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Summary. The dynamical behavior of N coorbital satellites,
moving with the same average mean motion around a primary
has been studied both analytically and in terms of numeri-
cal integrations for 2 < N <9 satellites. Simplified dynamical
equations have been used to determine the different stationary
configurations and their local stability against infinitesimal per-
turbations. The motion is reduced to angular separations be-
tween satellites and is accurate to the first order in satellite to
primary mass ratio. The ring of equally spaced identical satellites
is found to be locally unstable for N < 6, while for 2< N <8
there exists another, stable compact stationary configuration,
with separations <60° between adjacent satellites. For N > 7
the equally spaced configuration becomes locally stable, and for
N > 9 it is the only stationary configuration. Exact integrations
confirm these results, and also allow study of finite amplitude
oscillations. The motion becomes chaotic for large amplitude
perturbations. However, the chaotic motion fills a restricted re-
gion of phase space whose outer boundary is determined by the
maximum velocity curve (mvc). This bounding curve is derived
from the simplified equations using total energy and angular mo-
mentum conservation to obtain extrema in the kinetic and poten-
tial energy of a pair of satellites. These conditions were further
utilized in derivation of minimum separations, ¢, between pairs
of satellites. Numerical integrations confirm Maxwell’s result that
particles may be ejected from the ring if @y < SPyin, Where Py
is the mutual sphere of influence between a pair of satellites.
Application to the coorbiter satellite pair of Saturn indicates that
a triplet consisting of Janus (S10) and two satellites with the mass
of Epimetheus (S11) would be unstable for the present total energy
of the system.

Key words: celestial mechanics — numerical methods — planets
and satellites — solar system

1. Introduction

The motion of N mutually gravitating satellites, confined to fol-
low the same mean orbit, is an extremely simple system which
can nevertheless exhibit complex behavior. The symmetrically
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spaced, many particle ring was originally examined by Maxwell
(1890) in his Adams prize essay as a simple model for Saturn’s
rings. Although this model omits much of the dynamics which
can occur when the ring has radial “width” (i.e. fills an annulus),
Maxwell could use it to confirm that a multi-particle ring is sta-
ble in the limit N — oo if the linear mass-density is sufficiently
small. The present study concerns the orbital dynamics in the
case of small N. Other researchers (Pendse, 1935; Willerding,
1986) have also expanded on Maxwell’s work. From our point
of view, Pendse’s was the most interesting in that he added the
indirect potential term to that obtained by Maxwell. This term
results from the shifting from the center of the mass coordinate
system to the center of the primary (adopted by Maxwell), and
largely governs the primary-satellite motion. Its inclusion has a
dramatic effect on the number and stability of the stationary con-
figuration for small N: although the symmetrically spaced ring
is a stationary configuration, it is locally unstable for N < 7.

The 2-particle ring’s stable (and stationary) configuration
occurs when the particles are separated by 60° in longitude. For
three identical particles, the stable configuration involves a sepa-
aration of the outer particle from the central particle by about
4724. Our original purpose in reexamining this problem was to
map out all the stationary configurations, with the hope that it
might bear on how a ring might collapse to form, say, Saturn’s
coorbital satellites (Yoder et al., 1983). However, we initially had
no insight that the number and complexity of the stationary con-
figurations would be so rich. For example, the 7 particle ring
has 5 distinct stationary configurations, two of which are locally
stable. Moreover, each configuration has six distinct normal
modes, with associated frequencies. Furthermore, we had little
expectation that as one increases the amplitude of these normal
modes, that the reasonably periodic stable motion becomes
chaotic. Perhaps the most important result of this paper relates
on our attempts to understand the onset and the underlaying
symmetry of this chaotic motion. We have obtained a constraint,
called the maximum velocity curve, which employs the energy
and impulse constraints to obtain the extremal motion of a par-
ticle pair. This constraint is similar to one employed by Hénon
(1970) in a study of the restricted three body problem.

The results presented in this paper are primarily obtained by
using a simple first order theory, in which terms of the order
(m/M)3? are neglected, where m and M are masses of the satel-
lite and the primary, respectively. The orbit eccentricity and in-
clination were also ignored. These simplified equations are used
to determine the stationary states and their stability matrixes.
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These simple equations are also numerically integrated, using
different initial conditions, and these results are compared with
numerical integrations of the complete dynamical equations.

2. Simplified dynamical equations

The equations of motion for N mutually gravitating satellites,
moving around a central mass in coplanar orbits, can be written
in the form (see e.g. Yoder et al., 1983; Brown and Shook, 1964),

d [, do, N OF;
d—t<r; E)‘,-; %, (1)
J#i

d*r; do,\? M N GF;

T (=) = 2 i 2

dt? rl(dt) l',-2 + 121 T ( )
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where

F,; = ym {1 "i cos(0 0)} 3)
i.=‘y g — —— i_ 2 N
J J Aij r} J

A =rt+r} —2rpjcos(0;, — 0)). @
The polar coordinates (r, 0) are referred to the center of mass of
the primary, which gives rise to the indirect terms ~cos (6; — 0))
in the forcing functions F;;. Satellite masses are denoted by m;,
while M stands for the central mass and y for the gravitational
constant.

Denote the average mean motion of satellites by n, and the
mean orbit radius by a,. The deviations dn; and dr;, caused by
the mutual interactions, are related as follows:

df,/dt = ny + on;,

r; = ao(1 — 30m,/ng) + or;,

)
(6)

where the first term on the right hand side of Eq. (6) follows from
Kepler’s third law. Substitution of Egs. (5) and (6) into (1) and
(2) yields

1 ,d d N OF;
—39 7 (6n) + 2n4a, % (or) = j; %, 7
Jj#Fi
a? 2a, d* 2 N OF;
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where only the first order terms in dn; and dr; are retained on
the left hand side. It can be shown (e.g. Yoder et al., 1983) that
due to the Keplerian properties of the central force field, the de-
viations ér;/a, are smaller by a factor ~(m/M)"? than dn;/n,’s
(here m is a typical mass of a satellite). Therefore, to obtain ex-
pressions which are accurate to O(m/M), the terms ~ dr in Eq.
(7) can be omitted. With the same accuracy, F(r;,r;,0; — 0)) can
be replaced by F(ay, ay,0; — 0)), so that

N
—3dén)jdt = —n2 Y. p;sin6; {; 1} )
=1

8|sin (0,;/2)
j#
where p; = m;/M, and 0;; = 0, — 0;. According to this approxi-
mate dynamical equation, the apparent force between a pair of
satellites is repulsive for separations less than 60°. The stationary
configurations correspond to the case where all the d/dt(dn;)’s
simultaneously vanish.

An energy integral follows from Eq. (9): multiplying both sides
with g, on, for each i, summing over i, and finally integrating with
respect to time, one obtains

E=T+V

: i (6n)? o i {—1 cos 0 } (10)
= —— ion)* — — il : - ij(-
6i<1 O 2 oL Hall 2|sin (6;;/2)| ’

The negative sign of the equivalent kinetic energy T follows from
the almost Keplerian properties of the orbits, Eq. (5) and (6).
In the case of two satellites, the entire relative motion can be
derived from Eq. (10), in terms of the difference angle ¢ = 6, — 0,.
An equivalent representation to Eq. (10) is (Yoder et al., 1983)

: 1
E= —§¢* — nj(p, + #2){_— — cos ¢}- (11)

2|sin (¢/2)|

The time evolution of ¢ could then be determined by a simple
quadrature. The extrema of ¥(¢) correspond to the stationary
solutions. Two basic types of motion are possible, depending on
the initial conditions: stable librations around ¢ = +60°, or
horseshoe orbits extending around both —60° and 60°. The solu-
tion ¢ = 180° is unstable, and corresponds to the limiting tadpole
orbit separating the two regions of stable motion. The fact that
a maximum of gravitational potential corresponds to a stable
configuration results from T being negative definite.

For N > 2 the situation is more complex, due to the large
number of dependent variables: the energy condition is not suf-
ficent to determine all the difference angles. However, for N = 3
some progress can be made by plotting the mutual gravitational
potential as a function of angular separations, ¢; = 0,,, — 0,.
For convenience, assume 0, < 0, < 0, and define new variables,

o= (P + ¢5)/2 =(0; — 0,)/2;
B=(¢y— ¢5)/2=0,— (05 + 0,)/2;

0° <o < 180°,

—o<f<uo, (12)
so that a corresponds to the mean interparticle separation, while
B describes the deviation of the middle particle from the equi-
distant position. Figure 1a shows the potential surface as a func-
tion of « and f for identical satellite masses. The interpretation
in terms of ¢;’s is shown in the contour plot, Fig. 1b.

The potential has now three identical maxima: one of them
is located at (o, f) = (47°4,0°), while the other two correspond
to a cyclic permutation of particle indexes. The equally spaced
configuration, (120°,0°) is again a local minimum. In addition,
V has three saddle points, at (138°8,0°) and at the corresponding
cyclic permutations. While all of these extrema are stationary
configurations, it is clear from the analogy to the case N = 2,
that stable librations are possible only in the vicinity of the local
maxima of ¥, corresponding to 47°4 separations between adjacent
satellites.

For N > 3 there is no simple way to plot the potential. Instead,
we shall probe the form of the ¥ by solving numerically for the
stationary solutions of Eq. (9). This gives the angular separations
corresponding to the extrema of V. An eigenmode analysis is
then performed in order to study the stability of these solutions
(Sect. 3). For obvious reasons we concentrate on the case of
identical satellites. A few numerical integrations are described in
Sect. 4, in order to interpret and extend the results of the eigen-
mode analysis. Also, a maximum velocity curve will be defined
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Fig. 1. a The mutual potential energy for a 3 satellite ring, shown as a function of « = (¢, + ¢,) and B = (¢, — ¢,). The three maxima correspond
to stable 47°4 separation between adjacent satellites. b Corresponding contour plot. The interpretation in terms of difference angles ¢; is also shown

and derived from Eq. (10), and is used to determine the condi-
tions necessary for the onset of chaotic motion and the general
character of that chaos in the phase space. Finally, a brief dis-
cussion about the effects of unequal satellite masses is given
(Sect. 5).

N=2

O
1o

b

3. Stationary configurations

Numerical search for the stationary configurations of identical
coorbital satellites revealed the existence of three distinct types
of solutions (Figs. 2 and 3). The first one, Type I, corresponds

Fig. 2. Different stationary configurations for N = 2 to 9 identical satellites. Filled circles denote stable configuration
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Fig. 3. The angular separations for the stable compact configuration
(Type I), for 2 < N < 8 satellites

to an equilibrium where all the N satellites are concentrated more
or less to the same side of the common orbit, with mutual separa-
tions less than 60° between two subsequent satellites. In this case
the mutual repulsive forces (in the non-inertial frame) between
the nearest satellites are balanced by the attraction from the
satellites further than 60° apart. The second type of solutions is
the trivial one corresponding to equally spaced satellites. Finally,
in the Type III configuration N — 1 satellites revolve in one side,
while the remaining one is situated diametrically opposite to the
rest. The different solutions are collected to Table 1, for 2 <
N <9. As can be seen Type I solutions were found only for
N < 8, whereas Type III solutions were further confined to in-
terval 3 < N <7. For N > 9 the trivial solution is apparently
the only one. In the case N = 7 there exists another variation
from both Type I and Type III solutions, corresponding to the
same general type of configuration but with a somewhat wider
separation between satellites. These additional solutions are de-

Table 1. The stationary configurations for N =2 to 9 identical coorbital satellites. The angular position are given (centered
at 180°), together with the N — 1 non-zero eigenvalues (in units un3), and the gravitational potential energy (in units of u*n2a2)

N Type Positions Eigenvalues Energy N Type Positions Eigenvalues Energy
21 150.000 13.5000 —0.5000 252.000 11.7139
210.000 324.000
2 I 90.000 —5.2500 ~1.5000 5 I 23.046 —5.6570 —9.2611
270.000 74373 43344
3001 132,639 14.9292 ~1.8971 180.000 21.4788
180,000 38,0240 285.627 38.7894
227.361 336.954
3 I 60.000 23349 39301 6 I 99.409 12,6011 —12.849
300.000 165.732 79.7551
194.268 122.2008
180.000 44151 260.591
318.765
6 I 30.000 —0.8349 —13.9641
4 1 119.824 15.1258 —43607 90.000 08349
161322 41.9465 150.000 179151
198.678 73.3188 210,000 179151
240.176 270.000 21.7500
4 1 45.000 —2.0680 —5.8284 330.000
135.000 —2.0680 6 I 0.000 —4.7475 —13.8832
225000 63640 40.520 3.0848
315000 88.044 21.6443
4 I 0.000 —5.7021 —5.7321 180.000 40.2072
60.000 4.4151 271.956 62.4878
180.000 18.3672 319.480
300.000 701 89.724 9.9030 ~18.9674
5 1 109.138 143233 —17.904 125.187 402976
147.340 436885 153.722 76.2866
180.000 77.6988 180.000 119.4734
212.660 119.6370 206278 172.0589
250.861 234.813 234.7970
5 36000  —1.5500 —9.3819 270.276
108.000 ~1.5500 7 Ib 30275 —0.0984 —19.6337
180.000 11.7139 85.822 0.0310
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N Type Positions Eigenvalues Energy N Type Positions Eigenvalues Energy
134.599 209732 192.230 158.0008
180.000 25.0937 217.478 217.1843
225.400 343875 245.592 286.6259
274.179 45.5621 281.494
329.721 8 Ib 46.151 ~20120 —26.5476
7 I 25.716 0.0426 —19.6334 95.643 5.1008
77.144 0.0426 132.327 26.0675
128.572 24,8002 164.513 469160
180.000 24.8002 195.487 72.0685
231.428 33.4815 227673 102.6306
282.856 33.4815 264.358 139.3835
334.284 313.849
7 b 22.063 —0.9081 —19.6337 8§ 11 22.500 1.0587 —26.4389
67.967 0.2070 67.500 1.0587
119.609 17.8686 112.500 322598
180.000 303248 157.500 322598
240392 46.1415 202.500 46.5970
292,036 65.5383 247.500 46.5970
337.933 292.500 51.7917
7 Ma 19791  —00623 ~19.6332 337500
61.385 —0.0629 9 20.000 2.1955 —34.4234
110.668 20.1549 60.000 2.1955
180.000 25.4714 100.000 402157
249.332 35.6241 140.000 402157
298.615 48.0141 180.000 60.8835
340.209 220.000 60.8835
8 1 78.506 5.8509 ~263532 260.000 723510
142.522 67.9744 340.000
167.770 108.6184

noted by b) in Table 1. For N = 8, only the variation Ib) was
found. In the case N =2 and 3 these stationary configurations
are the same as found already in Sect. 2.

In order to determine the stability of these configurations, we
introduce a small perturbation to the stationary solution,
0 = (0;)o + 00,. Since at equilibrium dn;/dt = 0 for all i, it follows
that

a‘%a@: —3n3 ,-2, H, (00, — 0), i=1...N, 13)
e
where
a2
Hiy = pje0s (6)o {8|sin [((;,.,)(,/2]|3 - } - % |si;l[r(‘af,.(;;j/)(2)]|5 :
(14)
while (0,,)o = (6,) —(0,). By denoting X =(30,. ..., 80, . . . ,60y),

this is equivalent to X + AX = 0, where the perturbation matrix
A is obtained by collecting the multipliers of 66, in Eq. (13). In
order to have a stable solution, all the eigenvalues A, (corre-
sponding to square of the eigenfrequency) of the matrix A must

be positive. For a positive eigenvalue the period of infinitesimal
libration is (4,4;)~"/*T,, where T, is the orbital period. Notice
that one of the eigenvalues is always zero, corresponding to an
arbitrary rotation of the system as a whole. Having no physical
interest it is discarded in the following analysis. Figure 4 depicts
the eigenvalues of the perturbation matrix for different satellite
configurations, as a function of N. For clarity, the eigenvalues
corresponding to the same perturbation mode are connected by
smooth curves. For Types I and III there is N — 1 different
(non-zero) eigenvalues, whereas for Type II solutions A’s form
degenerate pairs. The eigenvalues are also shown in Table 1. An
example of the related eigenvectors is shown in Fig. 5, for the
case N = 5. For Types I and II the lowest curves in Fig. 4 cor-
respond to a disturbance where the entire satellite configuration
is contracting or expanding (in tangential direction) in phase,
whereas for the uppermost curves the deviations of consecutive
satellites occur at opposite directions. The same is true for the
N — 2 positive eigenvalues of Type III, which more or less de-
scribe the evolution of disturbances among the N — 1 closely
packed satellites. On the other hand, the negative eigenvalue of
Type III corresponds to the movement of the remaining particle
with respect to the other satellites.
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The eigenvectors corresponding to the degenerate pairs of A’s
(Type II configuration) can be represented by an arbitrary com-
bination of the base vectors {sink6,} and {cos k6;}, where 2k is
the number of nodes in the perturbation (see Fig. 5) and 6,’s are
the equidistant positions. For the smallest A-pair k equals 1, while
for the largest pair (or single eigenvalue, in case N is even), k =
int(N/2). Notice that for the case N = even, the (sink6,} base
vector vanishes for k = N/2, 6, = 2n/N(i — 1), so that there is no
difference between the odd and even satellite numbers, although
in the former case the fastest eigenmode is formally nondegen-
erate. For solutions of Type I and III the eigenvectors are also
sinusoidal, but with the amplitude of oscillations generally largest
for the innermost satellites (See Fig. 5).

For N = 3 ring the two eigenmodes have a simple geomet-
rical interpretation. For example, for the compact configuration
A, corresponds to a symmetric oscillations of outer particles
around a stationary middle satellite, on, — on, = dny — on,,
while 4, is related to an antisymmetric perturbation, on, —
on, = —(dny — dn,). In terms of the variables a and S, the former

mode implies § = 0, while for the latter, « stays constant. Both
these oscillation modes are stable: since the potential V falls
steeper in the latter direction (see Fig. 1), antisymmetric oscilla-
tions have a higher frequency. The degeneracy of the equally
spaced solution is a consequence of the fact there is no prefer-
ential direction to which the system evolves: the slope of V is
the same in each direction around the unstable minimum.

An interesting point is the behavior of the slowest eigenmode
for the equidistant solution, corresponding to the overall in-
phase disturbances. For N < 6 the smallest eigenvalue is nega-
tive, indicating instability. For N = 7 it is very close to zero,
whereas for N > 8 it is clearly positive. This indicates that the
stability of the equidistant configuration depends strongly on the
number of satellites. The Type I solutions, when they exist, are
always stable. In terms of the mutual gravitational potential this
means that for N < 8, V has N local maxima, analogous to Fig.
1, while for N > 7 the equally spaced configuration has also
turned into a local maximum. All the other solutions have at
least one unstable eigenmode and thus correspond to saddle
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points of V. It is qualitatively clear why the compact solution
seems to disappear for N > 9: according to Table 1 the energy
difference ¥, — V; decreases as N > 4, and is very close to zero
for N =7, 8. This indicates that all the N + 1 local maxima
merge into one as N > 9. The appearance of the additional solu-
tions for N = 7 and 8 is also related to the flatness of the poten-
tial surface.

The stability of the equally spaced satellites is exactly the
same problem which was first addressed by Maxwell (1890; see
also a recent rederivation by Willerding, 1986) in his essay con-
cerning the stability of Saturn’s rings. By studying small sinu-
soidal radial and tangential displacements from the equidistant
positions, Maxwell derived a dispersion relation for the angular
velocity of the perturbation, w. Maxwell found that the motions
most susceptible for the instability were the short wavelength
tangential perturbations, corresponding to k = N/2. He con-
cluded that unless the satellite masses exceed a critical limit,
u > 2.23/N?, w stays real also for these perturbations, indicating
no exponential growth of amplitude for any type perturbation.
However, since Maxwell (1890) was mainly interested about the
stability on the limit N — oo, he neglected the indirect part of
the forcing function. This explains the disagreement with the
eigenmode analysis, according to which rings composed of less
than 7 satellites should be unstable independent of the satellite
mass (see also Pendse, 1935). Also, in our analysis the unstable
mode corresponds to the long wavelength perturbation, k = 1.
On the other hand, Maxwell’s critical mass limit appears to be
related to the overlapping of the adjacent particle’s spheres of
influence. The eigenmode analysis, based on the assumption of
basically Keplerian motions (see Eq. (6)) does not take into ac-
count this possibility (this case is considered later using numerical
integrations of the exact equations).

We have extended Maxwell’s original analysis to the limit of
small N, by including the indirect terms. We have also corrected
a few minor inaccuracies, like the omission of the satellite situated
exactly on the opposite side (N = even) in the calculation of
direct forces. The results are collected to Table 2, giving w? cal-
culated by Maxwell’s method, both with and without indirect

Table 2. The square of the angular velocity of the long-wave-
length perturbation (w?) for an equally spaced satellite config-
uration (corresponds to smallest eigenvalue), calculated with
Maxwell’s original method, and with the inclusion of the terms
arising from indirect part of the forcing function (in units of un3)

N Maxwell Indirect
2 0 —5.250
3 2.165 —-2.335
4 3.182 —2.068
5 5.950 —1.550
6 7.415 —0.835
7 10.543 0.042
8 12.309 1.0587
9 15.695 2.1955
10 17.689 3.4394
100 403.26 254.02
1000 6238.2 4738.9
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terms. (Actually, Maxwell’s dispersion relation is a fourth-order
polynomial on w, so that there is a total of four roots, forming
two pairs. Two of them correspond to perturbations having w?
very close to the square of the orbital angular velocity and are
related to the precessions of inclined, eccentric particle orbits.
These modes are omitted in our discussion. The difference be-
tween the remaining two roots comes from a slightly different
velocity for a perturbation propagating in the direction of the
orbital motion and against it. In the limit of vanishing satellite
mass, for which the eigenmode analysis is valid, these roots are
identical.)

According to Table 2 the agreement between Maxwell’s
method and the eigenmode analysis is complete (compare to
Table 1, smallest eigenvalues for Type II configuration), once the
indirect terms are properly taken into account. The agreement
is related to the fact that the eigenvectors following from the per-
turbation analysis of Eq. (9) are exactly of the same form as
assumed by Maxwell (1890). On the other hand, it is interesting
to note the influence of the indirect term on the slowest eigen-
frequency, especially for small N (N < 6) where the sign of the
? differs for each case. Even if N = 1000, the w? obtained by
the modified method is about 25% smaller than with the omis-
sion of indirect forces. However, only the slowest mode is signif-
icantly affected. Therefore, Maxwell’s original stability criterion
for N — oo, related to fast modes, is not affected by the inclusion
of the indirect terms.

4. Numerical integrations for identical masses

The above search for the stationary configurations and the eigen-
mode analysis of their stability gives only a limited understand-
ing of the general behavior of the coorbital satellite ring. In the
case of a stable configuration it assures the existence of a certain
libration region, and describes the basic modes of small oscilla-
tions. However, the width of the stable region is not determined.
Also, in the case of an unstable stationary configuration, the
actual evolution of motion is left uncertain. The only way to
extend the analysis is through numerical integration of orbits.
The eigenmode analysis is still very useful in providing appro-
priate initial conditions for numerical investigations. All the
numerical calculations are carried out by an ordinary RK4 inte-
grator in double precision. Typically, the conservation of energy
and angular momentum was satisfied within 107!,

According to eigenmode analysis, there are two basic libration
modes for an N = 3 satellite ring: for the stable compact Type
I configuration these correspond to either symmetric (on, —
on, = dny — dn,; M1 mode) or antisymmetric (én, — on, =
—(dny — dn,); M2 mode) perturbation of the outer particles with
respect to the middle one. Figure 6 depicts integrations of exact
dynamical equations with initial conditions chosen according to
these modes, as well as their combination M1 + M2. Three dis-
tinct types of plots are used here (and in following figures) in
order to illustrate the motions: a) plots of satellite angular posi-
tions as a function of time, 0,(t), in a reference frame rotating
with the mean angular velocity of the system, Y p;on; = 0; b)
(r,0) plots in the same rotating frame; and c) plots of the sys-
tem on the (a, f) plane (or equivalently, of all ¢;’s). The units of
numerical calculations are fixed by setting a, = n, = 1, so that
the orbital period is 27. For the mass ratio 4 = 1073, the periods
of infinitesimal oscillations are 514 and 322 time units, for M1
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Fig. 6a—c. Results of numerical integrations of exact equations, for small amplitude oscillations (E/}; = 1.25) around the stable Type I configuration
of 3 identical satellites. Symmetric (M1) and antisymmetric (M2) initial perturbations, as well as their combination (M1 + M2) are studied in
terms of angular positions (a), polar plots (b), radial deviations scaled by a factor 60, and («, f) plots (c). The length of each integration is 20,000
time units, while 4 = 1075, The dashed lines in (c) indicate the contour V(a, f) = E, inside which the motion is bounded

and M2 modes, respectively. In each integration, the initial radial
displacements were adjusted with respect to dn;’s according to Eq.
(6), to yield the same mean distance for all satellites. The strength
of perturbation is described by E/V; = 1 + T/V;, where T is the
kinetic energy associated with the perturbation, while ¥} is the
potential energy of the Type I configuration. In Fig. 6, E/V; = 1.25.

According to numerical integrations, the eigenmodes and
their frequencies derived from the simplified analysis are in ex-
cellent agreement with the actual dynamical behavior. In fact,
the simplified equations were also integrated, giving practically
identical behavior as compared to exact equations. For infinitesi-
mal oscillations both basic modes, M1-and M2, lead to closed
loops in the rotating coordinate frame. The corresponding images
in the («, f) plane are horizontal and vertical lines, respectively.
However, although the symmetric M1 mode remains distinct also
for finite perturbations, the antisymmetric mode M2 cannot (Fig.
6). This can be interpreted as follows. If Eq. (9) is written in terms

of « and p, it follows that (assuming equal masses)

8/3n% = G(20) + ${G(« — B) + Gl + P)},
B/3n3 = 3{G(e + B) — Gla — p)},

where G(x) is a shorthand notation for sinx{[2sinx| ™3 — 1}.
Therefore, f always vanishes for f = 0, independent of . On the
other hand, in general & # 0 for § # 0. As a result, « can not
stay constant if the M2 mode is excited by non-infinitesimal
amount, which leads to complicated trajectories in the r(6,) as
well as the (o, f) plane. This tendency for mixing of modes has
important consequences if E/V] is increased.

In order to study large perturbations to more detail, another
series of integrations was carried out for the symmetrical mode,
with larger initial E/V; (Fig. 7). Exact equations were integrated
over 50,000 time units, starting again from the Type I positions.
As E/V; is increased the middle particle can no longer remain

(15)
(16)
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stationary, but starts to perform finite oscillations, correspond-
ing to excitement of M2 mode (Fig. 7). This follows from the
terms proportional to u*2, ignored in the approximation leading
to Eq. (9). For example, in the symmetric mode with « < 120°,
due to the mutual interactions, the middle satellite always feels
a slightly larger radial attraction than the other two particles. It

tries to balance this by adjusting its angular velocity. Hence, the
variable B, describing the amount of antisymmetric mode, tends
to grow from its initial zero value. However, according to Eq.
(16) AB/AB <0 for a < 106°8 and the deviations are damped
(proportionally to y). Therefore, the fluctuations stay bounded.
On the other hand, if « > 106°8, the deviations start to grow
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during that part of the orbits were this critical separations is
exceeded. At first this results only in a curious double feature in
the region occupied by the middle particle, together with the
thickening of the region of the orbits of the outer particles (Fig.
7, E/V; = 1.695). According to Fig. 6, this is the typical feature
of the antisymmetric mode.

As E/V; is further increased (Fig. 7, E/V; = 1.697), the motion
becomes rapidly unstable against the growth of the M2 mode,
since the particles always spend most of their time close to 120°
separations. After a few librations, instead of completing the
symmetric oscillation with respect to the initially stationary

particle, the system collapses towards either one of the other two
satellites. Subsequent expansion with respect to the new middle
particle leads once more to the unstable region, and as a con-
sequence sooner or later a new shift in the role of the satel-
lites is observed. Clearly, this exchange of identities occurs in a
chaotic manner, although during a short integration one oscil-
lation mode can seem to dominate. However, as E/V, is increased
the (o, f) plane is almost uniformly filled with trajectories (Fig.
7, E/V; =2).

The transition between the periodic and chaotic behavior is
very sharp, taking place for energies between E/V; = 1.695 and
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1.697. The same transition was also observed in two otherwise
identical integrations, except that the particles started with zero
relative velocities from o = 112?5 and 113°.

It is interesting to note that for still larger E/V; (= 3.5), the
initial identity of the satellites is once more retained, in the sense
that the middle particle performs a unique oscillation, while the
outer particles perform motion analogous to the horseshoe orbits
for N = 2 (Fig. 7, E/V; = 4). For extremely large perturbation the
behavior becomes very complicated: since the minimum separa-
tions decrease with increasing E/¥;, the particles eventually pene-
trate into their mutual sphere of influence. The close encounters
can lead to an escape or the passing of the satellites, although
this is not allowed by the simplified description (Eqs. 7-9) which
prevent particles from leaving the ring or exchanging their relative
positions. We shall briefly return to this problem later.

It is useful to interpret the above described onset of chaotic
motion in the light of the 3-particle potential (Fig. 1). Since the
kinetic energy is a negative definite quantity, the system is con-
fined to stay below the potential surface. Figures 6¢c and 7c
shows the allowed region in («, f) plane, bounded by the curve
V(x, f) = E. For small amplitude librations around the Type I
stationary configuration, E/V; > 1, the allowed portion of («, )
plane consists of three separate regions, and the system remains
safely in the vicinity of the initial configuration (Fig. 6c; only one
of the allowed regions shown). For larger E/V] (Fig. 7) these per-
mitted regions widen, until at certain energy, (E = V; E/V] =
1.689), they finally merge, leaving an isolated non-allowed region
around the equally spaced configuration. Hence, if E/V; > W/,
the system can pass around the 120° potential minimum, and
start performing oscillations inside any of the three peaks. As
can be seen from the case E/V; = 1.697, this indeed happens and
each particle seems to perform statistically similar orbit regard-
less of the nonidentical initial conditions. For E/V; > V;/V,, the
motion is energetically allowed to pass through any point inside
the outer contours corresponding to V(«, f) = E. However, as
was demonstrated by the integrations with E/V; = 4, this does
not necessarily happen. This can be explained by noting that due
to the large |T| the minimum of ¥ at 120° separation cannot
significantly slow down the initially large relative velocities, and
there is not enough time for the M2 mode to grow sufficiently to
break the dominant symmetric mode.

It is important to note that although the destruction of the
strictly symmetrical motion is related to the terms ignored in the
approximation leading to simplified equations, the phenomenon
itself takes place regardless of the satellite mass. This follows
from the fact that the terms ignored in Eq. (9) are not necessary
to keep up the instability, but simply trigger the mixing of the
two modes, which in itself is well described by Egs. (15) and (16)
for N = 3 (see Fig. 6). This was further verified by additional
integrations performed with u = 107% and 1077, starting from
symmetric 113° separations with zero relative velocities. Both
integrations led to the exchange of particle identities within the
first few librations. In fact, even in the absence of any u/? terms,
small external perturbations would probably disturb the sym-
metric motion.

Although the bounds set by the total energy give a sufficient
“geometric” explanation for the behavior of three particle ring,
we can proceed still further by utilizing the conservation of
angular momentum. In what follows we attempt to set further
limits on the allowed trajectories, in the phase space (¢;, ¢;). In
order to do this we search for the maximum of ¢,, subject to

319
conditions
N
> wion; =0, 17)
i=1
N
Z w;on? = —6T. (18)

i

[}
-

With the help of Langrange multipliers (/,,/,) this is equivalent
of determining the extremum of

N N
g=my—om)® +1; ) won + Iz(z won? + 6T> (19)
=1 i1

by setting the partials g/dn, = 0, and then solving these N equa-
tions together with the conditions (17) and (18) for the N + 2
unknowns, dny, I,, and I,. The maximum of ¢? is obtained when
Oy 41 = — W/l + 1 Ony, while the remaining on; = 0, giving

¢;2 _ —6T|:ﬂk + ﬂk+1]
= —.

(20)
il + 1

Equation (20) determines the maximal fraction of kinetic energy
@, can possess. After this we numerically search for the maxi-
mum of V, subject to constrain that ¢, has a fixed value. This
clearly gives the maximum of the negative kinetic energy avail-
able for the whole system. Equation

_ 6(py + M+ 1)

max {$?} = {Vinax(0) — Eo} (1)

k+ 1

defines the maximum velocity curve, where the energy constant
is obtained from the initial conditions. In general, the curves are
different for each separation angle, unless the masses are equal.
Figure 8 depicts phase space plots for some of the previous
numerical experiments, together with corresponding maximum
velocity curves. For small perturbation around the compact con-
figuration, the curve encircles two separate regions, within which
the motion is bound. The leftmost region constraints the inter-
particle separations ¢, and ¢,, while the ¢, is bounded inside
the other region. These regions join together if E/}] is increased
to the above mentioned critical value 1.689, and then gradually
widen. As can be seen in Fig. 8, a large portion of the allowed
phase space is actually filled with trajectories, especially in the
unstable case. However the joining of the two regions is not a
sufficient condition for the motion to actually pass from one
region to another. For the symmetric mode, the actual value of
E/V, for which the transition was observed, is about 0.6%, larger
than ¥{;/V;. Clearly, the initial eigenmode is important: in the
antisymmetric case the required E/V; is about 6% larger. The
reason for this mode dependence is evident from the V(a, ) plots:
the oscillations must have a proper direction to facilitate the
transition. Hénon (1970) found a similar kind of behavior in his
study of Hill’s problem. Retrograde, orbiting satellites about a
planet remain in bounded orbits while prograde satellites, with
the same energy, can leave the Hill’s sphere and escape.
Equation (21) for the maximum velocity curve provides a
convenient way to determine the energetically allowed mini-
mum separation between satellites: for a given total energy, de-
termine the ¢, for which the max {$2(¢,, E)} = 0. Figure 9 collects
the observed minimum separations, ¢,;,, attained in integrations
starting from Type I configuration with various initial E/¥; and
perturbation modes, and compares these with the lower limit,
Pmye» calculated from the above condition. Arrows indicate the
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Fig. 8. Examples of phase space plots for ¢; = 6;,, — 0,, together with the corresponding maximum velocity curves (dashed lines). Left panel
compares M1, M2, and M1 + M2 modes for E/V; = 1.25, while the right panel shows the behavior of initially symmetric perturbation (M1 mode)
for larger E/V|. The scale of the plots of the individual particle pairs is 4 of the scale of the combined plot

onset of instability in our numerical integrations. This instability
occurs for a ¢, proportional to Hill’s sphere of influence, de-
fined by ¢y = {(e+1 + w)/3}"3. For identical satellites with
p=1073, ¢y = 1°12. Notice that in the limit of large E/V; the
calculation of ¢, is simplified by the fact that at close ap-
proach, the gravitational energy can be approximated by the
potential between the encountering pair:

V ~ —ng{3sin(¢/2)| " — cos(¢)} ~ —n3/|¢|.

Hence, for large E/V, ¢.ve ~ (E/V;) L.

For small perturbations, E/V; < 1.695, the minimum distance
depends strongly on the perturbation mode (Fig. 9b). In fact,
for infinitesimal oscillation the combination M1 + M2 is optimal
since it maximizes either ¢, or ¢,, so that the system initially
starts from the maximum velocity curve. However, for larger

E/V, the initial conditions have less importance: the rapid drop
in the observed ¢,,;, (M1 mode) corresponds to the above dis-
cussed transition from ordered to chaotic motion. According to
Fig. 9, ¢y is a rather good approximation for ¢,,;, until
Drove/Prin < 6 (for the mass ratio 10~ 3 this corresponds to E/V; =
5). For larger E/V; the energy formula derived from the simplified
equations starts to fail, due to the non-Keplerian properties of
orbits, leading t0 @pin < Pmve- SoON after this, somewhere be-
tween E/V;= 5.3 and 5.5 (corresponds to ¢,./Pui = 5.2 and
5.0, respectively), the close encounters lead to an escape to non-
resonant orbits. In order to extend the obtainable range of E/V;,
a few integrations were carried out with g = 1077 (length of in-
tegration was 200,000 time units). In this case ¢y;, = 0714, and
the resonance is again maintained until ¢,,./@piy =~ 5-6, corre-
sponding to E/V| &~ 27. It is interesting to note that the critical
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Arrows indicate the E/V; values which lead to global instability for these
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100

Pmvc 18 In a very close agreement with the original instability
criterion obtained by Maxwell (1890) for N — co: if this is written
in terms of the minimum separation, one finds ¢ & 5.4¢y;,.
On the other hand, Dermott and Murray (1981) obtained ¢, ~
2.9@y;n in numerical integrations for the N = 2 case. We shall
return to effects of unequal masses on the minimum separations
in Sect. 5.

We finally turn our attention to rings composed of more than
three identical satellites. Although it is not possible to use po-
tential plots to describe the motion, maximum velocity curves
are readily applicable also for N > 3. Figure 10a shows an ex-
ample of the different perturbation modes around the Type I
stationary configuration, for N = § satellites (compare this with
Fig. 5). The mode M1 corresponds to the symmetric expansion,
which has the tendency to become unstable for the equidistant
configuration. Indeed, when E/V is increased (Fig. 10b) this mode
is the first one to lead to unstable behavior. It also mixes with the
other three modes, and is mostly responsible for the spreading
visible in these oscillations. Corresponding phase space plots are
shown in Fig. 10c, together with the maximum velocity curves.
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Since in this case E/V; > ¥/, both regions of the phase space
are connected. However, as in the case N = 3, the actual onset
of chaos depends on the initial mode.

According to the eigenmode analysis, the behavior of the
Type III stationary configuration changes its nature for N > 6
satellites. This is illustrated in Fig. 11, showing the time evolution
in integrations of exact equations for N = 3 to 8 satellites. All
the integrations start from the equidistant separations, with ini-
tial separations corresponding to the smallest eigenvalue (slowly
evolving in-phase oscillations). In Fig. 11a the initial perturba-
tion corresponds to kinetic energy T = 10~ 3(};; — W), so that the
particles start practically at rest. For Fig. 11b, T = (};; — ). As
can be seen (Fig. 11a), with the small initial amplitude the N = 7
as well as N = 8 satellite rings perform only small oscillations
around the equidistant positions. For N < 6 this configuration
is clearly unstable, in the sense that satellites do not stay bounded
to the vicinity of these positions. This result is in accordance
with the predictions of the eigenmode analysis.

There is some difference in the qualitative behavior of slightly
perturbed N = 3 and 4 < N < 6 satellite rings (Fig. 11a): while
the former case leads to a continuous exchange of orbits, for
N > 4 the initially equidistant satellite ring can start to perform
apparently stable, although large amplitude oscillations around
the Type I configuration. The behavior can be visualized as
follows. In the case N =3 the potential was drawn as a func-
tion of « and f. For N > 3 there exists a corresponding N — 1
dimensional surface, defining the potential energy as a function
of N — 1 independent difference angles. This potential has N
maxima, each corresponding to Type I stationary solution cen-
tered at one of the particles. Now the system starts from the
equidistant local minimum, and rapidly ‘falls’ to any one of these
maxima. It is unable to return to the vicinity of the initial posi-
tion, since its kinetic energy is rapidly divided between all the
modes, including those corresponding to stable high frequency
oscillations (for equally spaced N = 3 ring the two eigenmodes
have the same time scale). Only occasionally (for example for
N =4 or 6) the system is able to find its way from one maxi-
mum to another. For N = 7 and 8 the equidistant solution is a
local maximum, and the system can stay there if the excess kinetic
energy is not too large.

If the perturbation is larger (Fig. 11b), the increase in the
excess kinetic energy makes it impossible to stay in the vicinity
of any single local maximum. Perhaps the most usual feature is
the tendency for the particles to occasionally bunch together.
The larger initial perturbation can also shift the stable N = 7 ring
to a random wandering from the vicinity of one Type I configura-
tion to another. For the same relative perturbation, the N = 8
ring stays around its initial configuration. The reason for this
behavior is the small eigenvalue for the case N = 7, indicating
that the local maximum corresponding to the equally spaced
configuration has a very limited extent as compared to the case
N = 8. The same is evident in Fig. 11c, showing the phase space
plots together with the maximum velocity curves: for N = 8 the
maximum velocity curve encircles two separate regions. In gen-
eral, the maximum velocity curves give meaningful limits for the
motion also in the case N > 3. However, although not so easy
to see in small scale plots, the trajectories in the vicinity of the
bounding curves seem to become slightly more sparse if N is
increased.

A few additional integrations were performed for N = 8 and
N =9, in order to understand the qualitative consequences of
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Fig. 10a—c. Numerical integrations for N = 5 identical satellites, starting from the Type I configuration with deviations corresponding to the four
different eigenmodes (M1 — M4) (Compare with Fig. 5). In the polar plots (a and b) the radial deviations are scaled by factor 60: two perturba-
tion amplitudes are studied: E/¥; = 1.05 and 1.21. In ¢ the combined phase space plots of the different modes for E/); = 1.21 are shown, together

with maximum velocity curves (dashed curves)

the disappearance of the more compact stationary configuration
for N = 9. However it was very hard to see any qualitative dif-
ference in the behavior. This confirms the picture that the N
Type I maxima and the one Type II maximum, which have al-
ready for N = 8 almost identical heights, gradually merge into
one broad maximum for N > 9, without any drastic change in
the characteristics of the dynamical system.

5. Unequal satellite masses

The previously explored case of N identical satellites is, although
a necessary first step, not a very realistic model for any coor-

bital satellite system. For example, the coorbiter satellites of
Saturn, Janus (S10) and Epimetheus (S11), have a mass-ratio
mgo/Mmgyy = 3.6 (Yoder et al., 1987). The other known examples,
the tiny Lagrangian companions of Dione and Tethys, not to
mention the Trojan asteroids, all involve a system where there
is only one dominant satellite beside the primary. Therefore, we
shall briefly explore some implications of nonequal masses, al-
though only for N = 3 satellite ring. Much of the above dis-
cussion for identical satellites is valid also for the general case.
For example, the three-particle potential has 3 local maxima,
although in the general case they have unequal heights. Also, the
stationary separations depend on the order of satellites: an ex-
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Fig. 11a~c. The evolution of a ring of N = 3 to 8 initially equally spaced satellites. The initial perturbation corresponds to the overall sinusoidal

contraction of the ring (slowest eigenmode), with a T =

1073 AV (4V = V4 — V), or b T = AV. The mass ratio is 10~5, and the length of integra-

tion is 20,000 time units. In ¢ the phase space plots, together with maximum velocity curves, are shown for the case (b)

ample is provided by Fig. 12, for relative masses m,/m, = 3.6,
m, = 0.1(m + m,)/2. The different stationary configurations are
located at points P, — P,: P, P,, and P, are local maxima,
while P, and P correspond to saddle points of V. Notice that
the potential minimum, corresponding to equally spaced satellites
in the case of identical masses, is not present. In fact, the local
minimum vanishes if the masses differ more than about 10%.

According to Fig. 12, for small |E ] there exists three separate
energetically allowed libration regions in the (a, f) plane, around
positions Py, P,, and P,. With increasing energy, two of them
become connected, through P,, corresponding to the horseshoe
motion of the smallest mass with respect to the two massive
satellites moving in mutual tadpole orbits. For still larger
both remaining regions merge through P, allowing also for the
mutual horseshoe orbits of the largest satellites.

Figure 13 depicts the results of a few numerical integrations
performed with the relative masses studied in Fig. 12. Each cal-

culation starts from the Type I stationary configuration around
the smallest mass (P,: ¥; = —0.513u?n3a3), and the initial per-
turbations satisfy: m, on, = —m, dny; on, = 0. This corresponds
to the symmetric mode in the case of identical masses. The satel-
lite to primary mass ratio is fixed by setting u = $(m, + ms)/M =
1073, rather than the observed value of ~10~8. Our choice
speeds up the relative motion/mean orbit motion by a factor of
~30. The uppermost panel in Fig. 13 (E/V; = 2) describes the
libration of the large satellites, with the small satellite confined to
move between them. Due to the unequal masses, the small satel-
lite cannot remain stationary, but performs large oscillations.
The second panel (E/V; = 2.3) corresponds to the horseshoe orbit
of m,: in fact this value of E/V; would allow for the mutual horse-
shoe orbit of the largest ones. However, in spite of the initial con-
ditions m, and m, are immediately pushed to mutual libration.
Only with enough large E/V] (third panel, E/V; = 2.4), the whole
allowed (o, p) region is filled with trajectories.
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Fig. 12. A typical example of the 3 satellite potential in the case on nonequal masses (m;/m; = 3.6; my = 0.1 [m, + m;]/2). The interpretation of
the («, ) diagram in terms of the various stationary angular configurations is also shown. The energies of stationary separations P, — P are

given in units of p*nja

It is clear from Fig. 13, that in the case of unequal masses,
the motion of the smallest particle is less restricted than that of
others. This is also evident from Eq. (21), where max {¢?} scales
proportionally to 1/p, if y « gy, . Similarly the minimum al-
lowed distance scales ~ g, on the limit of large E/V;. On the other
hand, @y, involving the factor (g, , + 1)'/? is not very sensi-
tive to p,. This shows that the smallest satellites are at least in
principle most prone to a close encounter and subsequent escape.
Therefore, it is of interest to study in more detail how well the
maximum velocity curves describe the actual limits of motion for
the case of unequal masses.

Figure 14a depicts the theoretical minimum distance ¢*)_ as
a function of E/¥;, together with observed minimum separations,
for the above mass ratios. Now each separation angle has its
own minimum curve: the most important is the one for the
separation between the smallest two satellites, ¢2).. Two mass
ratios are studied, u = 10”° and 10”7 (integrations extend over
20,000 and 200,000 time units, respectively), yielding ¢{7), = 0269
and 0715, respectively, for the encounters between these two
satellites. As in the case of identical satellites (see Fig. 9), for
large E/V; the actual minimum separations are fairly close to
their theoretical lower bounds. In the integrations with g = 1073,
E/V; = 2.4 is the largest studied value still preserving the long term
stability (no passing of satellites during about 20 oscillations),
while E/V; = 2.5 leads to an escape during the first few oscilla-
tions. The corresponding ¢,,..'s are 43¢y, and 4.0¢y,,. The
integrations with u = 10”7 bracketed the critical ¢, between
4.7 and 4.4¢y;,,. Therefore, the stability limit is about the same
as for identical masses, namely ¢, & SPgun-

It is clear that the theoretical lower bound cannot be appli-
cable in the case of very large relative mass ratios; in the test
particle limit Eq. (21) certainly breaks down. The time scale to
attain the bounding values is also expected to increase with
decreasing . In order to study how well the agreement between
Dmve and ¢,,;, holds true for very unequal masses, a few addi-
tional integrations were performed with decreased m, (Fig. 14b).
The perturbation was fixed by E/V; = 3, while u = 107, The
minimum separations were found to follow closely their theoret-
ical lower bounds, until m,/M = 0.015y, in which case the ob-
served minimum distance was clearly above the theoretical lower
bound, indicating that the timescale to attain boundaries ex-
ceeds the length of integration (200,000 time units). However, for
m,/M = 0.012u the system became unstable, in accordance with
what would be expected from the previous experiments (corre-
sponds to about ¢,,. & 3¢y;,). Due to the limitations of nu-
merical integrations larger relative mass differences were not
studied, and no attempt was made to determine the exact time-
scale of reaching the minimum separations as a function of m,.

According to these numerical experiments minimum separa-
tions derived from Eq. (21) agree with the actually attained
separations, at least as long as the masses do not differ more
than about a factor of ~100. These results can be related to
the Saturn’s coorbiter pair as follows. Assume myg,o/Mgar =
6.5107°, and mg,o/ms,, = 3.6 (Yoder et al., 1987). These mass
values combined with the observed mean motion n, = 518°3/day,
and the maximum of differential angular velocity, ¢(60°) =
0°26/day (Yoder et al., 1983), imply E/}; = 37. Figure 15 studies
the theoretical minimum separation between Epimetheus (S11)
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Fig. 13. Numerical integrations with unequal masses. The relative mass ratios are the same as in Fig. 12, and p = 10~ %, Integrations start from
Type I configuration around the mass m, (V; = —0.513). Three values of E/V, are studied (2, 2.3, and 2.4)

and a hypothetical third body with mass mq, as a function of
E/V,, where V, is the potential energy for 60° separation be-
tween S10 and S11. If the stability limit ¢, & S¢y;, 1s valid,
Fig. 15 implies that unless my > 0.3 mg,,, the system would be
unstable for the present total energy. However, a less massive
third body could be stable if E/V,, were reduced. For example,
for the limiting tadpole orbit (E/V, = 3), the minimum allowed
my would be about 0.013mg, ,. For smaller m, its motion could
become unstable if large particles were performing large tadpole
orbits. However, in the limit of vanishing kinetic energy, libra-
tions around Type I configuration are expected to be stable even
for a massless test particle.

The above limit for my, however, is even roughly valid only
if the free orbital eccentricities are ignored. For example, ac-

cording to Eq. (21) the minimum separation between S10 and
S11 is ~8° or about 100¢y;,. Due to the substantial eccen-
tricities (eg; o = 0.007, e5,, = 0.009; Synnott et al., 1983) the actual
minimum separations can vary by about +2°. Since 5¢yy;,; « 2°,
the variation in fact approximates the critical minimum separa-
tion. The same is true if a third particle is added: for close
encounters between Epimetheus and a body with similar mass
AP pin = 1° or 2 15¢y;,, even if the latter is assumed to have
zero eccentricity. According to Fig. 15, if the three particles sys-
tem had the same energy as is present in the coorbiter pair,
then the minimum separation of this massive third body with
Epimetheus is less than 15¢y;,, and hence is forced to a crossing
orbit with Epimetheus. Therefore, if we assume that S10 and S11
represent the upper end of the size distribution of the fragments
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Fig. 14. a The observed (circles) and theoretical minimum distances (solid curves) for the relative masses of Fig. 13. Each separation is plotted
separately, as a function of E/V,. Filled circles represent integrations with u = 10~%, while for open circles, u = 10~7. Arrows indicate E/V; values
which lead to instability, for these two values of u. b The same as (a), except that m, is given values between 0.1 and 0.01(m, + m,)/2, for a
fixed E/V} =3
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of a primordial satellite which has suffered a catastrophic impact,
it seems plausible that all the other fragments except Janus and
Epimetheus have been ejected to non-resonant orbits and were
removed by collision or ejection from the Saturnian system. The
formation of a triplet would apparently require very fortuitious
initial conditions. However, the origin and stability of the co-
orbiter pair may have been critically affected by this ejection
process. This hypothesis and other explanations for their origin
requires further study.

6. Conclusions

A reasonably thorough examination of the coplanar, nearly cir-
cular particle rings with N <9 satellites has been performed,
using a combination of simplified and exact dynamical equa-
tions. The determination of various stationary configurations,
their eigenfrequencies and eigenmodes, was obtained from a nu-
merical search of the simplified equations and the stability matrix
for infinitesimal oscillations. The behaviour of the system for
finite oscillations was explored numerically with both sets of
equations, and we found little difference in the qualitative results.

The few particle ring (with equal masses) has three distinct
stationary configurations. The most important one, a closely
packed configuration (Type I) where all the particles tend to
clump on one side of the mean orbit, exists for N < 8, and is
stable to small oscillations. The equally spaced configuration rep-
resents a local minimum in the potential energy for N < 6 and
is thus unstable. For N > 7 it becomes stable: for N > 9 all the
maxima merge, and the equally spaced configuration is the only
stationary solution. Most of our studies were concentrated on
the behaviour of N =3 ring when perturbed from its stable
configuration.

For the ring of 3 identical masses, the two eigenmodes are
symmetric and antisymmetric in the relative velocity of the cen-
tral particle with respect to its neighbours. In the symmetric
mode, the central particle is nearly stationary and the remaining
satellites move towards or away from it, while in the antisym-
metric mode it starts to deviate towards either of the other satel-
lites. For small oscillations, these modes (especially the initial
strictly symmetric mode) tend to remain distinct, but they in-
creasingly couple as energy is increased. Possibly the most inter-
esting result of this study was the discovery of strongly chaotic
motion, which becomes possible once the energy exceeds a crit-
ical value E/V; > V/W. This critical energy could be predicted
from the maximum velocity curve, which bounds the differential
velocity versus separation of a given pair of particles. The on-
set of chaos appears to occur with the merging of two distinct
maximum velocity curves, within which the motion is more reg-
ular. We found that the collective histories of identical particles
tend to fill the available phase space all the way to the boundary
once chaos set in, but also that the passage to chaos tended to
occur first for the initially symmetric modes as energy was in-
creased just past E.. For the antisymmetric mode, the onset
occurred for a slightly larger energy. Thus it appears that the
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onset of chaos for our problem depends not only on the energy,
but also on the initial conditions, or more to the point, the initial
eigenmode of the system.

The maximum velocity curves were used to deduce the mini-
mum separations between pairs of satellites (for the N = 3 case,
although the method is applicable also to N > 3). Numerical ex-
periments indicate that for large E/V{, when the motion has a
chaotic nature, the particles sooner or later came very close to
the minimum values, regardless of the initial perturbation mode.
On the other hand for extremely large E/V; the observed mini-
mum separation can be smaller than the predicted one, since the
basic assumptions of the simplified description are no longer
valid. However, it was observed that generally the theoretical
minimum separations are a very good indicator of the global
stability of the 1:1 resonance: once the calculated minimum sepa-
ration becomes comparable to about 5 times the Hill’s sphere of
influence, the close encounters rapidly destroy the resonance.

Application to the coorbiter pair of Saturn, Janus and
Epimetheus, seems to indicate that even in the hypothetical case
of circular orbits, no stable motion would be possible for a third
resonant satellite with less than about 10% of the combined
mass of S10 and S11 (assuming the present total energy of the
S10-S11 pair). This inspite of the fact that the coorbital pair itself
is safely in the stable region. If the actual eccentricities are taken
into account, it can further be deduced that even a triplet with
S10 and two masses of the size of S11 would be unstable. This
seems to offer at least a preliminary explanation why there is no
examples of true N = 3 satellite rings, at least not with the high
E/V, ratios. However, a detailed model for the formation of the
coorbital satellites would be very desirable.
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