
Time evolution operator
In quantum mechanics

• unlike position, time is not an observable.

• there is no Hermitean operator whose eigenvalues
were the time of the system.

• time appears only as a parameter, not as a
measurable quantity.

So, contradictory to teachings of the relativity theory,
time and position are not on equal standing. In
relativistic quantum field theories the equality is restored
by degrading also the position down to the parameter
level.
We consider a system which at the moment t0 is in the
state |α〉. When time goes on there is no reason to expect
it to remain in this state. We suppose that at a later
moment t the system is described by the state

|α, t0; t〉, (t > t0),

where the parameter t0 reminds us that exactly at that
moment the system was in the state |α〉. Since the time is
a continuous parameter we obviously have

lim
t→t0

|α, t0; t〉 = |α〉,

and can use the shorter notation

|α, t0; t0〉 = |α, t0〉.

Let’s see, how state vectors evolve when time goes on:

|α, t0〉
evolution−→ |α, t0; t〉.

We work like we did with translations. We define the
time evolution operator U(t, t0):

|α, t0; t〉 = U(t, t0)|α, t0〉,

which must satisfy physically relevant conditions.

1. Conservation of probability

We expand the state at the moment t0 with the help of
the eigenstates of an observable A:

|α, t0〉 =
∑
a′

ca′(t0)|a′〉.

At a later moment we get the expansion

|α, t0; t〉 =
∑
a′

ca′(t)|a′〉.

In general, we cannot expect the probability for the
system being in a specific state |a′〉 to remain constant,
i.e. in most cases

|ca′(t)| 6= |ca′(t0)|.

For example, when a spin 1
2 particle, which at the

moment t0 is in the state |Sx; ↑〉, is subjected to an

external constant magnetic field parallel to the z-axis, it
will precess in the xy-plane: the probability for the result
h̄/2 in the measurement SGx̂ oscillates between 0 and 1
as a function of time. In any case, the probability for the
result h̄/2 or −h̄/2 remains always as the constant 1.
Generalizing, it is natural to require that∑

a′

|ca′(t0)|2 =
∑
a′

|ca′(t)|2.

In other words, the normalization of the states does not
depend on time:

〈α, t0|α, t0〉 = 〈α, t0; t|α, t0; t〉
= 〈α, t0|U†(t, t0)U(t, t0)|α, t0〉.

This is satisfied if we require U(t, t0) to be unitary, i.e.

U†(t, t0)U(t, t0) = 1.

2. Composition property

The evolution from the time t0 to a later time t2 should
be equivalent to the evolution from the initial time t0 to
an intermediate time t1 followed by the evolution from t1
to the final time t2, i.e.

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0).

Like in the case of the translation operator we will first
look at the infinitesimal evolution

|α, t0; t0 + dt〉 = U(t0 + dt, t0)|α, t0〉.

Due to the continuity condition

lim
t→t0

|α, t0; t〉 = |α〉

we have
lim

dt→0
U(t0 + dt, t0) = 1.

So, we can assume the deviations of the operator
U(t0 + dt, t0) from the identity operator to be of the order
dt. When we now set

U(t0 + dt, t0) = 1− iΩdt,

where Ω is a Hermitean operator, we see that it satisfies
the composition condition

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0),

is unitary and deviates from the identity operator by the
term O(dt).
The physical meaning of Ω will be revealed when we
recall that in classical mechanics the Hamiltonian
generates the time evolution. From the definition

U(t0 + dt, t0) = 1− iΩdt

we see that the dimension of Ω is frequency, so it must be
multiplied by a factor before associating it with the
Hamiltonian operator H:

H = h̄Ω,



or
U(t0 + dt, t0) = 1− iH dt

h̄
.

The factor h̄ here is not necessarily the same as the factor
h̄ in the case of translations. It turns out, however, that
in order to recover Newton’s equations of motion in the
classical limit both coefficients must be equal.
Applying the composition property

U(t2, t0) = U(t2, t1)U(t1, t0), (t2 > t1 > t0)

we get

U(t + dt, t0) = U(t + dt, t)U(t, t0)

=
(

1− iH dt

h̄

)
U(t, t0),

where the time difference t− t0 does not need to be
infinitesimal. This can be written as

U(t + dt, t0)− U(t, t0) = −i

(
H

h̄

)
dtU(t, t0).

Expanding the left hand side as the Taylor series we end
up with

ih̄
∂

∂t
U(t, t0) = HU(t, t0).

This is the Schrödinger equation of the time evolution
operator. Multiplying both sides by the state vector
|α, t0〉 we get

ih̄
∂

∂t
U(t, t0)|α, t0〉 = HU(t, t0)|α, t0〉.

Since the state |α, t0〉 is independent on the time t we can
write the Schrödinger equation of the state vectors in the
form

ih̄
∂

∂t
|α, t0; t〉 = H|α, t0; t〉.

In fact, in most cases the state vector Schrödinger
equation is unnecessary because all information about the
dynamics of the system is contained in the time evolution
operator U(t, t0). When this operator is known the state
of the system at any moment is obtained by applying the
definition

|α, t0; t〉 = U(t, t0)|α, t0〉,
We consider three cases:
(i) The Hamiltonian does not depend on time. For example,
a spin 1

2 particle in a time independent magnetic field
belongs to this category. The solution of the equation

ih̄
∂

∂t
U(t, t0) = HU(t, t0)

is

U(t, t0) = exp
[
− iH(t− t0)

h̄

]
as can be shown by expanding the exponential function as
the Taylor series and differentiating term by term with
respect to the time. Another way to get the solution is to
compose the finite evolution from the infinitesimal ones:

lim
N→∞

[
1− (iH/h̄(t− t0)

N

]N

= exp
[
− iH(t− t0)

h̄

]
.

(ii) The Hamiltonain H depends on time but the operators
H corresponding to different moments of time commute.
For example, a spin 1

2 particle in the magnetic field whose
strength varies but direction remains constant as a
function of time. A formal solution of the equation

ih̄
∂

∂t
U(t, t0) = HU(t, t0)

is now

U(t, t0) = exp
[
−

(
i

h̄

) ∫ t

t0

dt′ H(t′)
]

,

which, again, can be proved by expanding the exponential
function as the series.
(iii) The operators H evaluated at different moments of
time do not commute For example, a spin 1

2 particle in a
magnetic field whose direction changes in the course of
time: H is proportional to the term S ·B and if now, at
the moment t = t1 the magnetic field is parallel to the
x-axis and, at the moment t = t2 parallel to the y-axis,
then H(t1) ∝ BSx and H(t2) ∝ BSy, or
[H(t1),H(t2)] ∝ B2[Sx, Sy] 6= 0. It can be shown that the
formal solution of the Schrödinger equation is now

U(t, t0) =

1 +
∞∑

n=1

(
−i

h̄

)n ∫ t

t0

dt1

∫ t1

t0

dt2 · · ·∫ tn−1

t0

dtn H(t1)H(t2) · · ·H(tn).

This expansion is called the Dyson series. We will assume
that our Hamiltonians are time independent until we
start working with the so called interaction picture.
Suppose that A is an Hermitean operator and

[A,H] = 0.

Then the eigenstates of A are also eigenstates of H, called
energy eigenstates. Denoting corresponding eigenvalues of
the Hamiltonian as Ea′ we have

H|a′〉 = Ea′ |a′〉.

The time evolution operator can now be written with the
help of these eigenstates. Choosing t0 = 0 we get

exp
(
− iHt

h̄

)
=

∑
a′

∑
a′′

|a′′〉〈a′′| exp
(
− iHt

h̄

)
|a′〉〈a′|

=
∑
a′

|a′〉 exp
(
− iEa′t

h̄

)
〈a′|.

Using this form for the time evolution operator we can
solve every intial value problem provided that we can
expand the initial state with the set {|a′〉}. If, for
example, the initial state can be expanded as

|α, t0 = 0〉 =
∑
a′

|a′〉〈a′|α〉 =
∑
a′

ca′ |a′〉,



we get

|α, t0 = 0; t〉 = exp
(
− iHt

h̄

)
|α, t0 = 0〉

=
∑
a′

|a′〉〈a′|α〉 exp
(
− iEa′t

h̄

)
.

In other words, the expansion coefficients evolve in the
course of time as

ca′(t = 0) −→ ca′(t) = ca′(t = 0) exp
(
− iEa′t

h̄

)
.

So, the absolute values of the coefficients remain
constant. The relative phase between different
components will, however, change in the course of time
because the oscillation frequencies of different
components differ from each other.
As a special case we consider an initial state consisting of
a single eigenstate:

|α, t0 = 0〉 = |a′〉.

At some later moment this state has evolved to the state

|α, t0 = 0; t〉 = |a′〉 exp
(
− iEa′t

h̄

)
.

Hence, if the system originally is in an eigenstate of the
Hamiltonian H and the operator A it stays there forever.
Only the phase factor exp(−iEa′t/h̄) can vary. In this
sense the observables whose corresponding operators
commute with the Hamiltonian, are constants of motion.
Observables (or operators) associated with mutually
commuting operators are called compatible. As mentioned
before, the treatment of a physical problem can in many
cases be reduced to the search for a maximal set of
compatible operators. If the operators A,B, C, . . . belong
to this set, i.e.

[A,B] = [B,C] = [A,C] = · · · = 0,

and if, furthermore,

[A,H] = [B,H] = [C,H] = · · · = 0,

that is, also the Hamiltonian is compatible with other
operators, then the time evolution operator can be
written as

exp
(
− iHt

h̄

)
=

∑
K′

|K ′〉 exp
(
− iEK′t

h̄

)
〈K ′|.

Here K ′ stands for the collective index:

A|K ′〉 = a′|K ′〉, B|K ′〉 = b′|K ′〉, C|K ′〉 = c′|K ′〉, . . .

Thus, the quantum dynamics is completely solved (when
H does not depend on time) if we only can find a
maximal set of compatible operators commuting also with
the Hamiltonian.
Let’s now look at the expectation value of an operator.
We first assume, that at the moment t = 0 the system is

in an eigenstate |a′〉 of an operator A commuting with the
Hamiltonian H. Suppose, we are interested in the
expectation value of an operator B which does not
necessarily commute either with A or with H. At the
moment t the system is in the state

|a′, t0 = 0; t〉 = U(t, 0)|a′〉.

In this special case we have

〈B〉 = 〈a′|U†(t, 0)BU(t, 0)|a′〉

= 〈a′| exp
(

iEa′t

h̄

)
B exp

(
− iEa′t

h̄

)
|a′〉

= 〈a′|B|a′〉,

that is, the expectation value does not depend on time.
For this reason the energy eigenstates are usually called
stationary states
We now look at the expectation value in a superposition
of energy eigenstates, in a non stationary state

|α, t0 = 0〉 =
∑
a′

ca′ |a′〉.

It is easy to see, that the expectation value of B is now

〈B〉 =
∑
a′

∑
a′′

c∗a′ca′′〈a′|B|a′′〉 exp
[
− i(Ea′′ − Ea′)t

h̄

]
.

This time the expectation value consists of terms which
oscillate with frequences determind by the Bohr
frequency condition

ωa′′a′ =
Ea′′ − Ea′

h̄
.

As an application we look at how spin 1
2 particles behave

in a constant magnetic field. When we assume the
magnetic moments of the particles to be eh̄/2mec (like
electrons), the Hamiltonian is

H = −
(

e

mec

)
S ·B.

If we choose B ‖ ẑ, we have

H = −
(

eB

mec

)
Sz.

The operators H and Sz differ only by a constant factor,
so they obviously commute and the eigenstates of Sz are
also energy eigenstates with energies

E↑ = − eh̄B

2mec
for state |Sz; ↑〉

E↓ = +
eh̄B

2mec
for state |Sz; ↓〉.

We define the cyclotron frequency ωc so that the energy
difference between the states is h̄ωc:

ωc ≡
|e|B
mec

.



The Hamiltonian H can now be written as

H = ωcSz,

when we assume that e < 0.
All information about the evolution of the system is
contained in the operator

U(t, 0) = exp
(
− iωcSzt

h̄

)
.

If at the moment t = 0 the system is in the state

|α〉 = c↑|Sz; ↑〉+ c↓|Sz; ↓〉,

it is easy to see that at the moment t it is in the state

|α, t0 = 0; t〉 = c↑ exp
(
− iωct

2

)
|Sz; ↑〉

+c↓ exp
(

+
iωct

2

)
|Sz; ↓〉.

If the initial state happens to be |Sz; ↑〉, meaning that in
the previous equation

c↑ = 1, c↓ = 0,

we see that the system will stay in this state at all times.
This was to be expected because the state is stationary.
We now assume that the initial state is |Sx; ↑〉. From the
relation

|Sx; ↑〉 =
1√
2
|Sz; ↑〉+

1√
2
|Sz; ↓〉

we see that
c↑ = c↓ =

1√
2
.

For the probabilities that at the moment t the system is
in eigenstates of Sx we get

|〈Sx; ↑ |α, t0 = 0; t〉|2 = cos2
ωct

2

|〈Sx; ↓ |α, t0 = 0; t〉|2 = sin2 ωct

2
.

Even if the spin originally were parallel to the positive
x-axis a magnetic field parallel to the z-axis makes the
direction of the spin to rotate. There is a finite
probability for finding the system at some later moment
in the state |Sx; ↓〉. The sum of probabilities
corresponding to different orientations is 1.
It is easy to see that the expectation values of the
operator S satisfy

〈Sx〉 =
(

h̄

2

)
cos ωct

〈Sy〉 =
(

h̄

2

)
sinωct

〈Sz〉 = 0.

Physically this means that the spin precesses in the
xy-plane.

Lastly we look at how the statevectors corresponding to
different times are correlated. Suppose that at the
moment t = 0 the system is described by the state vector
|α〉, which in the course of time evolves to the state
|α, t0 = 0; t〉. We define the correlation amplitude C(t) as

C(t) = 〈α|α, t0 = 0; t〉
= 〈α|U(t, 0)|α〉.

The absolute value of the correlation amplitude tells us
how much the states associated with different moments of
time resemble each other.
In particular, if the initial state is an energy eigenstate
|a′〉, then

C(t) = exp
(
− iEa′t

h̄

)
,

and the absolute value of the correlation amplitude is 1 at
all times. When the initial state is a superposition of
energy eigenstates we get

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
.

When t is relatively large the terms in the sum oscillate
rapidly with different frequencies and hence most
probably cancel each other. Thus we expect the
correlation amplitude decreasing rather rapidly from its
initial value 1 at the moment t = 0.
We can estimate the value of the expression

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
more concretely when we suppose that the statevectors of
the system comprise so many, nearly degenerate, energy
eigenvectors that we can think them almost to form a
continuum. Then the summation can be replaced by the
integration

∑
a′

−→
∫

dE ρ(E), ca′ −→ g(E)

∣∣∣∣∣
E≈Ea′

,

where ρ(E) is the density of the energy eigenstates. The
expression

C(t) =
∑
a′

|ca′ |2 exp
(
− iEa′t

h̄

)
can now be written as

C(t) =
∫

dE |g(E)|2ρ(E) exp
(
− iEt

h̄

)
,

which must satisfy the normalization condition∫
dE |g(E)|2ρ(E) = 1.

In many realistic physical cases |g(E)|2ρ(E) is
concentrated into a small neighborhood (size ∆E) of a



point E = E0. Rewriting the integral representation as

C(t) = exp
(
− iE0t

h̄

)
×

∫
dE |g(E)|2ρ(E) exp

[
− i(E − E0)t

h̄

]
,

we see that when t increases the integrand oscillates very
rapidly except when the energy interval |E − E0| is small
as compared with h̄/t. If the interval, which satisfies
|E − E0| ≈ h̄/t, is much shorter than ∆E —the interval
from which the integral picks up its contribution—, the
correlation amplitudes practically vanishes. The
characteristic time, after which the absolute value of the
correlation amplitude deviates significantly from its initial
value 1, is

t ≈ h̄

∆E
.

Although this equation was derived for a quasi continuous
energy spectrum it is also valid for the two state system
in our spin precession example: the initial state |Sx; ↑〉
starts to lose its identity after the time
≈ 1/ωc = h̄/(E↑ − E↓) as we can see from the equation

|〈Sx; ↑ |α, t0 = 0; t〉|2 = cos2
ωct

2
.

As a summary we can say that due to the evolution the
state vector describing the initial state of the system will
not any more describe it after a time interval of order
h̄/∆E. This property is often called the time and energy
uncertainty relation. Note, however, that this relation is
of completely different character than the uncertainty
relation concerning position and momentum because time
is not a quantum mechanical observable.


