Feasibility tests for future air mobility

Feasibility tests for future air mobility

Ambitious project plans with tight schedules have faced drastic delays due to the pandemic, which has put  a halt on mobility and has limited access to research premises and equipment.  One  of  the  multipartner  projects  forced to redraft  its  research steps is the EU-funded ICT project 5G!Drones. Committed to trial selected use cases for the most prominent unmanned aerial vehicle (UAV) applications, the project relies on the complementary  expertise  from  20  organisations  around  Europe, both universities and companies.

“The feasibility tests provided us with much insight on which portions of the trials can be safely executed remotely and what kinds of experts are required  on-site,”  says  Dr.  Jussi  Haapola from  the  University  of  Oulu  who  co-ordinates  the  project.  “It  was  also  relieving  to  note  that  with  appropriate  planning  both on-site and off-site collaboration can be managed, even though the pandemic situation brings forth uncertainty.” 

The goals of the feasibility tests included integration, legislative, network coverage and service level, and exact trial site identification aspects. With regards to integration, the drone operator  had  its  mission  software  installed  at  a  5G  Test  Network  (5GTN) edge server in Oulu and operated the mission remotely  from  Estonia.  The  5G  quality-of-service  and  3D  mapping  missions were uploaded to the drone and managed realtime using  5G  cellular  connectivity.  A  drone  carried  a  5G  cellular  handset for the 5G quality-of-service measurements and de-livered the information to the drone operator in real time.  Legislative aspects, on the other hand, included obtaining permits to fly the drones equipped with cellular devices, mission planning and all relevant documentation for safe execution of the feasibility tests.  


Furthermore, network coverage, service  level  and  exact  trial  site identification aspects included testing of the components required  for  missions  as  well  as  mapping  the  areas  around  5GTN,  at  various  elevations,  for  identification  of  5G  signal  quality and performance.


“The upcoming trials themselves will involve the validation of both 5G and UAV key performance indicators (KPIs) - 5G being  able  to  fulfil  its  generic  KPIs  and  UAV  specific  ones,  and  UAV  vertical  sector  being  able  to  fulfil  its  use  cases  KPIs  by  exploiting 5G features,” Haapola says.
5G  and  beyond  5G  cellular  communications  solutions  take  drones  one  step  further  towards  autonomy  by  providing  reliable  beyond  visual  line-of-sight  (BVLoS)  connectivity  for  extended  drone  operations.  Reliable  remote  operations  and  management  are  key  requirements  in  enabling  urban  air  mobility in smart cities.

“The use of drone services at the network edge to operate and manage missions is a significant milestone paving the way to next breakthroughs in service migration based on drone mobility,”  Haapola  says.  

“Edge  deployments  minimise  the  com-mand  and  control  delay  between  drones  and  their  operators  and  provide  crucial  data  offloading  capabilities  for  a  number  of  rea-time,  highbandwidth  consuming  solutions  like  highquality video streaming, lidar, 3D-mapping, and so forth.”

The integration of drones in smart cities involves addressing many of the challenges required for U-space advanced or full services.

“The UAVs need to be able to communicate not only with one another, but with the unmanned aerial systems traffic management (UTM), the drone operator, the city urban air mobility  infrastructure,  the  service  provider,  and  the  customer,”  Haapola  says.  

“The  drone  missions  need  to  secure  a  certain  service  level  from  mobile  operators  throughout  the  mission  requiring  an  intricate  interplay  with  communications,  service  virtualisation  and  migration,  advanced  data  processing,  and  automated flow of information between multiple actors.”  

The  autonomy  of  drones,  on  the  other  hand,  is  a  long-term  goal,  closely  aligned  with  U-space  development  targeting  2035.  Currently,  especially  professionally  operated  drones  Verticals & Business support  many  automated  operations,  including  completely  automated missions. However, there always exists a drone operator supervising the missions and an on-site safety pilot who can take over in situations the drone is not capable of handling. Other automated features include, for example, obstacle and collision avoidance, and return-to-home features.  


Drone  swarms,  which  are  gaining  a  lot  of  interest,  are  very  useful  in  search  and  rescue  operations  where  they  can  reliably  cover  large  distances  in  a  short  amount  of  time.  Control of drone swarms require wireless mesh connectivity between drones,  collaborative  localisation  schemes,  swarming  management,  as  well  as  interfacing  of  swarms  with  other  actors,  including  U-space.  Other  use  cases  include  large  area  3D  or  lidarmapping  for  agricultural  purposes,  forest  mapping,  or  even  cave  system  mapping.  For  example,  3GPP  is  currently  working on enhanced cellular V2X standardisation that could be  a  good  starting  point  for  all cellular  swarm  management.  This  kind  of  required  feature  set  probably  co-aligns  with  U-space, U3 - advanced services targeting 2027.  


In  the  meanwhile,  researchers  tackle  challenges  in  carrying  out  validation  activities,  from  day  to  day.  Yet,  COVID-19  has  brought attention to the capabilities of UAVs in somewhat unexpected ways. “The pandemic situation has also shown the potential of UAV applications in remote parcel delivery and remote safety surveillance, among other things,” Haapola says.

Check updated news about the project here.

More 5G / 6G related research from 6G Waves magazine (pdf)

Last updated: 9.12.2020