Säätelygeenit kehityksessä aiheuttavat eliöihin ulkonäköeroja: toiset on pitkulaisia, toiset tylppiä.

Kun pääosin maternaaliset geenit ovat säätäneet munan/ embryon **polaarisuuden**, alkaa **segmentaatiogeenien** osuus

Segmentaatio (jaokkeellisuus) etenee kolmessa vaiheessa

gap -geenit, joita on noin kuusi (*hunchback, Krüppel, knirps, tailless*, etc) parisääntögeenit (pair-rule), vähintään kahdeksan

segmentin napaisuus -geenit (segment polarity), yli kymmenen

Figure 22-37 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Segmentaatiogeeniluokat yhteiskuvassa

PAIR-RULE GENE (Even-skipped)

Parisääntögeenit ohjaavat joka toista vyöhykettä. Vyöhykkeitä on 14, joten jokainen parisääntögeeni koskee seitsemää, joko parillista tai paritonta

even-skipped tarkoittaa "parilliset hypätään yli"

Vyöhykkeet eivät kuitenkaan ole vielä mitenkään määriteltyjä, vaan nämä geenit niitä juuri määrittelevät

Eri parisääntögeenien toimialueet eivät ole täsmälleen päällekkäinkään

Parisääntögeenit toimivat kukin omalla vyöhykkeellään

2.7 hours after fertilization

3.5 hours after fertilization

Figure 22-40 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Parisääntögeenit *fushi tarazu* (ruskea) ja even-skipped (sinervä)

Proteiini värjätty

Ensin kaistat on sekavia mutta sitten ne tiivistyvät ja selventyvät

The seven stripes of Eve

CELL 448 geeniekspressio

CELL 448 geeniekspressio

Figure 7-56 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Figure 22-39 Molecular Biology of the Cell 5/e (© Garland Science 2008)

(pennava)

Figure 7-58 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Figure 9-44 Integration at a

promoter. Multiple sets of gene regulatory proteins can work together to influence a promoter, as they do in the *eve* stripe 2 module illustrated previously in Figure 9–42. It is not yet understood in detail how the integration of multiple inputs is achieved.

В

Figure 5 Detailed map of predictions for *even-skipped* stripe 2. The comparison between the Scanseq predictions (in red) and the consistent map (in green) shows the efficiency of individual training (panel *B*) versus training on a group of 10 (panel *A*). In both cases, periodic sequences (ATCCC)_n generated very high statistical scores.

Genome Research, March 2002

POSITION	SITE	REFINED MAP	SCORE	CONSISTENT MAP
5-21c	Giant		10.46	ATTATTGGGTTATATTG
10-18	Krüppel	TAACCCAAT	5.94	TAACCCAAT
143-151	Bicoid	GTTAATCCG	7.93	GTTAATCCG
145-153	Krüppel	TAATCCGTT	7.11	TAATCCGTT
164-172c	Bicoid	AATAATCTC	5.06	and the second second second second
167-183	Giant	ATTATTAGTCAATTGCA	9.11	ATTATTAGTCAATTGCA
229-245	Giant	TTTATTGCAGCATCTTG	9.36	TTTATTGCAGCATCTTG
314-322	Bicoid	TATAATCGC	4.70	
331-339c	Krüppel	CAACCCGGT	5.47	CAACCCGGT
407-415c	Bicoid	GCTAATCCC	8.09	GCTAATCCC
472-480	Krüppel		5.90	CAATCCCTT
500-507c	Hunchback	TTTTTATG	8.58	TTTTTATG
502-518c	Giant	ATTATTATGTGTTTTTA	9.32	ATTATTATGTGTTTTTA
526-534c	Krüppel		6.59	TAATCCCTT
528-536c	Bicoid	CCTAATCCC	8.17	CCTAATCCC
576-584c	Krüppel		5.94	TAACCCAGT
585-592	Hunchback	TTTTTTTG	8.77	TITTITG
618-626	Bicoid		5.71	CTTAACCCG
620-628	Krüppel	TAACCCGTT	7.55	TAACCCGTT
668-675	Hunchback	TTTTTTTG	8.77	TTTTTTTG

Table 1. Comparison between the Refined and Consistent Maps

Distribution of sites shown for the *even-skipped* strip 2 region. Most of the experimentally verified binding sites shown are shared between the two maps (hits, shown in red). Two known Bicoid sites false-negatives in blue) are missing in the consistent map due to their low positional weight matrix score. In vitro binding assays support the suggestion of low affinity for these two Bicoid sites (Wilson et al. 1996). High-scoring matches (false-positives) to Bicoid, Krüppel, and Giant are shown in green.

Figure 22-38 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Kun pääosin maternaaliset geenit ovat säätäneet munan/ embryon **polaarisuuden**, alkaa **segmentaatiogeenien** osuus

Segmentaatio (jaokkeellisuus) etenee kolmessa vaiheessa

gap -geenit, joita on noin kuusi (hunchback, Krüppel, knirps, tailless) parisääntögeenit (pair-rule), vähintään kahdeksan

segmentin napaisuus -geenit (segment polarity), yli kymmenen

Figure 22-37 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Segmentaatiogeeniluokat ryhmäkuvassa

SEGMENT-POLARITY GENE (Gooseberry)

Segmentin napaisuus – geenit säätelevät jokaisessa segmentissä ja solussa erikseen, mitkä solut ovat sen segmentin etupäähän suuntautuvia, mitkä taaksepäin suuntautuvia

*karviainen -*geenin vika näyttää aiheuttavan sen, että jokaisessa segmentissä on vain niitä karvaisia etuosia ja vähäkarvainen takaosa puuttuu

Segmentin napaisuus –geenien toimivyöhykkeet ovat kapeita

adult

Figure 22-41 Molecular Biology of the Cell 5/e (© Garland Science 2008)

engrailed CELL 1340, siipi 1352

Figure 2 Conservation and change in a developmental mechanism. In all arthropods studied, segments are generated through a cascade of gene interactions, an important component of which is the production of segmental stripes of expression of the segment polarity gene engrailed. Starting from an arthropod stem species of unknown embryonic segment number and unknown adult morphology, numerous divergences have occurred in the following: (1) the number of engrailed stripes/segments (compare centipedes with each other and with insects); (2) the way in which stripes of expression are generated in development (roughly simultaneously in flies but in anteroposterior sequence of varying duration in the others); and (3) segment identities, which are controlled separately by Hox genes. The source of information for insects is from refs 24 and 25. The centipede engrailed images were based, at the time of writing, on extrapolation from the known segmental expression patterns of this gene in other arthropods. Recent work has confirmed that such extrapolation is justified (C. Hughes, T. Kaufman and C. Kettle, unpublished data).

Nature 14 Feb 2002

pikkuaivo cerebellum

normal mouse

mouse lacking Engrailed-1

mouse rescued by *Drosophila* Engrailed

Figure 22-2a Molecular Biology of the Cell 5/e (© Garland Science 2008)

engrailed

Figure 22-38 Molecular Biology of the Cell 5/e (© Garland Science 2008)

Day 0	Day 1	Day 5	Day 10
Embryo develops, segmentation	Hatching, a larva with 14 segments	Segmentation preserved in imaginal discs.	Adult fly, 2 mm
starts	appears	TTT	Carlos los
\bigcirc	annib		A PARTY
Fertilized eaa	Pupat and o	tion rowth Meta	morphosis

A normal adult fruit fly, enlarged 40 times. To the right the fly's ill-fated cousin, a mutant with 4 wings but no balance organs. This now famous little "monster" was a starting point for **Lewis** in his research on homeotic transformations.