
763654S HYDRODYNAMICS Exercise 1 Autumn 2011

Mathematical preliminaries

1. Plane polar basis vectors
For plane or cylindrical polar coordinates r̂ = i cos θ + j sin θ and θ̂ = −i sin θ + j cos θ,
see appendix B of the lectures. Express i, j in terms of r̂, θ̂.

2. Taylor’s theorem for a function of several variables
Generalise the one dimensional Taylor’s theorem for three dimensions φ(x1 + h1, x2 +
h2, x3 + h3) by considering all the coordinates separately and ending at second degree
terms in h. Show that it may be put as

φ(x+ h) = φ(x) + h · (∇φ)x +O(h2)

or as
φ(x+ h) = φ(x) + hj(∂φ/∂xj)x +O(hkhk).

3. Derivatives of curvilinear basis vectors
For spherical polar coordinates calculate ∂r̂/∂θ, ∂θ̂/∂θ, ∂θ̂/∂λ, ∂λ̂/∂λ; in each case
express your answer in terms of the unit vectors r̂, θ̂, λ̂ and not in terms of i, j, k.

4. Vector derivative formulas
Show that
(a) ∇× (∂A/∂t) = ∂/∂t(∇×A)
(b) ∇ · (φ∇ψ) = ∇φ ·∇ψ + φ∇2ψ
(c) ∇ · (∇×A) = 0
(d) ∇× (∇φ) = 0
(e) ∇× (∇×A) = ∇(∇ ·A)−∇2A.

Hint: Try to use the index notation shown in the appendix A of the lecture notes.

5. Estimation of the mean free path in air
An estimate for the mean free path λ of gas particles can be based on the equation

λ ≈ 1

nσ
, (1)

where n = N/V is the number density of particles and σ is the scattering cross section.
Estimate λ in standard temperature and pressure (T = 273 K and p = 105 Pa) using
this formula and σ ≈ πa2, where a = 150 pm is the bond length of N2 molecule. Use
the equation of state of an ideal gas pV = NkBT , where the Boltzmann’s constant
kB = 1.381 · 10−23 J K−1.

[Note that equation (??) can be derived as follows: when a particle of cross section σ
travels distance λ, it sweeps volume V = σλ. For one collision to occur in this distance,
we must have approximately one particle in this volume, nV ≈ 1.]
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763654S HYDRODYNAMICS Exercise 2 Autumn 2011

1. Green’s identity
Show that ∫

V

(φ∇2ψ − ψ∇2φ) dV =

∫
S

(φ∇ψ − ψ∇φ) · dS.

2. 3 D flow
Calculate and describe particle paths and streamlines for the flow

v = (ay,−ax, b(t)).

What could be modelled by the case b(t) = constant?

3. Streamlines
Sketch streamlines for

(a) v = (a cosωt, a sinωt, 0),

(b) v = (x− V t, y, 0),

(c) vr = r cos
θ

2
, vθ = r sin

θ

2
, vz = 0, 0 < θ < 2π.

4. Streamlines and particle paths
Find streamlines and particle paths for the two-dimensional flows

(a) v = (xt,−yt, 0),

(b) v = (xt,−y, 0).
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763654S HYDRODYNAMICS Exercise 3 Autumn 2011

1. Stream function
Verify that the example flow v = (ax,−ay, 0) satisfies the continuity equation with con-
stant a and constant density. Determine the stream function ψ. Discuss the particle
paths based on ψ.

2. Radial flow
(a) Using the method explained in the book or in the appendix of the lecture notes,

calculate ∇ · (f(r)r̂) in a spherical system of coordinates.
(b) Let v = mr−2r̂ in a spherical system of coordinates. Show that ∇ · v = 0 except

at origin O. Let S be any smooth surface surrounding O. Show that volume flows
through S at rate 4πm. What is the corresponding result if O lies on S?

3. Circular and pipe flow
(a) Calculate Dv/Dt for the steady two-dimensional circular flow v = f(r)θ̂. Does

your result fit in with particle dynamics?

(b) Water flows along a pipe whose area of cross-section A(x) varies slowly with the
coordinate x along the pipe. Express the mass flow at x using A(x), the density
ρ and the velocity vave(x) ≈ vavei, which is averaged over the cross section of the
pipe. Use the conservation of mass to determine vave(x) in the pipe, and calculate
the acceleration of a particle moving with this averaged velocity.

4. Flow around a cylinder
A flow around a cylinder can be described by the stream function

ψ = U

(
r − a2

r

)
sin θ,

where U is a constant and a denotes the radius of the cylinder.
(a) Show that there is no flow through the surface r = a of the cylinder.
(b) Calculate the tangential velocity vθ on the surface of the cylinder.
(c) Find the stream lines corresponding to ψ = naU (n integer) by calculating their

positions when x→∞ and at x = 0, and sketching the rest.
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763654S HYDRODYNAMICS Exercise 4 Autumn 2011

1. Solution of Laplace equation by separation of variables
by For applications later in this course, go through the solution of the Laplace equation
given in the appendix C of the lecture notes. Find φ(x, y) for the cases

a) f(y) = Cδ(y − a
2
),

b) f(y) = C sin πy
a
.

Hint: Function δ(y − a
2
) denotes Dirac delta (δ) function at y = a

2
. Generally, δ function

is defined with help of integration:∫ ∞
−∞

f(x)δ(x− x0)dx = f(x0).

2. Vorticity and deformation
Given the flow

v = (3z + 4x,−5y,−2x+ z),

calculate the vorticity and the symmetric and antisymmetric parts of ∂vi/∂xj.

3. Vorticity and deformation in Poiseuille flow
Poiseuille flow in a pipe has velocity components

u = v = 0, w = b(a2 − x2 − y2),

where v = ui+ vj + wk.
a) Calculate ∇ · v and ∇× v.
b) Calculate the symmetric and antisymmetric parts of ∂vi/∂xj.

c) Find the eigenvalues and eigenvectors (principal axes) of the symmetric part.

d) Express the vorticity in cylindrical polar coordinates and discuss the direction of
the vorticity in terms of the slipping of layers of fluid over each other.

4. Vortex
A vortex has the stream function ψ = −C ln r

a
. Calculate the vorticity outside of the line

(r = 0) to show that ∇×v = 0. Show, by using the Stokes’ theorem, that the circulation
κ =

∮
v · dl for vortex flow is the same for any simple curve once around the origin (in

the positive direction).
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763654S HYDRODYNAMICS Exercise 5 Autumn 2011

1. Accelerated frame
A frame of reference which is accelerating (with respect to inertial frames) is used to
describe an experiment. The acceleration has the constant value f in the i direction.
(a) Show that an ’inertial force’ −ρfi acts on a fluid (per volume) and that a potential

fx may be used.
(b) Hence find the equilibrium water surface in an accelerated tank of water by taking

into account also the gravity.

Hint: It will be shown in the next lecture that the liquid surface corresponds to potential
Φ = constant.

2. Area projection
Show that the relation δA1 = n · iδA used in the lectures is valid.

Hint: Express nδA as a cross product of two vectors.

3. Normal and tangential stress forces
Show that the normal component of the surface force vector is

σijnjni

per area, and find an expression for the tangential force on area dS (i.e. the force parallel
to the surface).

4. Hydrostatics of Earth’s rotation
Let us assume that the Earth’s gravitational field is isotropic.
(a) Show that due to Earth’s rotation the ocean surface varies as

δr =
Ω2R2 sin2 θ

2g
, (2)

where R is the radius and Ω is the angular velocity of Earth and θ is the polar
angle.

(b) How could you justify the use of constant radius R in the right hand side of equation
(??)?

(c) Compare the results with measured values

Rpole = 6 356 912m,
Requator = 6 378 388m.

What could cause the difference?

Hint: Liquid surface corresponds to Φ = constant.
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763654S HYDRODYNAMICS Exercise 6 Autumn 2011

1. Integration formulas
Derive the formulae: a)

∫
S
fdS =

∫
V
∇fdV , and b)

∫
S
AijdSj =

∫
V

∂Aij

∂xj
dV . [Hint:

Multiply by a constant vector and use the divergence theorem.]

2. Hydrostatic forces
A gutter is in the form of half a cylinder and is full of water (see figure).
a) Prove, by integrating surface forces, that the total force on the gutter is equal to the
weight of water in the gutter.

 P

b) Calculate the moment, about the lowest level of the
gutter, of the surface forces on the half of the gutter on
one side of this lowest line.
c) Calculate the force on one half of the gutter.

3. Hydrostatic theory of tides (solving this problem gives double points)
The starting point for studying tides is to consider the Earth and the Moon circulating
around their center of mass with angular velocity Ω. Tides are caused by the effect of
the Moon’s gravitational potential Φm = −γm/r′ (where r′ is the distance from Moon’s
center) on the surface of the Earth.

d

x

y 

m 

Center of mass

Moon Earth 

M

l

M and m are the masses of the
Earth and the Moon, respec-
tively, and d is the distance be-
tween the centers of the Earth
and the Moon. The rotation
axis of the Earth-Moon system
is perpendicular to the x − y
plane.

a) Determine the distance l of the center of mass from the center of the Earth.
b) Express the potential Φm as a function of x, y and z.
c) By expanding Φm in Taylor series up to second order in x/d, y/d and z/d, and

neglecting all constant and higher-order terms show that

Φm =
γm

d2
x− γm

2d3
(2x2 − y2 − z2) (1)

d) We now argue that the term linear in x in Φm (1) causes the centripetal acceleration
that keeps the Earth at constant distance from the center of mass. Show that this
leads to the condition Ω2d3 = γ(m+M).

e) Take into account also Earth’s gravitational potential near the surface Φe = gh.
(Here h is the height and the g can also be expressed as g = γM/R2

e, where Re

is the radius of the Earth.) Using this together with the quadratic terms in (1),
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express the condition for the see level in hydrostatic equilibrium, and calculate
numerically the maximum height of the tide. (Warning: assuming hydrostatic
equilibrium severely underestimates the tide near coastlines. Also other bodies,
especially the Sun, contribute to tides.)

7



763654S HYDRODYNAMICS Exercise 7 Autumn 2011

1. Microscopic model of viscosity
The viscosity of a gas can be estimated as µ = 1

3
ρvλ, where v =

√
3kbT/m is the average

velocity of molecules and λ is the mean free path. Estimate µ numerically for air (use
the results λ = 570 nm from exercise set 1, problem 5, and mass m = 4.65 · 10−26 kg for
N2) and compare with the measured value.

2. Viscous stress tensor (solving this problem gives double points)
(a) The form of the stress tensor, assuming ∇ · v = 0,

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
is valid in cartesian coordinates. Applying the formulas given in appendix B of the lecture
notes show that in plane polar coordinates the stress tensor takes the form

σrr = −p+ 2µ
∂vr
∂r

, σθr = σrθ = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
,

σθθ = −p+ 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)
.

(b) The stream function

Ψ = U

(
r − a2

r

)
sin θ

gives a model flow past a cylinder of radius a. Calculate the components of the viscous
stress tensor σ′ij in plane polar coordinates.
(c) Calculate the total viscous force on the cylinder. Is it realistic?

3. Reynold’s number estimates
Calculate the Reynolds number and comment the relative importance of inertial and
viscous forces in the following cases:

a) A swimmer’s kick: a = 50 cm, v = 30 cm/s.
b) A bacterium in water: a = 1 µm, v = 30 µm/s.
c) A river: a = 10 m, v = 10 cm/s.
d) The climate: a = 1000 km, v = 10 m/s.
e) A glacier: a = 100 m, v = 1 m/year, µ ∼ 1010 kg/(m s).
f) An accretion disk around a black hole:
a = 105 m, v = 107 m/s and ν ∼ 102 m2/s.
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763654S HYDRODYNAMICS Exercise 8 Autumn 2011

1. Plane Couette flow
Consider fluid between parallel planes. The wall at y = 0 is fixed, and the wall at y = a
moves with steady speed V in its own plane. Solve the Navier-Stokes equations for the
case ρ = constant to show that a possible flow is

v =
V y

a
i.

Calculate the forces on both walls.

2. Flow down a slope (solving this problem gives double points)
A liquid of constant density flows down a plane which slopes at angle α to the horizontal,
as indicated in the figure below. The free surface of the liquid is at a uniform distance
from the plane, has pressure p0 and no shear stress. For this flow you need to keep the
gravitational field in the Navier-Stokes equation, as it is now dynamically active. Set up
and solve equations for U(y), and verify that the forces on a length l of the fluid layer
are in equilibrium.

αααα  

U(y)  x
g

y
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761654 S HYDRODYNAMICS Exercise 9 Autumn 2011

1. Dimensioless Euler’s equation
The Euler equation for incompressible flow in a rotating system was given in the form

ρ
∂v

∂t
+ ρv ·∇v + 2ρΩ× v = −∇p

in the lectures. Write this in a dimensionless form.

2. Paintbrush (solving this problem gives double points)
Consider a simple model of a paintbrush consisting of parallel planes with spacing b and
normal j.

For convenience, assume the wall in the x − y plane is
moving with constant velocity V i and that the brush is
stationary.
Determine the velocity of the paint between the brush
planes assuming the form v = U(y, z)i. (Use the method
of separation of variables.)
Calculate the total paint flow Q =

∫ b
0
dy
∫∞

0
dz U(y, z)

between two planes. Based on this deduce how thick is
the layer of paint left on the wall.
[Answer: Q = 8V b2

π3

∑∞
n=1(2n− 1)−3 ≈ 0.27V b2.]

3. Oscillating plane
The plane y = 0 oscillates transversally with velocity iV cos(ωt). Show that the velocity
of fluid v = U(y, t)i above the plane (y > 0) has the form

U(y, t) = <[V eiωt−(1+i)y/δ],

where δ =
√

2ν/ω, i is the imaginary unit (i2 = −1) and < means the real part. Calculate
the real part and discuss its form. Why is δ called ”penetration depth“?

[Hint: Use ansatz U = V eiωt−ky to solve the Navier-Stokes equations. This gives a
complex solution but the real part of this corresponds to the physical solution.]
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The figure shows U(y, t) plotted at five different time instances.
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763654S HYDRODYNAMICS Exercise 10 Autumn 2011

1. Transient flow between parallel planes (double points)
Fluid is at rest in a long channel with rigid walls y = ±a when a pressure gradient −G
is suddenly imposed at t = 0.

a) Show that the velocity U(y, t)i satisfies the equation

∂U

∂t
= ν

∂2U

∂y2
+
G

ρ

for t > 0, and state the boundary and initial conditions for this flow.
b) As t→∞ we expect to get the flow appropriate for a pressure gradient in a channel

U1(y) =
G

2µ
(a2 − y2)

so seek a solution in the form

U(y, t) = U1(y) + V (y, t) :

what equation and boundary values does V satisfy?
c) Show that V (y, t) may be found by separation of variables. How long does it take

for the flow U1 to be established? Explain this answer physically.

2. Vortex pair near a wall
Consider a pair of vortices, A and B, of circulations −κ and κ, respectively, approaching
a wall. The boundary condition for the normal component of the velocity at the wall,
vx(0, y) = 0, can be satisfied by adding two “image vortices” C and D, with circulations
κ and −κ, respectively, behind the wall.

y

x

C 

D B

A

actual vortices images

solid wall 

a) Calculate the velocity at A induced by vortices B, C and D.
b) Formulate a differential equation for the path of vortex A.
c) Show that its solution is 1

x2
+ 1

y2
= 1

x20
+ 1

y20
, and sketch the trajectory.
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763654S HYDRODYNAMICS Exercise 11 Autumn 2011

1. Discharge from a container with a drain pipe
Water flows out of the reservoir down a pipe of cross-sectional area a, see the figure below.
What is the speed of the issuing jet of water? Estimate the time to empty the reservoir.
Describe what happens if there is a small hole in the pipe half way down.

Area A

Area a

h

H

2. Venturi flow
Air is drawn at volume rate Q along a horizontal pipe through a contraction. The pipe
is connected to a water tank as sketched in the figure below. Estimate the height h for
which water can be sucked into the vertical pipe attached at the constriction.

h
Q

Area B

Area A

3. Train in a tunnel
A train travels at speed 150 km/h in a tunnel. How is the air pressure inside the train
modified compared to the case that the train would be stationary. Assume the dimensions
of the train are width 3 m, height 4 m and length 100 m, and the corresponding dimensions
of the tunnel are 5 m, 7 m and 2 km. (Hint: do all possible simplifying assumptions so
that you still get a non-vanishing result.)

TURN
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4. Free fall
A falling object in a medium reaches a terminal velocity where the gravitational force and
the drag force of the medium balance each other. Using the attached graph, estimate the
terminal velocities of the following objects in air:

a) a spherical water drop of diameter of 1 mm,

b) a spherical hail of diameter 1 cm,

c) a paratrooper with a parachute diameter 11 m and total mass 160 kg,

d) what would be the velocity of the hail (diameter 1 cm) if the Stokes law were valid?

The drag force has the form F = 1
2
CDρAV

2, and the graph gives the coefficient CD as a
function of the Reynolds number NR = DV/ν. Here A is the cross-sectional area of the
object, V its velocity, ρ is the density of the medium, and ν the kinematic viscosity of
the medium. (Hint: Since you do not know the Reynolds number in the beginning, make
first a simple guess of CD, and then correct that once you have an estimate of NR.
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763654S HYDRODYNAMICS Exercise 12 Autumn 2011

1. Channel flow
Consider water flow in a channel, where the bottom has a smooth hump z = a(x). Using
mass conservation and Bernoulli equation (simplest at the surface), calculate the rise b(x)
of the free surface z = H + b(x) of the water. Assuming both a and b much smaller than
H, solve the coefficient c in the linear relation b(x) = ca(x). Is c always positive?

U(x) H

zsurface=H+b(x)

zbottom=a(x)

U0
x

z

2. Complex potential
Show that φ = A(x2 − y2) satisfies ∇2φ = 0 and that ψ = 2Axy gives the same velocity
field. Show that φ and ψ in this case are real and imaginary parts of the complex function
A(x+ iy)2.

3. Velocity field in sound wave
By linearizing the Euler equation and the continuity equation, determine the equation
for the velocity field v′. Show that this has the plane wave solution

v′ = Aei(kx−ωt)i

and find how the frequency ω depends on the wave vector k.

4. Attenuation of sound
Formulate the linearized equations for sound wave including also the dissipative term.
Note that you have to use the Navier-Stokes equation for compressible fluid. Form a
single equation for v. Solve this for a plane wave

v = Aei(kx−ωt)i.

Keeping k real, show that ω is complex valued and leads to exponential damping of the
amplitude of sound, with damping factor e−Γt, Γ = ω2

2c2ρ0
(K+ 4

3
µ) to first order in viscosity.

(Warning: we have here neglected heat conduction, which leads to additional damping of
sound.) Estimate the decay time of sound wave in air of frequency ω/2π = 1 kHz.
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