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In the Stern Gerlach experiment

• silver atoms are heated in an oven, from which they
escape through a narrow slit,

• the atoms pass through a collimator and enter an
inhomogenous magnetic field, we assume the field to
be uniform in the xy-plane and to vary in the
z-direction,

• a detector measures the intensity of the electrons
emerging from the magnetic field as a function of z.

We know that

• 46 of the 47 electrons of a silver atom form a
spherically symmetric shell and the angular
momentum of the electron outside the shell is zero,
so the magnetic moment due to the orbital motion of
the electrons is zero,

• the magnetic moment of an electron is cS, where S

is the spin of an electron,

• the spins of electrons cancel pairwise,

• thus the magnetic moment µ of an silver atom is
almost solely due to the spin of a single electron, i.e.
µ = cS,

• the potential energy of a magnetic moment in the
magnetic field B is −µ · B, so the force acting in the
z-direction on the silver atoms is

Fz = µz

∂Bz

∂z
.

So the measurement of the intensity tells how the
z-component the angular momentum of the silver atoms
passing through the magnetic field is distributed. Because
the atoms emerging from the oven are randomly oriented
we would expect the intensity to behave as shown below.
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In reality the beam is observed to split into two
components.
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Based on the measurements one can evaluate the
z-components Sz of the angular momentum of the atoms
and find out that

• for the upper distribution Sz = h̄/2.

• for the lower distribution Sz = −h̄/2.

In quantum mechanics we say that the atoms are in the
angular momentum states h̄/2 and −h̄/2.
The state vector is a mathematical tool used to represent
the states. Atoms reaching the detector can be described,
for example, by the ket-vectors |Sz; ↑〉 and |Sz; ↓〉.
Associated with the ket-vectors there are dual bra-vectors
〈Sz; ↑ | and 〈Sz; ↓ |. State vectors are assumed

• to be a complete description of the described system,

• to form a linear (Hilbert) space, so the associated
mathematics is the theory of (infinite dimensional)
linear spaces.

When the atoms leave the oven there is no reason to
expect the angular momentum of each atom to be
oriented along the z-axis. Since the state vectors form a
linear space also the superposition

c↑|Sz; ↑〉 + c↓|Sz; ↓〉

is a state vector which obviously describes an atom with
angular momentum along both positive and negative
z-axis.
The magnet in the Stern Gerlach experiment can be
thought as an apparatus measuring the z-component of
the angular momentum. We saw that after the
measurement the atoms are in a definite angular
momentum state, i.e. in the measurement the state

c↑|Sz; ↑〉 + c↓|Sz; ↓〉

collapses either to the state |Sz ; ↑〉 or to the state |Sz ; ↓〉.
A generalization leads us to the measuring postulates of
quantum mechanics:
Postulate 1 Every measurable quantity is associated
with a Hermitean operator whose eigenvectors form a
complete basis (of a Hilbert space),
and
Postulate 2 In a measurement the system makes a
transition to an eigenstate of the corresponding operator
and the result is the eigenvalue associated with that
eigenvector.
If A is a measurable quantity and A the corresponding
Hermitean operator then an arbitrary state |α〉 can be
described as the superposition

|α〉 =
∑

a′

ca′ |a′〉,



where the vectors |a′〉 satisfy

A|a′〉 = a′|a′〉.

The measuring event A can be depicted symbolically as

|α〉 A−→ |a′〉.

In the Stern Gerlach experiment the measurable quantity
is the z-component of the spin. We denote the measuring

event by SGẑ and the corresponding Hermitean
operator by Sz. We get

Sz|Sz ; ↑〉 =
h̄

2
|Sz ; ↑〉

Sz|Sz ; ↓〉 = − h̄

2
|Sz; ↓〉

|Sz; α〉 = c↑|Sz; ↑〉 + c↓|Sz; ↓〉

|Sz; α〉
SGẑ
−→ |Sz; ↑〉 or

|Sz; α〉
SGẑ
−→ |Sz; ↓〉.

Because the vectors |a′〉 in the relation

A|a′〉 = a′|a′〉

are eigenvectors of an Hermitean operator they are
orthognal with each other. We also suppose that they are
normalized, i.e.

〈a′|a′′〉 = δa′a′′ .

Due to the completeness of the vector set they satisfy

∑

a′

|a′〉〈a′| = 1,

where 1 stands for the identity operator. This property is
called the closure. Using the orthonormality the
coefficients in the superposition

|α〉 =
∑

a′

ca′ |a′〉

can be written as the scalar product

ca′ = 〈a′|α〉.

An arbitrary linear operator B can in turn be written
with the help of a complete basis {|a′〉} as

B =
∑

a′,a′′

|a′〉〈a′|B|a′′〉〈a′′|.

Abstract operators can be represented as matrices:

B 7→











|a1〉 |a2〉 |a3〉 . . .

〈a1| 〈a1|B|a1〉 〈a1|B|a2〉 〈a1|B|a3〉 . . .
〈a2| 〈a2|B|a1〉 〈a2|B|a2〉 〈a2|B|a3〉 . . .
〈a3| 〈a3|B|a1〉 〈a3|B|a2〉 〈a3|B|a3〉 . . .
...

...
...

...
...











.

Note The matrix representation is not unique, but
depends on the basis. In the case of our example we get
the 2 × 2-matrix representation

Sz 7→ h̄

2

(

1 0
0 −1

)

,

when we use the set {|Sz; ↑〉, |Sz; ↓〉} as the basis. The
base vectors map then to the unit vectors

|Sz; ↑〉 7→
(

1
0

)

|Sz; ↓〉 7→
(

0
1

)

of the two dimensional Euclidean space.
Although the matrix representations are not unique they
are related in a rather simple way. Namely, we know that
Theorem 1 If both of the basis {|a′〉} and {|b′〉} are
orthonormalized and complete then there exists a unitary
operator U so that

|b1〉 = U |a1〉, |b2〉 = U |a2〉, |b3〉 = U |a3〉, . . .

If now X is the representation of an operaor A in the
basis {|a′〉} the representation X ′ in the basis {|b′〉} is
obtained by the similarity transformation

X ′ = T †XT,

where T is the representation of the base transformation
operator U in the basis {|a′〉}. Due to the unitarity of the
operator U the matrix T is a unitary matrix.
Since

• an abstract state vector, excluding an arbitrary
phase factor, uniquely describes the physical system,

• the states can be written as superpositions of
different base sets, and so the abstract operators can
take different matrix forms,

the physics must be contained in the invariant propertices
of these matrices. We know that
Theorem 2 If T is a unitary matrix, then the matrices
X and T †XT have the same trace and the same
eigenvalues.
The same theorem is valid also for operators when the
trace is defined as

trA =
∑

a′

〈a′|A|a′〉.

Since

• quite obviously operators and matrices representing
them have the same trace and the same eigenvalues,

• due to the postulates 1 and 2 corresponding to a
measurable quantity there exists an Hermitean
operator and the measuring results are eigenvalues of
this operator,



the results of measurements are independent on the
particular representation and, in addition, every
measuring event corresponding to an operator reachable
by a similarity transformation, gives the same results.
Which one of the possible eigenvalues will be the result of
a measurement is clarified by
Postulate 3 If A is the Hermitean operator
corresponding to the measurement A, {|a′〉} the
eigenvectors of A associated with the eigenvalues {a′},
then the probability for the result a′ is |ca′ |2 when the
system to be measured is in the state

|α〉 =
∑

a′

ca′ |a′〉.

Only if the system already before the measurement is in a
definite eigenstate the result can be predicted exactly.

For example, in the Stern Gerlach experiment SGẑ we
can block the emerging lower beam so that the spins of
the remaining atoms are oriented along the positive
z-axis. We say that the system is prepared to the state
|Sz; ↑〉.
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If we now let the polarized beam to pass through a new

SGẑ experiment we see that the beam from the latter
experiment does not split any more. According to the
postulate this result can be predicted exactly.
We see that

• the postulate can also be interpreted so that the
quantities |ca′ |2 tell the probability for the system
being in the state |a′〉,

• the physical meaning of the matrix element 〈α|A|α〉
is then the expectation value (average) of the
measurement and

• the normalization condition 〈α|α〉 = 1 says that the
system is in one of the states |a′〉.

Instead of measuring the spin z-component of the atoms
with spin polarized along the z-axis we let this polarized

beam go through the SGx̂ experiment. The result is

exactly like in a single SGẑ experiment: the beam is
again splitted into two components of equal intensity, this
time, however, in the x-direction.
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So, we have performed the experiment

|Sz; ↑〉
SGx̂
−→ |Sx; ↑〉 or

|Sz ; ↑〉
SGx̂
−→ |Sx; ↓〉.

Again the analysis of the experiment gives Sx = h̄/2 and
Sx = −h̄/2 as the x-components of the angular momenta.
We can thus deduce that the state |Sz; ↑〉 is, in fact, the
superposition

|Sz; ↑〉 = c↑↑|Sx; ↑〉 + c↑↓|Sx; ↓〉.

For the other component we have correspondingly

|Sz; ↓〉 = c↓↑|Sx; ↑〉 + c↓↓|Sx; ↓〉.

When the intensities are equal the coeffiecients satisfy

|c↑↑| = |c↑↓| =
1√
2

|c↓↑| = |c↓↓| =
1√
2

according to the postulate 3. Excluding a phase factor,
our postulates determine the transformation coefficients.
When we also take into account the orthogonality of the
state vectors |Sz; ↑〉 and |Sz; ↓〉 we can write

|Sz ; ↑〉 =
1√
2
|Sx; ↑〉 +

1√
2
|Sx; ↓〉

|Sz ; ↓〉 = eiδ1

(

1√
2
|Sx; ↑〉 − 1√

2
|Sx; ↓〉

)

.

There is nothing special in the direction x̂, nor for that
matter, in any other direction. We could equally well let

the beam pass through a SGŷ experiment, from which

we could deduce the relations

|Sz; ↑〉 =
1√
2
|Sy; ↑〉 +

1√
2
|Sy; ↓〉

|Sz; ↓〉 = eiδ2

(

1√
2
|Sy; ↑〉 − 1√

2
|Sy; ↓〉

)

,

or we could first do the SGx̂ experiment and then the

SGŷ experiment which would give us

|Sx; ↑〉 =
eiδ3

√
2
|Sy; ↑〉 +

eiδ4

√
2
|Sy; ↓〉

|Sx; ↓〉 =
eiδ3

√
2
|Sy; ↑〉 −

eiδ4

√
2
|Sy; ↓〉.

In other words

|〈Sy; ↑ |Sx; ↑〉| = |〈Sy; ↓ |Sx; ↑〉| =
1√
2

|〈Sy; ↑ |Sx; ↓〉| = |〈Sy; ↓ |Sx; ↓〉| =
1√
2
.

We can now deduce that the unknown phase factors must
satisfy

δ2 − δ1 = π/2 or − π/2.

A common choice is δ1 = 0, so we get, for example,

|Sz; ↑〉 =
1√
2
|Sx; ↑〉 +

1√
2
|Sx; ↓〉

|Sz; ↓〉 =
1√
2
|Sx; ↑〉 − 1√

2
|Sx; ↓〉.



Thinking like in classical mechanics, we would expect
both the z- and x-components of the spin of the atoms in

the upper beam passed through the SGẑ and SGx̂

experiments to be Sx,z = h̄/2. On the other hand, we can
reverse the relations above and get

|Sx; ↑〉 =
1√
2
|Sz; ↑〉 +

1√
2
|Sz; ↓〉,

so the spin state parallel to the positive x-axis is actually
a superposition of the spin states parallel to the positive
and negative z-axis. A Stern Gerlach experiment confirms
this.
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After the last SGẑ measurement we see the beam
splitting again into two equally intensive componenents.
The experiment tells us that there are quantitities which
cannot be measured simultaneously. In this case it is
impossible to determine simultaneously both the z- and
x-components of the spin. Measuring the one causes the
atom to go to a state where both possible results of the
other are present.
We know that
Theorem 3 Commuting operators have common
eigenvectors.
When we measure the quantity associated with an
operator A the system goes to an eigenstate |a′〉 of A. If
now B commutes with A, i.e.

[A, B] = 0,

then |a′〉 is also an eigenstate of B. When we measure the
quantity associated with the operator B while the system
is already in an eigenstate of B we get as the result the
corresponding eigenvalue of B. So, in this case we can
measure both quantities simultaneously.
On the other hand, Sx and Sz cannot be measured
simultaneously, so we can deduce that

[Sx, Sz] 6= 0.

So, in our example a single Stern Gerlach experiment
gives as much information as possible (as far as only the
spin is concerned), consecutive Stern Gerlach experiments
cannot reveal anything new.
In general, if we are interested in quantities associated
with commuting operators, the states must be
characterized by eigenvalues of all these operators. In
many cases quantum mechanical problems can be reduced
to the tasks to find the set of all possible commuting
operators (and their eigenvalues). Once this set is found
the states can be classified completely using the
eigenvalues of the operators.


