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Special functions

» Geometry of numbers



Irrationality and transcendence

» Irrational numbers C \ Q:

Complex numbers that are not rational numbers

» Algebraic numbers A:
Complex numbers that are roots of some polynomials with

rational coefficients.

» Transcendental numbers C\ A:

Complex numbers that are not algebraic numbers.



Classical irrational numbers
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Irrational numbers
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Classical numbers whose irrationality is unknown
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Fibology

Let F, denote the Fibonacci numbers: Fg =0, F =1,
Fn+2:Fn+1+Fn-
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Classical numbers/Transcendence/linear independence

> e is transcendental.

» 7 is transcendental.

v

e® is transcendental, if a € A*.
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> ™ is transcendental.

Hermite: Let m € {0,1,2,...}, then

dimg{Qe® +--- + Qe™} = m+ 1. (10)



Zeta function

Zeta function — the meromorphic continuation of the series
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Classical numbers/linear independence

Apéry, Rivoal, Ball, Zudilin:

dimg{Q + QC(3) + Q¢(5) + ... + Q¢(2m + 1)}

=2, m=1;
- 2 log(2m + 1)'
— 3 1+log2
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Irrationality measure

By an irrationality measure (or exponent) of a given number a € R

we mean the supremum p(«) of such numbers 11 > 2 that

M 1
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a N < N (18)

for infinitely many M/N € Q.



An example of our work

Let I denote an imaginary quadratic field or the field Q of rational
numbers and Zj its ring of intergers.

We show:

m 1
|Bo + e+ pre® + - + Bme”| > s b= b hm,

valid for all B = (Bo,...,8m)" € ZM\ {0}, h; = max{1,|B|} with

(h)_(4+7m) log(m + 1)
VT T oglogh

log h > m?(41log(m + 1) + 10)e’"2(81 log(m+1)+20) (1)




Continued fractions
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Simple continued fraction
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p-adic valuation

For any p of the set
{oc}UP, P={pecZ"|p isa prime}

the notation | |0 = | | will be used for the usual absolute value of
C =Cx and | |, for the p-adic valuation of the p-adic field Cp,
the completion of the algebraic closure of the completion of Q,

defined on Q by
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