Devices and Circuit Technology

Future 5G/6G devices and networks operating in higher carrier frequencies will require new and innovative device and circuit technologies and implementations to meet the requirements of reliable and ultra high speed communications. This is only possible with advanced semiconductor technologies, circuits and antennas accompanied with new materials and components they enable. Distributed high-throughput local computing nodes and sub-millisecond transport between the nodes further call for major transitions in the embedded systems and software development for the transceivers and devices.

Devices and Circuit Technology

The challenge is to find a new equilibrium between communication concept, digital signal processing and RF technologies to support applications requiring extremely high data rates and low latencies. Distributed operations in a wide range of frequency bands including mm-wave and THz bands call for novel RF transceiver architectures and integrated circuits (IC) as well as development of new materials, components and their fabrication processes.


Our goal in 6Genesis research is to integrate the 5G/6G systems to reality by developing new RF transceiver implementations and IC design as well as new kind of THz scale electronic packaging solutions that allow 5G/6G systems operating in a wide range of frequency bands. These include adjustable nanomaterials and 3D structures that enable characteristics for specific applications with ultra-low permittivity and adjustable structural features.


Our demonstrator design solutions will investigate the interplay between transceiver architectures, protocols, latency and bandwidth, which calls for approaches that pursue reliable communications through highly parallel designs from the wireless path to hardware (HW), and software (SW).


We will also develop ubiquitous sensing technologies for capturing more information from everyday situations and environments including 3D range imagining of the environment and machine vision for automated sensing and decision making based on video-captured information.

Key Publications

Miniature high-power nanosecond laser diode transmitters utilizing simplest avalanche drivers

Vainshtein, Sergey N.; Zemlyakov, Valery; Egorkin, Vladimir; Maslevtsov, Andrey; Filimonov, Alexey 4/2019 IEEE Transactions on Power Electronics ( Volume: 34 , Issue: 4 , April 2019 )
Devices and Circuit Technology

An 80 x 25 pixel CMOS single-photon sensor with flexible on-chip time gating of 40 subarrays for solid-state 3-D range imaging

Ruokamo, Henna; Hallman, Lauri W.; Kostamovaara, Juha 2/2019 IEEE Journal of Solid-State Circuits ( Volume: 54 , Issue: 2 , Feb. 2019 )
Devices and Circuit Technology

An FPGA-based implementation of a multifunction environment sensing device for shared access with rotating radars

Khan, Zaheer; Lehtomäki, Janne J.; Hossain, Ekram; Latva-aho, Matti; Marshall, Alan 11/2018 IEEE Transactions on Instrumentation and Measurement ( Volume: 67 , Issue: 11 , Nov. 2018 )
Devices and Circuit Technology
Key Researchers
5.11.2018 Researcher

Aarno Pärssinen

16.4.2018 Researcher

Markus Berg

4.6.2018 Researcher

Merja Teirikangas

Related Projects