Selected Publications

Most recent:

Mennerich D, Kellokumpu S, Kietzmann T. (2019) Hypoxia and Reactive Oxygen Species as Modulators of Endoplasmic Reticulum and Golgi Homeostasis. Antioxid Redox Signal., Jan 1;30(1):113-137. doi: 10.1089/ars.2018.7523.

Kokkonen N, Khosrowabadi E, Hassinen A, Harrus D, Glumoff T, Kietzmann T, Kellokumpu S. (2019) Abnormal Golgi pH Homeostasis in Cancer Cells Impairs Apical Targeting of Carcinoembryonic Antigen by Inhibiting Its Glycosyl-Phosphatidylinositol Anchor-Mediated Association with Lipid Rafts. Antioxid Redox Signal., Jan 1;30(1):5-21. doi: 10.1089/ars.2017.7389.

Harrus D, Khoder-Agha F, Peltoniemi M, Hassinen A, Ruddock L, Kellokumpu S, Glumoff T. (2018) The dimeric structure of wild-type human glycosyltransferase B4GalT1. PLoS One. Oct 23;13(10):e0205571. doi: 10.1371/journal.pone.0205571.

Harrus D, Kellokumpu S, Glumoff T. (2018) Crystal structures of eukaryote glycosyltransferases reveal biologically relevant enzyme homooligomers. Cell Mol Life Sci., Mar;75(5):833-848. doi: 10.1007/s00018-017-2659-x.

Kilpijärvi J, Halonen N, Sobocinski M, Hassinen A, Senevirathna B, Uvdal K, Abshire P, Smela E, Kellokumpu S, Juuti J, Lloyd Spetz A. (2018) LTCC Packaged Ring Oscillator Based Sensor for Evaluation of Cell Proliferation. Sensors (Basel). Oct 7;18(10). pii: E3346. doi: 10.3390/s18103346.

Tykesson E, Hassinen A, Zielinska K, Thelin MA, Frati G, Ellervik U, Westergren-Thorsson G, Malmström A, Kellokumpu S, Maccarana M. (2018) Dermatan sulfate epimerase 1 and dermatan 4-O-sulfotransferase 1 form complexes that generate long epimerized 4-O-sulfated blocks. J Biol Chem., Aug 31;293(35):13725-13735. doi: 10.1074/jbc.RA118.003875.

S. Kellokumpu, A. Hassinen & T. Glumoff (2015). Glycosyltransferase complexes in eukaryotes: long-known, prevalent but still unrecognized. Cell Mol. Life Sci. 2015 Oct 17.

H.H. Huang, A. Hassinen, S. Sundaram, A.N. Spiess, S. Kellokumpu & P. Stanley P. (2015) GnT1IP-L specifically inhibits MGAT1 in the Golgi via its luminal domain. Elife. 2015 Sep 15;4.

G. Bart, N.O. Vico, A. Hassinen, F.M. Pujol, A.J. Deen, A. Ruusala, R.H. Tammi, A. Squire, P. Heldin, S. Kellokumpu & M.I. Tammi MI. (2015) Fluorescence resonance energy transfer (FRET) and proximity ligation assays reveal functionally relevant homo- and heteromeric complexes among hyaluronan synthases HAS1, HAS2, and HAS3. J. Biol. Chem. 290(18):11479-90.

C. Hartmann-Fatu, F. Trusch, C.N. Moll, I. Michin, A. Hassinen, S. Kellokumpu & P. Bayer (2015). Heterodimers of tyrosylprotein sulfotransferases suggest existence of a higher organization level of transferases in the membrane of the trans-Golgi apparatus. J. Mol. Biol. 427, 1404-12.

A. Hassinen & S. Kellokumpu (2014). Organizational interplay of Golgi N-glycosyltransferases involves organelle microenvironment-dependent transitions between enzyme homo- and heteromers. J. Biol. Chem. 289(39):26937-48.

2013 and earlier (key papers only):

M.L. Mehtälä, T.J. Haataja, C.E. Blanchet, J.K. Hiltunen, D.I. Svergun & T. Glumoff (2013). Quaternary structure of human, Drosophila melanogaster and Caenorhabditis elegans MFE-2 in solution from synchrotron small-angle X-ray scattering. FEBS Lett. 587: 305-310

M.L. Mehtälä, M.F. Lensink, L.P. Pietikäinen, J.K. Hiltunen & T. Glumoff (2013). On the molecular basis of D-bifunctional protein deficiency type III. PLOS ONE 8: e53688

A. Rivinoja, A. Hassinen, F. Pujol and S. Kellokumpu (2012). Golgi pH. Its Regulation and Roles in Human Disease. Review. Ann. Med., 44, No 6: 542–554

A. Hassinen, F.M. Pujol, N. Kokkonen, C. Pieters, M. Kihlström, K. Korhonen and S. Kellokumpu (2011). Functional organization of the Golgi Glycosylation pathways Involves pH-dependent
Complex Formation That Is Impaired in Cancer Cells. J. Biol. Chem. 286, No 44: 38329–8340

T.J.K. Haataja, M.K. Koski, J.K. Hiltunen & T. Glumoff (2011). Peroxisomal multifunctional enzyme type 2 from the fruitfly: dehydrogenase and hydratase act as separate entities, as revealed by structure and kinetics. Biochem. J. 435: 771–781.

A. Hassinen, A. Kauppila and S. Kellokumpu (2010). Golgi N-Glycosyltransferases Form Both Homo- and Heterodimeric Enzyme Complexes in Live Cells. J. Biol. Chem. 285, No 23: 17771–17777

Antti Rivinoja, Antti Hassinen, Nina Kokkonen, Annika Kauppila, and Sakari Kellokumpu (2009). Elevated Golgi pH Impairs Terminal N-Glycosylation by Inducing Mislocalization of Golgi Glycosyltransferases. J. Cell. Physiol. 220: 144–154

A. Rivinoja, N. Kokkonen, I. Kellokumpu and S. Kellokumpu (2006). Elevated Golgi pH in Breast and Colorectal Cancer Cells Correlates with the Expression of Oncofetal Carbohydrate T-antigen. J. Cell Physiol., 208:167–174

M.S. Ylianttila, N. Pursiainen, A.M. Haapalainen, A. Juffer, Y. Pourier, J.K. Hiltunen & T. Glumoff (2006). Crystal structure of yeast peroxisomal multifunctional enzyme: structural basis for substrate specificity of (3R)-hydroxyacyl-CoA dehydrogenase units. J. Mol. Biol. 358: 1286-1295.

S. Ferdinandusse, M.S. Ylianttila, J. Gloerich, M.K. Koski, W. Oostheim, H.R. Waterham, J.K. Hiltunen, R.J.A. Wanders & T. Glumoff (2006). Mutational spectrum of D-Bifunctional protein deficiency and structure-based genotype-phenotype analysis. Am. J. Hum. Genet. 78: 112-124.

N. Kokkonen, A. Rivinoja, A. Kauppila, M. Suokas, I. Kellokumpu, S. Kellokumpu (2004). Defective acidification of intracellular organelles results in increased secretion of cathepsin D in cancer cells. J. Biol Chem. 279: 39982-8

M. Kristian Koski, Antti M. Haapalainen, J. Kalervo Hiltunen & Tuomo Glumoff (2004). A two-domain structure of one subunit explains unique features of eukaryotic hydratase 2. J. Biol. Chem. 279: 24666-24672.

A.M. Haapalainen, M.K. Koski, Y-M. Qin, J.K. Hiltunen & T. Glumoff (2003). Binary structure of the two-domain (3R)-hydroxyacyl-CoA dehydrogenase from rat peroxisomal multifunctional enzyme type 2 at 2.38 Å resolution. Structure 11: 87-97.

 

Viimeksi päivitetty: 11.1.2019