Tekoäly
5 op, Lukuvuosi 2020-2021, 521495A
Kenelle?
Koulutuksen kuvaus
After completing the course, students
- know the basic search strategies that can be applied in problem solving and optimization.
- understand how search-based decisions are made in game-like competitive applications.
- know the basic principles of probabilistic reasoning in artificial intelligence systems.
- know how rational decision making under uncertainty can be formulated using utility theory.
- understand the fundamentals of machine learning and how some of the established methods can be applied to problems in AI.
- are familiar with advanced AI applications of perception and robotics and how probabilistic inference and machine learning can be used in these settings.
In the course projects, students get some experience in programming and using search methods.
intelligent agent types, uninformed search methods, informed (heuristic) search, local search, constraint satisfaction problems, adversarial search, uncertainty handling, probabilistic reasoning, utility, machine learning, decision networks, Markov decision process, reinforcement learning, applications
Lectures 28 h / Group work (programming projects) 42 h / Self-study 65 h
Completion of the course "521160P Introduction to Artificial Intelligence" (lectured in Finnish) is recommended, but is not a prerequisite. It is also recommended that a student has completed studies related to probability and statistics (e.g. course "031021P Probability and Mathematical Statistics") and Python programming (e.g. course "521141P Elementary Programming").
The course is an independent entity and does not require additional studies carried out at the same time.
The course is based on the book Stuart Russell, Peter Norvig (2010, global edition 2016): Artificial Intelligence: A Modern Approach (3rd Edition), Chapters 1-6, 13-18, 20-21, partly 24-25.
The course utilizes materials of an introductory course on artificial intelligence taught at UC Berkeley (http://ai.berkeley.edu).
The assessment of the course is based on the final exam. Both the final exam and the course projects must be passed. Well-done course projects can increase the grade by one unit.
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.
The course does not contain working life cooperation.
The tuition is implemented as web-based teaching. Moodle environment is used in the course.
Due to Covid-19 pandemic, teaching in Spring 2021 will be implemented remotely. Course work space can be found from University of Oulu Moodle platform.
Moodle page in Spring 2021 will be https://moodle.oulu.fi/course/view.php?id=3211, where details of implementation will be provided. The page will be available from December 21, 2020.
Online lectures will be given with Zoom and link for them will be provided in Moodle.
The primary target group is the students of the Computer Science and Engineering specializing in Artificial Intelligence.
Course work space can be found from University of Oulu Moodle platform moodle.oulu.fi.
Moodle page in Spring 2021 will be https://moodle.oulu.fi/course/view.php?id=3211
Lisätiedot ja yhteydenotot
study.itee@oulu.fi