Bykov Alexander


Senior Researcher, Adjunct Professor/Docent, D.Sc. (Tech.), Ph.D. (Phys.)
Tel: +358 294 482760
Fax: +358 8 553 2774
Room:TS264
Google Scholar
Research Gate

Education and research experience *
2017–now    Senior Researcher,  Adj.Prof./Docent, Optoelectronics and Measurement Techniques Unit, University of Oulu, Finland
2010–2016    Postdoctoral researcher, Optoelectronics and Measurement Techniques Unit, University of Oulu, Finland
2006–2010    Doctoral student in Optoelectronics and Measurement Techniques Laboratory of the University of Oulu, Finland supported by the scholarship of Graduate School in Electronics, Telecommunications and Automation (GETA, Aalto University, Helsinki, Finland).
2007–2008    Research fellow, Keldysh Institute of Applied Mathematics, Moscow, Russia
2005–2008    Doctoral student, Department of General Physics and Wave Processes, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia
1999–2005    Student, Faculty of Physics, M.V. Lomonosov Moscow State University, Moscow, Russia

Areas of expertise
Lasers, Optics of biotissues, Polarization diagnostics, Spectral imaging, Optical Coherence Tomography, Monte Carlo simulations, Diffuse imaging, Time-of-flight techniques, Printed electronics

Languages
English, German, Russian, Belarussian, Finnish

PI of the following research projects:
2018–2021    Hyperspectral Stokes polarization imaging for detection of biotissues abnormalities (Academy of Finland, research grant, 4 years)
2017    Advanced Hyperspectral Sensing Imaging System (ITEE strategic funding, 1year)
2016–2017    Hyperspectral imaging of skin chromophores and blood oxygenation (Academy of Finland, research mobility program, 2 years)
2016    Optical simulations for pulse oximeter development (industrial funding).
2015–2019    Multimodal optical methods for early diagnostics of diabetic foot ulcers (Academy of Finland, research grant, 4 years)
2015    Towards the digital optical biopsy: noninvasive diagnostics of biotissues with circularly polarized light (ITEE collaborative project, 1 year)

Selected Invited presentations
•    Photonics West (San Francisco, US). Title: “Automated optical biopsy with circularly polarized light” (28 January – 2 February 2017).
•    1st International Symposium on “Physics, Engineering and Technologies for Bio-Medicine” (Moscow, Russia). Title: “Angular momentum of light for tissue diagnostics” (20 – 23 October 2016).
•    Laser Optics (St. Petersburg, Russia). Title: “The use of angular momentum of light for characterization of biological tissues” (27 June–1 July, 2016).
•    Fundamentals of Laser Assisted Micro- and Nanotechnologies (St. Petersburg, Russia). Title: “Coherent effects of multiple scattering of light in biomedical applications” (27 June–1 July, 2016).
•    Oulu BioImaging Day (Oulu, Finland). Title: “Polarization imaging of biotissues for cancer detection” (20 April 2016).
•    Photonics Europe (Brussels, Belgium), Subconference – Biophotonics: Photonic Solutions for Better Health Care. Title: “Photonic solutions for food quality control and environmental diagnostics” (4–7 April 2016).
•    European Conferences on Biomedical Optics (Munich, Germany). Subconference – Novel Biophotonics Techniques and Applications III. Title: “Optical clearing of articular cartilage: a comparison of clearing agents” (21–25 June 2015).

Book chapters

1.    Deep Imaging in Tissue and Tissue-Like Media with Linear and Nonlinear Optics, A. Bykov, A. Doronin, I. Meglinski, “Light Propagation in Turbid Tissue-like Scattering Media”. In “Deep Tissue Imaging with Linear and Non-linear Optics”, Ed. R. Alfano, Pan Stanford Publishing, accepted for publication in 2016.


2.    Handbook of Coherent-Domain Optical Methods, A.V. Bykov, J. Kalkman, “Analysis of Doppler optical coherence tomography signals in low and high scattering media”. In “Handbook of coherent-domain optical methods: biomedical diagnostics, environmental monitoring, and material science”, Ed. V.V. Tuchin, Springer (2013).


3.    Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues, A.V. Bykov, M. Yu. Kirillin, A.V. Priezzhev, “Monte Carlo simulation of light propagation in human tissues and noninvasive glucose sensing”. In “Handbook of Optical Sensing of Glucose in Biological Fluids and Tissues”, Ed. V.V. Tuchin, Taylor & Francis (2008).

Selected publications
1.    A. Bykov, T. Hautala, M. Kinnunen, A. Popov, S. Karhula, S. Saarakkala, M.T. Nieminen, V. Tuchin, I. Meglinski, “Imaging of subchondral bone by optical coherence tomography upon optical clearing of articular cartilage”, J. Biophoton., 9(3), 270–275 (2016).
2.    J. Lauri, A. Bykov, T. Fabritius, "Quantification of cell-free layer thickness and cell distribution of blood by optical coherence tomography", J. Biomed. Opt., 21(4), 040501 (2016).
3.    M. Wrobel, A. Popov, A. Bykov, V. Tuchin, M. Jędrzejewska-Szczerska, “Nanoparticle-free tissue-mimicking phantoms with intrinsic scattering”, Biomed. Opt. Express, 7(6), 2088-2094 (2016).
4.    O. Bibikova, A. Popov, A. Bykov, A. Fales, H. Yuan, I. Skovorodkin, M. Kinnunen, S. Vainio, T. Vo-Dinh, V. Tuchin, I. Meglinski, “Plasmon-resonant gold nanostars with variable size as contrast agents for imaging applications”, IEEE J. Select. Top. Quant. Electron., 22(3), 4600808 (2016).
5.    M.S. Wrobel, A.P. Popov, A.V. Bykov, M. Kinnunen, M. Jędrzejewska-Szczerskaa, V.V. Tuchin, “Measurements of fundamental properties of human skin phantoms”, J. Biomed. Opt., 20(4), 045004, 1-10 (2015).
6.    N. Agarwal, J. Yoon, E. Garcia-Caurel, T. Novikova, J.-C. Vanel, A. Pierangelo, A. Bykov, A. Popov, I. Meglinski, R. Ossikovski, “Spatial evolution of depolarization in homogeneous turbid media within the differential Mueller matrix formalism”, Opt. Lett., 40(23), 5634-5637 (2015).
7.    M. Kinnunen, A. Bykov, J. Tuorila, T. Haapalainen, A. Karmenyan, and V. Tuchin, “Optical clearing at a cellular level”, J. Biomed. Opt., 19(7), 071409 1-8 (2014).
8.    A.P. Popov, A.V. Bykov, S. Toppari, M. Kinnunen, A.V. Priezzhev and R. Myllyla,”Glucose sensing in flowing blood and Intralipid by laser pulse Time-of-Flight and Optical Coherence Tomography techniques”, IEEE Journal of Selected Topics in Quantum Electronics, 18(4), 1335-1342, 2012.
9.    Kalkman, A.V. Bykov, G.J. Streekstra and T.G. van Leeuwen, “Multiple scattering effects in Doppler optical coherence tomography of flowing blood”, Phys. Med. Biol. 57, 1907–1917, 2012.
10.    A.V. Bykov, A.V. Priezzhev, R. Myllylä, “Visualisation of structural inhomogeneities in strongly scattering media using the method of spatially-resolved reflectometry: Monte Carlo simulation”, Quantum Electronics, 41 (6), 557 – 563 (2011).
11.    Lauri, A.V. Bykov, R. Myllylä, “Determination of suspension viscosity from the flow velocity profile by Doppler Optical Coherence Tomography”, Photonics Letters of Poland 3(2), 82-84 (2011).
12.    J. Kalkman, A.V. Bykov, D.J. Faber, T.G. van Leeuwen, "Multiple and dependent scattering effects in Doppler optical coherence tomography", Optics Express 18(4), 3883-3892 (2010).
13.    L.P. Bass, O.V. Nikolaeva, V.S. Kuznetsov, A.V. Bykov, A.V. Priezzhev,  "Parallel algorithm of the discrete ordinate method to laser impulse propagation simulation in turbid media", Nuovo Cimento C 33(1), 39-46 (2010).
14.    A.V. Bykov, A.V. Priezzhev, J. Lauri, R. Myllylä, "Doppler OCT imaging of cytoplasm shuttle flow in Physarum polycephalum", Journal of Biophotonics 2(8-9), 540-547 (2009).
15.    A.V. Bykov, A.K. Indukaev, A.V. Priezzhev, R. Myllylä, "Study of the influence of glucose on diffuse reflection of ultrashort laser pulses from a medium simulating a biological tissue",Quantum electronics 38(5), 491-496 (2008).
16.    A.V. Bykov, M.Yu. Kirillin, A.V. Priezzhev, "Monte Carlo simulation of signals from model biological tissues measured by an Optical Coherence tomography and an Optical Coherence Doppler tomograph", Optics and Spectroscopy 101(1), 33-39 (2006).
17.    A.V. Bykov, M.Yu. Kirillin, A.V. Priezzhev, "Monte Carlo simulation of an optical coherence Doppler tomograph signal: the effect of the concentration of particles in a flow on the reconstructed velocity profile", Quantum Electronics 35(2), 135-139 (2005).

Last updated: 29.11.2017