID but now
the fitting starts to go unsound, the measured capasitance should be quite
correct and we are no longer really describing the original system. Therefore
we cannot explain the behaviour exactly by neither of the models.

One could think that the existense of the second harmonic points to
the quantum mechanical behaviour and the theory of inelastic Cooper pair
tunneling. We can only quess why the simple model in chapter 6 won’t
hold for this experiment. In the experiment the coupling energy (2.9) of the
probe was approximately 56 peV and the effective plasma frequency 2 x 80
peV. Mayby the transition rate calculus starts to be in the region where it
is no longer valid, the coupling energy of the probe is too strong. One can
ask whether the probe junction now only a small perturbation, or is it also
a part of the collective state of the SSET.

Let us now concentrate on the experiment done in Ref. [14] which is
similar to the first one but now with slightly different parameters for the
Josephson junctions. In figure 7.2a is shown the experimental I — V' curve
and in figure 7.2b the theoretical I —V curve of the quantum mechanical cal-
culation. The theoretical curve is calculated numerically using the Mathieu
functions as the basic states of the system. The current can be calculated
with the help of the couplings between the different bands using equations
(6.35) and (5.19). We are in the limit s = 50 so the tunneling rates are
independent of the quasicharge and the energy bands are practically energy
levels. However, the energy levels are no longer equally spaced because of
the anharmonic nature of the Josephson potential energy (we didn’t take
this effect into account when modelling the first experiment because the line
widths there were so large that they masked this effect). Independent ex-
periments for the Josephson coupling energies of the SQUIDs pointed that
hwy ~ 2 x 103.7 peV as used in chapter 3. This experimental value was
double the value which would have been obtained from the normal state
behaviour using equation (2.9). The correction (4.29) didn’t explain this
change. However, we still manipulate the value of E; about 6 percent to
lower the effective plasma frequency from 2 x 103.7 peV to 2 x 100.7 peV
and obtain a better fit. The effective charging energy was E. =~ 9.9 pyeV and
the probe’s coupling energy is approximated to be 3.6 peV. The linewidths
were adjusted to be similar as in the experimental curve 7.2a.
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Figure 7.2: The experimental (figure 7.2a) and quantum theoretical (figure
7.2b) I — V curves of the experiment done in Ref. [14]. Notice the different
scales of the current axises.
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In the experimental curve there is a multiple peak structure present
nearby the main resonances. The quantum theoretical curve is close to the
experimental when neglegting the relative heights but few peaks are missing.
The douple peak structure for harmonics in the theoretical calculation is
formed from the multiphoton transitions into the two SQUIDs and taking
into account that the energy level separations aren’t constant as in the case
of the harmonic oscillator. Especially the double peak at 290 pyV is in a
good agreement with the energies of the Bloch bands.

Approximately at V' = 10 puV (not shown in figure 7.2a) there is a
peak in the experimental data probably due to external oscillator. The
peak at V = 110 pV could be a multiphoton transition to this. The peak
nearby V = 123 pV is identified to be the fundamental resonance of another
external oscillator (doesn’t react to the magnetic field) and the multiphoton
transition with this and the SQUID is at V = 223 uV. The peak in V =
202 pV cannot be the multiphoton transition with the SQUID and the
smaller external oscillator because it is at a wrong distance from the main
resonance and the height of the multiphoton transition should actually be
vanishing (so we can interpretate that this peak comes from the SQUIDs,
as in figure 7.2b). By taking into account these two new oscillators into
our theory, the corresponding I — V curve would be in a good agreement
with the experimental positions of the peaks. However, there would be still
a small unexplained asymmetric behaviour on the left sides of the first two
resonances, as seen in figure 7.2a as small peaks at the positions ~ 80 uV
and ~ 180 V. These cannot be due to multiphoton transitions since they
should be at the right sides of the main resonances at 7' = 0.

Figure 7.3 shows numerical results for the classical I — V curve using
the two SQUID model and the same junction parameters as in the quantum
mechanical calculation. The resistance was assumed to be 250 €2 and the
quasiparticle conductances almost vanishing G; = G3 = 0.5 &, G5 = 0.05
%. The solution becomes hysteretic near the two resonances but not as
strongly as in the corresponding single SQUID calculation shown in figure
3.5. Again, only the first harmonic is found in contrast to the observation
in the experiments. Also the extra peaks nearby the main resonances in the
experimental data cannot be explained by the classical model.

Even though the quantum mechanical and experimental curves do fit in
the peak positions, it may be that this model has just been very lucky for the
following reasons. Firstly, for many samples, resonances seemed to consist
from double peaks as in figure 7.2a and the two peaks were approximately at
a constant distance from each other when applying a magnetic field (these
constants aren’t the same for every double peak). This isn’t a problem for
the first resonance, the multiphoton transition should stay at a constant
distance from the SQUID’s resonance. However, the distances obtained
from the Bloch band structure (which determine the double peak structure
for the harmonics as in figure 7.2b) should change a little when changing
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Figure 7.3: The classical I — V' curve of the experiment done in Ref. [14].
The dotted curve corresponds to the solution with decreasing V' and the
solid line correspond to the solution with increasing V.

s. For example one can calculate numerically that when s is tuned from 50
to 25 the distance of the second douple peak structure should change from
6.1uV to 6.8 V. The third distance changes approximately from 13 pV
to 15.5 uV. This change is mayby too high and probably not seen in the
experiments. Secondly, the douple peaks for harmonics are present even at
the one SQUID samples and theoretically this shouldn’t be true at all (the
double peak structure comes from the multiphoton transitions between the
two SQUIDs)! It would be only possible if the down relaxation from the
excited states is very slow or they are partly filled for some other reason.
This kind of behaviour might also explain the peaks located at 80 uV and
180 pV.

The theoretical curve in figure 7.2b has still the same problem as before,
the heights of the latter peaks are too low when comparing to the funda-
mental resonance. However, this effect is now much more tolerable than in
the previous case: also the experimental harmonics are low. Whether the
double SQUID model is correct or not, it is clear that the peaks manifest
excitations of the sinusoidal potential’s eigenstates and the down tuning of
the third resonance is the clearest manifestation of this.
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7.3 Bloch Bands

In the experiment done in Ref. [14] also Bloch bands were studied. A mag-
netic field was applied until the SQUIDs were in the region s ~ 10 and new
peaks seen were interpreted to be a result of the coupling between the Bloch
bands. The gate voltage didn’t have any effect on the I — V curve, unlike
derived in section 6.6. This would actually be true if the quasicharge would
have a permanent motion as in the Bloch oscillation. The edges would be
highlighted and a single peak would split into two nearby peaks with differ-
ent heights, as a result of different coupling from the edges g =0 and g = ¢
as shown in figure 6.3. The gate voltage wouldn’t have any effect because
the I — V curve would be a certain kind of sum of all the possible values for
the quasicharge.

However, according to the model derived in chapter 6, the Bloch oscilla-
tion cannot be the answer. This is because the system is voltage biased and
the Bloch oscillation is phenomenon for a current biased system. Also, the
relevant charge-variable is the island charge which can be modified (theo-
retically) only by a Josephson tunneling across insulator (won’t change the
quasicharge) or by a gate voltage. Only impurities can change the effective
gate charge and lead to the drift of the quasicharge. A continuous steady
movement of this is not plausible and a change of the gate voltage should
somehow be seen as a change of the current.

Because there are lot of peaks which probably cannot be explained by
the theory already in figure 7.2a, it is very likely that these new peaks seen
in the region s ~ 10 are not from the Bloch band structure, or at least they
could be an effect of something else. When increasing the magnetic field,
the energy levels will become closer to each other and also the stuff around
the peaks will close each other. In the limit when Bloch band should be seen
many of these extra peaks lie nearby each other and plausible identification
cannot be made. However, if the gate voltage would move these peaks, it
would be a great help for the identification. It should also be noted that
when going to the region E; ~ E. the perturbation theory will be less and
less valid and new effects can occur only because of this.

The Bloch band structure is verified experimentally to be present in the
Josephson junctions, for example, by observation of the Bloch wave oscilla-
tions. The inelastic Cooper pair tunneling is a method which should be able
to reveal the band structure even more directly. And mayby it is already
seen but the simplifying model of the experiments is incorrect. As a sum-
mary one could say that the eigenstates of a cosine potential are probably
observed and therefore the quantum behaviour is evident. The reduction of
the third peak’s position is a good evidence for this. However, the collective
state between the local minima of the Josephson potential (which leads to
the band structure) cannot be identified. The height of the resonances is
also a problem when modelling the situation with a simple model derived in
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chapter 6. To describe the experimental situation better, one should mayby
use a more specific analysis of the dissipative prosesses, the relaxation and
the collective state of the SSET. Also the high temperature compared to the
charging energy needs to be analyzed.
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Chapter 8

Discussion

The purpose of this master’s thesis was to analyze the current-voltage peaks
which arise in the voltage biased many (mesoscopic) Josephson junction
systems. Especially we studied the situations where there were one junction
with small Josephson coupling energy and one or two identical SQUIDs with
large Josephson coupling energies in series with the voltage source. The
analysis was made for both the semiclassical and the quantum mechanical
situations.

The first part of the thesis showed that peaks observed in the experi-
ments, spaced by the plasma frequency of the SQUID divided by 2e, won’t
necessary need any quantum behaviour of the Josephson junctions. The
peaks could arise due to Shapiro step like effect present in the asymmetric
many Josephson junction system. The second part of the thesis concen-
trated on describing the system quantum mechanically and introducing the
theory of an inelastic Cooper pair tunneling written explicitely for the many
Josephson junction situation. We derived the current-voltage characteris-
tics in the low temperature case for a single and also for a double SQUID
environment. We also showed the connection between the gate voltage and
the Bloch bands.

We concluded the thesis by analyzing two recent experiments for the volt-
age biased many Josephson junction system and the theoretical fits hinted
that the quantum mechanical behaviour is the answer for those situations:
the peaks in the experimental I — V curve are probably a result from the
macroscopic quantum states in the islands. However, there were problems
in explaining all the peaks and their heights using the theory introduced in
chapter 6. Also the gate voltage had no effect on the experimental I —V
curve when the Bloch bands were studied, which is in conflict with the the-
ory. Therefore a deeper analysis of the dissipative prosesses, the effect of
the temperature and the role of the quasicharge in these SSETs needs to be
made if one wants to identify the Bloch bands from the experimental data
(or the experimental situation has to be made more closer to the ideal one).
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