Opasraportti

FBMM - Courses in English for exchange students, Biochemistry (2020 - 2021)

University’s new study guide for academic year 2020-2021 is published at https://opas.peppi.oulu.fi.

The study guide includes information on degrees, curriculums, courses and course timetables. Course registrations are still done in Oodi.

If you have questions on information in the study guide, please contact the study field's Academic Affairs Service Team https://www.oulu.fi/forstudents/faculty-study-affairs.

Courses in English for exchange students at the Faculty of Biochemistry and Molecular Medicine

This Course Catalogue lists Courses (tab above) taught in English that are available for exchange students at the Faculty of Biochemistry and Molecular Medicine during academic year 2020-21.

Individual course codes include information on the level of course.
xxxxxP, xxxxxY = basic, introductory level courses
xxxxxA = for 2-3 year students, Bachelor level courses
xxxxxS = for 4-5 year students, Master level courses

When preparing your study plan please use the information provided under the Courses tab in this catalogue. Read carefully the information of each course you wish to take: language of instruction, target group, course content, timing (AUTUMN OR SPRING TERM), preceding studies, additional information containing LOCATION OF INSTRUCTION (Kontinkangas campus / Linnanmaa campus).

The first year and the autumn term of the second year biochemistry courses (lecture parts) of the studies for BSc Degree will be taught at the LINNANMAA CAMPUS, with the remaining education and all laboratory parts provided at the KONTINKANGAS CAMPUS.

Please notice that in some courses lectures will be given in Finnish but laboratory part is possible to take in English (Biochemical methodologies I, Molecular biology I, Metabolism I).

Please notice that in some courses the number of students is restricted (see "Additonal data in the course cataloque FBMM...".). In these courses degree students have the privilege and possibility for exchange students to participate will be decided only some weeks before a course will start.

For information on the exchange application process please see www.oulu.fi/university/studentexchange. All exchange applicants must submit their exchange application through SoleMOVE by the deadline given, proposed study plan is attached to the on-line application.

Accepted exchange students are required to register to all courses. Course registration takes place once you have received your University of Oulu login information, this takes place close to the start of your exchange period. When registering you will be able to find detailed information on teaching and schedule under Instruction tab.

In order to participate courses You should have enough background knowledge (especially for laboratory parts).
If you are going to have an internship period in a research laboratory, please contact directly the group leaders in the faculty and ask for a position (http://www.oulu.fi/fbmm/). You will be given 1.5 ECTS credits for each full week (40 hr) in the laboratory (see 746606S Project work in biochemistry). For example, 10 full weeks in a research work gives you 15 ECTS.

Teaching periods for 2020-21

Autumn term 2020
Period 1: Sept 1 - Oct 25, 2020
Period 2: Oct 26 – Dec 18, 2020

Spring term 2021
Period 3: Jan 5 – March 14, 2021
Period 4: March 15 – May 9, 2021

For arrival and orientation dates see www.oulu.fi/university/studentexchange/academic-calender

Any questions on courses at the Faculty of Biochemistry and Molecular Medicine should be addressed to:

Jari Heikkinen
study.fbmm(at)oulu.fi

Further information on application process and services for incoming exchange students: www.oulu.fi/university/studentexchange or international.office(at)oulu.fi

Tutkintorakenteisiin kuulumattomat opintokokonaisuudet ja -jaksot

740381A: Biochemical and biomedical innovation, 2 - 5 op
740151P: Biochemical methodologies I, 10 op
747616S: Biochemical methodologies II, 10 op
747617S: Biochemistry and biotechnology of protein folding, 5 op
740148P: Biomolecules, 5 op
740147P: Biomolecules for Bioscientists, 8 op
740362A: Cellular Biology, 6 op
740366A: Cellular Communication, 6 op
743663S: Developmental biology, stem cells and tissue engineering, 5 op
743662S: Extracellular matrix, 5 op
743664S: Hypoxia response pathway - molecular mechanisms and medical applications, 5 op
747613S: In silico methodologies in biochemistry and molecular medicine, 5 op
744634S: Introduction to big data analysis and bioinformatics models, 5 op
740384A: Introduction to immunology, 5 op
744637S: Introduction to microfluidics and lab-on-a-chip devices, 5 - 7 op
747615S: Introduction to structure-based drug discovery, 5 op
747614S: Macromolecular X-ray crystallography, 5 op
740146P: Metabolism I, 6 op
740363A: Microbiology, 6 op
740374A: Microbiology, 3 op
740361A: Molecular Biology I, 8 op
Opintojaksojen kuvaukset

Tutkintorakenteisiin kuulumattomien opintokokonaisuuksien ja -jaksojen kuvaukset

740381A: Biochemical and biomedical innovation, 2 - 5 op

Voimassaolo: 01.08.2016 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuyksikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

ECTS Credits:
2-5 credits
Language of instruction:
English
Timing:
Can be taken by any BSc / MSc / PhD student
Learning outcomes:
The aim of the course is to get student familiar with:
- the core skill set required to recognize opportunities/needs and how to validate creative ideas
- the core skill set of searching patent databases
- the concepts of intellectual property rights (IPR)
- the concepts of how to pitch an idea
Contents:
This module covers basic aspects of the key skills required for successful innovation in the field of biochemistry and molecular medicine. Concepts relating to how to recognize opportunities, how to recognize what is needed in the field, creative thinking, validating ideas and how to pitch ideas are covered as well as an introduction to intellectual property rights and patent searching. In addition to workshops/seminars (19 hours) the 5 ECTS version of course requires submission of an invention disclosure/proof of concept funding or submission of an entry to the biochemistry and molecular medicine innovation award.
Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
19 hours of lectures/workshops
Target group:
Major students
Prerequisites and co-requisites:
None
Recommended optional programme components:

-

Recommended or required reading:

-

Assessment methods and criteria:
For 2 ECTS participation in at least 70% of seminars/workshops. For 5 ECTS participation in at least 70% of the seminars/workshops plus submission of an invention disclosure / proof of concept funding application to the university (PhD students) or submission of an entry to the biochemistry and molecular medicine innovation award (BSc and MSc students).

Grading:
Pass/fail

Person responsible:
Lloyd Ruddock

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus

740151P: Biochemical methodologies I, 10 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Kaija Autio
Opintokohteen kielet: Finnish

Leikkaavuudet:
ay740153P Basic biochemistry 2: Methods (OPEN UNI) 2.0 op
ay740144P Biochemical Methodologies I (OPEN UNI) 8.0 op
740144P Biochemical Methodologies I 8.0 op

Voidaan suorittaa useasti: Kyllä

ECTS Credits:
10 credits

Language of instruction:
Lectures: Finnish, laboratory practicals: English

Timing:
B.Sc. yr1 autumn (lectures), yr1 spring (laboratory practicals)

Learning outcomes:
Upon successful completion students are able to:
- use basic methods used in biochemical research laboratory
- Use laboratory equipment and work safely
- Prepare solutions used in the lab
- document and present experiments and results in the laboratory and other works

Contents:
This module covers the basic methodologies used in practical biochemistry. The following topics will be addressed: safety in the laboratory, qualitative and quantitative observations, the calculations of concentrations and dilution factors (includes a workshop), pipette cleaning and calibration, identification and quantification of biological molecules, principals and practice of the use of centrifuges, spectrophotometry, SDS-PAGE, agarose gel electrophoresis, thin-layer and paper chromatography, basics of protein purification, extraction of chromosomal DNA from bacteria, mini-prep extraction of plasmid DNA, extraction of RNA from mammalian tissue, sterile technique, basic microbial growth, dialysis, filtration and pH measurement. In addition transferable skills like word processing (Microsoft Word) and spreadsheet (Microsoft Excel), drawing of curve charts, the basics of oral presentation, ethics in scientific research and good scientific practice are involved.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
34 h lectures and exercises, 120 h lab. Laboratory work is compulsory. It is possible to complete lecture part only (3.5 ECTS).

Target group:
Major students

Prerequisites and co-requisites:
Biomolecules, Biomolecules for Biochemists tai Biomolecules for Bioscientists

Recommended optional programme components:
-

Recommended or required reading:
You can check the availability of the course books via [this link](#)

Assessment methods and criteria:
Continuous assessment (home works, lab reports), final exam

Grading:
1-5/fail

Person responsible:
Kaija Autio

Working life cooperation:
No

Other information:
Location of instruction: lectures (in Finnish) at Linnanmaa campus, laboratory practicals at Kontinkangas campus

747616S: Biochemical methodologies II, 10 op

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuyksikkö: Faculty of Biochemistry and Molecular Medicine

Arvostelu: 1 - 5, pass, fail

Opettajat: Ulrich Bergmann

Opintokohteen kielet: English

Leikkaavuudet:
747608S Biochemical methodologies II 8.0 op

ECTS Credits:
10 credits

Language of instruction:
English

Timing:
MSc 1st spring

Learning outcomes:
Upon successful completion students are able to:
- describe the theoretical basis of the main biochemical analysis methods for proteins
- use the different instruments
- describe the potential of the different analytical techniques and develop strategies for addressing specific questions in protein & proteome-analysis
- integrate data from multiple sources and evaluate it critically

Contents:
During this module students will analyze their own protein samples. The course will cover principles and practical applications of some of the more advanced methodologies used in practical biochemistry, including chromatography, fluorescence spectroscopy, stopped flow analysis of enzymatic reactions, circular dichroism, surface plasmon resonance, micro-calorimetry, mass spectrometry, and proteomics based on 2D electrophoresis and LCMS. For assessment each student has to write four research reports in the style of a scientific publication. Attendance is compulsory. The course has limited enrollment for 22 students.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
-

120 h lab., including pre-lab lectures plus exercises. For laboratory period a personal time table will be created for every student. Each student will spend about 1 full day and 5 half day’s slots in the lab, plus one week proteomics lab with workload from 2h to full day.

Target group:
Obligatory for M.Sc. in Protein Science and biotechnology

Prerequisites and co-requisites:
Protein production and analysis I (744635S) and Protein production and analysis II (744636S) OR Protein chemistry I (740364A)

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Four reports written in style of a scientific publication
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Ulrich Bergmann

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus

747617S: Biochemistry and biotechnology of protein folding, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettaja: Lloyd Ruddock
Opintokohde kielet: English
Leikkaavuudet:

ECTS Credits:
5 credits

Language of instruction:
English

Timing:
M.Sc., yr1-yr2 autumn

Learning outcomes:
Upon successful completion students are able to:
- present and discuss issues presented in the primary literature on a variety of aspects of protein folding.
- display an understanding of the theoretical and practical implications of in vivo, in vitro and in silico studies on protein folding and the integration of results.
- demonstrate the ability to interpret a wide range of data from multiple sources, to critically evaluate and contextualize this data and to solve problems relating to interpretation.

Contents:
This module provides an introduction to protein folding in vivo and in vitro. Topics covered include protein folding and quality control in the endoplasmic reticulum, mechanisms regulating protein folding including the unfolded protein response, the catalysis of native disulphide bond formation, the biochemistry of molecular chaperones and the role of molecular chaperones and protein folding catalysts in other cellular events. The application of this knowledge to biotechnology will also be discussed.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
16 contact hours of lectures and seminars

Target group:
M.Sc. in Protein science and biotechnology and exchange students

Prerequisites and co-requisites:
Protein chemistry I (740364A) or Protein production and analysis (747618S) or equivalent

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
The module is assessed based on reports prepared on individual topics and on participation in the seminars. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Lloyd Ruddock

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas

740148P: Biomolecules, 5 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: English

Leikkaavuudet:
ay740157P Basic biochemistry 1: Biomolecules (OPEN UNI) 4.0 op
ay740152P Basic biochemistry 1: Biomolecules (OPEN UNI) 5.0 op
740143P Biomolecules for Biochemists 8.0 op
740147P Biomolecules for Bioscientists 8.0 op

ECTS Credits:
5 credits

Language of instruction:
English and Finnish

Timing:
autumn

Learning outcomes:
Upon successful completion students are able to:
- tell the composition, structure and function of the major groups of biomolecules in cells; nucleic acids, proteins, carbohydrates and lipids and describe the forces that modulate their function.
- apply information in the right context and evaluate it critically

Contents:
This module provides an overview of biochemistry, outlining the forces involved in biomolecule structure and the chemical structures and properties of polynucleic acids, proteins, carbohydrates and lipids. There will also be an introduction to prebiotic evolution and writing of a synopsis on this subject. The module is arranged into lectures or workshops, and writing the synopsis. All of the course materials are in English, but both English and Finnish are used in teaching. Both a final examination and continuous assessment will count towards the final mark.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
30 h lectures, plus exercises

Target group:
Minor subject students

Prerequisites and co-requisites:
-

Recommended optional programme components:
Recommended or required reading:

Assessment methods and criteria:
Continuous assessment, final examination

Grading:
1-5/fail

Person responsible:
Tuomo Glumoff

Working life cooperation:
No

Other information:
This module is the same as Biomolecules for Biochemists except that it contains no practical component. Location of instruction: Linnanmaa campus

740147P: Biomolecules for Bioscientists, 8 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: English

Leikkaavuudet:
ay740157P Basic biochemistry 1: Biomolecules (OPEN UNI) 4.0 op
ay740152P Basic biochemistry 1: Biomolecules (OPEN UNI) 5.0 op
740143P Biomolecules for Biochemists 8.0 op
740148P Biomolecules 5.0 op

ECTS Credits:
8 credits

Language of instruction:
English and Finnish

Timing:
Course starts in autumn term and will continue to spring term

Learning outcomes:
Upon successful completion students are able to:
- tell the composition, structure and function of the major groups of biomolecules in cells; nucleic acids, proteins, carbohydrates and lipids and describe the forces that modulate their function.
- apply information in the right context and evaluate it critically
- In addition, students on the 8op versions are able to work in the biochemical laboratory, are able to solve calculations and problems and are able to interpret the scientific data they generate

Contents:
This module provides an overview of biochemistry, outlining the forces involved in biomolecule structure and the chemical structures and properties of polynucleic acids, proteins, carbohydrates and lipids. There will also be an introduction to prebiotic evolution and writing of a synopsis on this subject. The module is arranged into lectures or workshops, computing and other exercises and laboratory work. All of the course materials are in English, but both English and Finnish are used in teaching. Both a final examination and continuous assessment will count towards the final mark and attendance of some parts is compulsory.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
30 h lectures, 32 h lab., plus exercises

Target group:
Minor subject students

Prerequisites and co-requisites:
Recommended optional programme components:

-

Recommended or required reading:
Mathews, van Holde & Ahern: Biochemistry, (3rd edition), published by Addison Wesley Longman, Inc. or equivalent

Assessment methods and criteria:
Continuous assessment, final examination
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Tuomo Glumoff

Working life cooperation:
No

Other information:
This module is the same as Biomolecules for Biochemists. Location of instruction: Lectures: Linnanmaa, laboratory: Kontinkangas

740362A: Cellular Biology, 6 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Henrika Honkanen

Leikkaavuudet:
740323A Cell culture course 3.0 op
744610S Advanced course for cell biology 3.0 op

ECTS Credits:
6 credits

Language of instruction:
Lectures: Finnish and English Laboratory Practicals: English

Timing:
B.Sc. yr2 spring

Learning outcomes:
Upon successful completion students are able to:
- interpret and analyze the general molecular mechanisms of cell functions
- plan how such molecular mechanisms can be studied in vitro and in vivo
- track the molecular defects that might be responsible for abnormal functioning of cells e.g. in disease states

Contents:
The aim of the course is to deepen the knowledge about where in the cell different biochemical reactions take place, how the molecules are trafficked between organelles, and how these phenomena can be studied in cultured cells. The course aims to address specifically the specific functions of the organelles in an eukaryotic cell, transport of material into and out of the cells, and how the cytoskeleton serves many of these functions. The course contains practical lab work, during which the students learn basic skills on cell culture and fluorescence microscopy. The practical course is compulsory for the Biochemistry students.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
24 h lectures, 40 h lab

Target group:
Major students

Prerequisites and co-requisites:
Cell biology, Biomolecules for biochemists, Biochemical methodologies I

Recommended optional programme components:

-

Recommended or required reading:
Assessment methods and criteria:
Lab reports, final exam
Read more about assessment criteria at the University of Oulu webpage.
Grading:
1-5/fail
Person responsible:
Henrika Honkanen
Working life cooperation:
No
Other information:
Location of instruction: Kontinkangas

740366A: Cellular Communication, 6 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Thomas Kietzmann
Opintokohteen kielet: English

ECTS Credits:
6 credits
Language of instruction:
English
Timing:
B.Sc. yr3 autumn
Learning outcomes:
Upon successful completion students are able to:
- name, list and discuss the major intra- and intercellular signalling pathways
- present, describe and discuss characteristic features of signalling pathways
- describe how to study, examine and analyse signalling pathways

Contents:
The course covers basic aspects of the main cellular signalling pathways. The main emphasis will be made on the signalling pathways involved in the action of various hormones, growth factors, lipid-derived signaling molecules, and their cell surface and intracellular receptors, intracellular second messengers and protein kinases and phosphatases. The course involves a 40 h practical course (+written reports) in which cultured cells are used as targets to visualize certain hormone or drug-induced signaling molecules, their interactions, and how these regulate e.g. normal cell growth and/or cell death in culture. Attendance at practical course is obligatory.

Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
20 h lectures, 32 h practicals
Target group:
Major students
Prerequisites and co-requisites:
Cellular biology
Recommended optional programme components:
-
Recommended or required reading:
-
Assessment methods and criteria:
Laboratory practicals, final exam
Read more about assessment criteria at the University of Oulu webpage.
Grading:
1-5/fail
Person responsible:
Thomas Kietzmann
Working life cooperation:
No
Other information:
743663S: Developmental biology, stem cells and tissue engineering, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Vainio Seppo, Aleksandra Rak-Raszewska
Opintokohteen kielet: English

ECTS Credits: 5 credits
Language of instruction: English
Timing: MSc yr1-2 spring
Learning outcomes: Upon completion of the course the student have obtained an overview of how the development of tissues and organs is regulated and executed via developmental gene regulation and developmental programs behind morphogenesis. Students will become familiar with the classical and modern experimental embryological techniques during lectures and also with hands-on laboratory work.
Contents: The course provides knowledge on use of various model organisms, basic information about embryology and early developmental mechanisms and signaling molecules. Introduces detailed description of development of few organ systems and provides knowledge about classical and novel study techniques to discover new developmental ques. The course has limited enrollment for 16 students. Lecture part (2 credits) is open for all students.
Mode of delivery: Face to face teaching
Learning activities and teaching methods: 16 h lectures and seminars, 3 assessments and 25 h laboratory work. Lectures (100% attendance), assessments and laboratory work are compulsory.
Target group: MSc / Molecular medicine
Prerequisites and co-requisites: -
Recommended optional programme components: -
Recommended or required reading: -
Assessment methods and criteria: Continuous assessment, no exam
Grading: 1-5/fail
Person responsible: Seppo Vainio and Aleksandra Rak-Raszewska
Working life cooperation: No
Other information: Location of instruction: Kontinkangas

743662S: Extracellular matrix, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
ECTS Credits: 5 credits
Language of instruction: English
Timing: MSc yr1-2 autumn
Learning outcomes:
Upon successful completion students are able to:
- Describe the structure and key components of the mammalian ECM
- Describe the main significance of the ECM for cell and tissue function
- Outline the roles of ECM in inherited connective tissue disorders and in common other diseases
- Identify connective tissue and some of its components in tissue samples using various staining protocols (laboratory work).
- Summarize background knowledge of ECM sufficiently to feel comfortable in undertaking a postgraduate research project in the ECM field
Contents:
Besides including basic background knowledge on the ECM, the course will highlight the ECM-related topics that are currently being investigated at the Faculty of Biochemistry and Molecular Medicine. Orientation to mouse and cell models of ECM molecules will form a crucial part in teaching.
Contents of lectures in 2019: Collagens and collagen-related hereditary diseases; Proteoglycans and glycoproteins; Basement membranes; Pericellular matrix of the vasculature; Integrins and other ECM receptors; Matricellular proteins; Elastic fibres; ECM plasticity and remodeling; ECM degrading enzymes; Stem cell microenvironments; ECM in fibrosis and cancer. The course has limited enrollment for 28 students.
Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
23 h lectures, 6 h seminars, and 36 h laboratory work. Seminars and laboratory work are compulsory
Target group:
MSc / Molecular medicine
Prerequisites and co-requisites:
-
Recommended optional programme components:
-
Recommended or required reading:
http://cshperspectives.cshlp.org/site/misc/extracellular_matrix_biology.xhtml
Assessment methods and criteria:
Continuous assessment, final exam
Grading:
1-5/fail
Person responsible:
Ritva Heljasvaara
Working life cooperation:
No
Other information:
Location of instruction: Kontinkangas

743664S: Hypoxia response pathway - molecular mechanisms and medical applications, 5 op
Voimassaolo: 01.03.2016 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Faculty of Biochemistry and Molecular Medicine
ECTS Credits: 5 credits
Language of instruction: English
Timing: MSc yr1-2 autumn
Learning outcomes: Upon completion the student should be able to:
- Present and discuss the basic mechanisms involved in regulation of oxygen homeostasis on cellular, tissue, organ/organism level
- To integrate/adapt regulation of oxygen homeostasis under normal physiological conditions to pathological situations
- Display an understanding on how the basic biochemical knowledge translates from the bench to the bedside
- Understand the meaning of translational research

Contents:
General physiology of hypoxia, Hypoxia response in bacteria, Hypoxia response in yeast, Hypoxia-inducible factors (HIFs), Regulation of HIFs on the transcriptional, translational and post-translational level, Conditions related to hypoxia response (erythropoiesis and iron regulation, angiogenesis and metabolism), Experimental models to study hypoxia, HIFs and HIF prolyl 4-hydroxylases as drug targets. Lecture topics may vary.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
14 h lectures, 22 h seminars (obligatory) and 4 h round table discussions (obligatory).

Target group:
MSc / Molecular medicine

Prerequisites and co-requisites:

Recommended optional programme components:

Recommended or required reading:
Lecture notes, student seminar presentations, research articles.

Assessment methods and criteria:
Seminars and exam. 1/5 of the grade is based on the seminar presentation and opponent work and 4/5 on the exam in which the student must display an understanding on how the basic biochemical knowledge translates from the bench to the bedside.

Grading:
1-5/fail

Person responsible:
Peppi Karppinen

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas

747613S: In silico methodologies in biochemistry and molecular medicine, 5 op

Voimassaolo: 01.08.2016 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: André Juffer
Opintokohteen kielet: English
Leikkaavuudet:
ECTS Credits:
5 credits
Language of instruction:
English
Timing:
MSc yr1-2 autumn
Learning outcomes:
After a successful completion of this course, students will have
- Obtained an appreciation of the quantitative aspects of analyzing scientific (big) data either stored in large
data databases or generated by sophisticated modeling and simulation tools.
- Gained a basic understanding of applying various bioinformatics methods to large biological data sets.
- Realized the potential of scientific computing for the study of the behavior of biological systems, in particular large biological macromolecules.

Contents:
This course aims at emphasizing the quantitative aspects of scientific research. For this, the course contains three
intertwined components: (i) searching and evaluating nucleic acid and protein structural data from various
databases, (ii) use of scientific computing to study structural, dynamical, functional and thermodynamical
properties of proteins and membranes and their interaction with other molecules, and (iii) using biocomputing
tools to access and analyze large and high-throughput data produced and accessible through biochemical and
computational experiments.
Students will learn to access biological databases, search and retrieve relevant data, analyze data in a meaningful
manner, and link data and results obtained from different tools. A very brief introduction to metabases and data
collection is provided as well. Interaction studies are emphasized through genome-wide mapping of protein-DNA
interaction, proteomics-based bioinformatics, and high-throughput mapping of protein-protein interaction
networks. Commonly employed modeling and simulation techniques will also be dealt with. These include
molecular dynamics, Monte Carlo and Langevin (stochastic, Brownian) dynamics, continuum electrostatics,
statistical thermodynamics, protein modeling techniques, protein-ligand docking, protein-ligand affinity calculations
and the computer simulation of the protein folding process and enzyme action.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
74 h contact sessions. Lectures and practicals, student tasks, including the presentation of an original article.
Attendance to practicals and article presentation are mandatory.

Target group:
MSc / Protein science and biotechnology

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Books, articles:
1. Big data in biomedicine (http://www.nature.com/nature/outlook/big-data/)
5. Berendsen, H.J.C Simulating the physical world. Hierarchical modeling from quantum mechanics to fluid

Useful databases:
2. Ensembl and Ensembl Genomes (Genome) (http://www.ensembl.org/ and http://ensemblegenomes.org/)
3. UniProt (Protein) (http://www.uniprot.org/)
4. DIP and BioGrid (Protein Interaction) (http://dip.doe-mbi.ucla.edu/dip/Main.cgi and http://thebiogrid.org/)
5. PDB (protein structure database) (http://www.rcsb.org/)

Assessment methods and criteria:
Practicals evaluation, article presentation, group discussion, and project report. No exam.
Grading:
pass/fail
Person responsible:
André H. Juffer

Working life cooperation:
no

Other information:
Location of instruction: Kontinkangas campus

744634S: Introduction to big data analysis and bioinformatics models, 5 op

Voimassaolo: 01.08.2019 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Valerio Izzi
Opintokohteen kielet: English

Leikkaavuudet:
744640S Data mining and data-based models 5.0 op
740393A Data mining and data-based models 5.0 op

ECTS Credits:
5 cr

Language of instruction:
English

Timing:
Spring

Learning outcomes:
Upon completion the student should be able to:
- Identify, retrieve and contextualize knowledge from major online biomedical sources
- Identify, retrieve and analyze big biomedical data using open access resources and responsive databases
- Develop investigational pipelines for biomedical hypothesis and researches using available open data

Contents:

Mode of delivery:
Face to face teaching and online

Learning activities and teaching methods:
12 h lectures + online exercises

Target group:
MSc / Molecular medicine or Protein science and biotechnology

Recommended or required reading:
Lecture notes

Assessment methods and criteria:
Evaluation of assignment completion online

Grading:
pass/fail

Person responsible:
Valerio Izzi

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus

740384A: Introduction to immunology, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Intermediate Studies
Introduction to immunology

ECTS Credits: 5 credits
Language of instruction: English
Timing: B.Sc. yr3 spring or M.Sc yr1-yr2 spring
Learning outcomes: After the course students will be able to understand, identify, analyze and apply essential concepts of cellular and molecular components and mechanisms of immunology, and integrate their previous knowledge of molecular and cellular biology and protein chemistry with immunology and immunobiochemistry instances.
Contents: The course handles the basis of immunology, covering cells and mechanisms of innate and adaptive immune responses (inflammation, anti-microbial and anti-viral defenses, T-cell activation, antibody production, etc.). The course also offers insights into the physiopathology of the immune responses (chronic inflammation, allergy, autoimmune disorders, transplantation and cancer) and the clinical (immunotherapy, cytokine therapy, etc.) and industrial (monoclonal antibodies, ELISA and immunodiagnostics, etc.) applications of immunological processes.
Mode of delivery: Face to face teaching
Learning activities and teaching methods: Lectures (14 h), a written home exercise, and a final exam.
Target group: Major and minor subject undergraduates
Prerequisites and co-requisites: Preliminary required courses: Molekyylibiologia I, Protein chemistry I and Cellular biology, or equivalent basic molecular biology, protein chemistry and cell biology studies.
Recommended optional programme components:
Recommended or required reading:
Assessment methods and criteria: Home exercise, final exam
Read more about assessment criteria at the University of Oulu webpage.
Grading: 1-5/fail
Person responsible: Zhi Jane Chen
Working life cooperation: No
Other information: This module is the same as 743666S Introduction to immunology. Location of instruction: Kontinkangas campus.

744637S: Introduction to microfluidics and lab-on-a-chip devices, 5 - 7 op

Voimassaolo: 01.08.2020 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Caglar Elbuken
Opintokohteen kielet: English
ECTS Credits: 5 ECTS
Language of instruction: English
Timing: Autumn

Learning outcomes:
The students are expected to learn the fundamentals of micro/nanofluidics and be able to apply those concepts to several applications. Another major goal of the course is to give the students enough tools so that they can follow the state-of-the-art developments in the field from the leading journals such as RSC Lab on a Chip, Wiley Small, ACS Analytical Chemistry. The students are also very briefly exposed to the recently growing field of nanofluidics through comparisons between micro and nano-scale physics. The students will be introduced with the biosensors and their operating principles.

Contents:
The goal of this course to cover the fundamentals and the latest developments in the field of micro/nanofluidics and their application areas in sensing and diagnostics. The first half of the course (modules 1-6 below) is intended to cover the fundamental fluidic concepts. The second half of the course (modules 7-12) covers the application areas of microfluidic and LOC systems, such as biosensors and point-of-care diagnostic devices. Finally, the trending topics in the field are covered.

For students interested in a hands-on experience, an extended module with multiple laboratory sessions is available (option-2). The lecture is a pre-requisite to take the laboratory practice session.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
24 h lectures + online exercises

Target group:
BSc and MSc level students

Prerequisites and co-requisites:

Recommended optional programme components:

Recommended or required reading:
Lecture notes

Assessment methods and criteria:
In-class quizzes, homework, term project, final exam

Grading:
1-5/fail

Person responsible:
Caglar Elbukken

Working life cooperation:

Other information:
Location of instruction: Kontinkangas campus

747615S: Introduction to structure-based drug discovery, 5 op

Voimassaolo: 01.08.2016 -
Opiskeluvalikoja: Advanced Studies
Laji: Course
Vastuuvalikoja: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Lari Lehtiö
Opintohetteen kieli: English

Leikkaavuudet:

747612S Introduction to structure-based drug discovery 4.0 op

ECTS Credits: 5 credits
Language of instruction: English
Timing:
MSc yr1-2 spring

Learning outcomes:
After completion of this course student should be able to:
- Find and analyze a protein structure of interest from databases from the point of view of drug discovery
- Critically assess a quality of an experimental protein-small molecule complex structure
- Discuss the process of creating a virtual small molecule library
- Describe the commonly used computational methods for screening of small molecule libraries against a protein target
- Critically judge the results of the computational screening

Contents:
The course will consist of assignments, lectures and a project work carried out during the course in study groups. Groups will present their project plans and the results. All students will give feedback and share ideas during the discussions. The project carried out during the course will be supported by lectures and discussions. The final mark comprises marks from continuous assessment, active participation to the group work and oral exam. Attendance to some parts of the course is compulsory. The course has limited enrollment for 18 students.

Mode of delivery:
Face to face and web based teaching

Learning activities and teaching methods:
12 h Lectures, 48 h practicals and group work, 9 h student presentations and discussions

Target group:
MSc / Protein science and biotechnology

Prerequisites and co-requisites:
BSc in biochemistry or a related subject, Protein Chemistry I or Protein production and analysis

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Continuous assessment, presentations, oral exam

Grading:
1-5/fail

Person responsible:
Lari Lehtiö

Working life cooperation:
no

Other information:
Location of instruction: Kontinkangas campus

747614S: Macromolecular X-ray crystallography, 5 op

Voimassaolo: 01.08.2016 -
Opiskelumoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Lari Lehtiö, Wierenga Rikkert
Opintokohteen kielet: English
Leikkaavuudet:
747605S Basic aspects of protein crystallographic methods 3.0 op

ECTS Credits:
5 credits

Language of instruction:
English

Timing:
MSc yr1-2 autumn

Learning outcomes:
After completion of this course students are able to:
- Discuss the key aspects of protein crystallization methods and interpret the results
Describe the diffraction of X-rays and the importance of crystal symmetry
Describe the importance of the Fourier transform method in the structure determination
Describe the phase problem and tell the methods to solve it
Apply knowledge on protein chemistry to refinement of a crystal structure
Judge the quality of a protein structure

Contents:
The course will describe the principles of X-ray diffraction theory and practice. It includes a hands on project done throughout the course on protein crystallization, data collection, solving and refinement of the protein structure and validation of the model. Following topics will be covered during the lectures and practicals: crystallisation theory, symmetry of crystals, handling of crystals, data collection, diffraction pattern and the reciprocal lattice, the phase problem, molecular replacement, isomorphous and anomalous differences, structure refinement and validation. Attendance to the lectures and exercises is compulsory. The course has limited enrollment for 18 students

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
35 h lectures, 52 h exercises, project work and a research report

Target group:
MSc / Protein science and biotechnology

Prerequisites and co-requisites:
Protein chemistry I or Protein production and analysis or equivalent

Recommended optional programme components:

Recommended or required reading:
Rupp, B: Biomolecular Crystallography: Principles, Practice and Application to Structural Biology
Blow, D: Outline of Crystallography for Biologists (eBook available)
Drenth, J: Principles of Protein X-Ray Crystallography

Assessment methods and criteria:
Continuous assessment, research report, no exam.

Grading:
pass/fail

Person responsible:
Lari Lehtiö and Rikkert Wierenga

Working life cooperation:
no

Other information:
Location of instruction: Kontinkangas campus
Students will be able to explain the main principles of how the metabolism is made up, will get a detailed picture of the energy metabolism, and will be able to organize part of the wholeness of metabolism, particularly how energy metabolism is networked to the synthesis and degradation of biomolecules.

Contents:
On this course the central concepts and mechanisms of metabolism, its regulation and the integration of metabolic pathways will be introduced, like anabolism and catabolism, linking of different pathways, and metabolic regulation. Especially the energy metabolism will be studied, concerning carbohydrates, lipids and the respiratory chain. Combined with the course Metabolism II the students will get a good overview on the principles of metabolism, metabolic integration and the methods to study metabolism.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
Lectures (28 h), problem-based exercises (workshops) 6 h, laboratory work (32 h, attendance obligatory), lab diary and final exam.

Target group:
Major subject students

Prerequisites and co-requisites:
Biomolecules, Biomolecules for Biochemists or Biomolecules for Bioscientists

Recommended optional programme components:
Biomolecules, Biomolecules for Biochemists tai Biomolecules for Bioscientists

Recommended or required reading:
-

Assessment methods and criteria:
Problem-based exercises, laboratory work and a final exam will count towards the final grade.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail. Problem-based exercises, laboratory work and a final exam will count towards the final grade.

Person responsible:
Tuomo Glumoff

Working life cooperation:
No

Other information:
Location of instruction: Lectures: Linnanmaa, laboratory: Kontinkangas

740363A: Microbiology, 6 op

Opiskelumuoto: Intermediate Studies
Laj: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Pospiech, Helmut
Opintokohteen kielet: Finnish
Leikkaavuudet:
740374A Microbiology 3.0 op
740322A Microbiology 3.0 op
740324A Laboratory course in microbiology 3.0 op

ECTS Credits:
6 credits
Language of instruction:
English
Timing:
B.Sc. yr1 spring
Learning outcomes:
Upon successful completion students are able to:
- define the typical features of bacteria, archaea, fungi and virus and explain the diversity of different groups of microorganisms
- explain the basic aspects of microbial metabolism
- understand the basics of microbial growth, enrichment, culture and growth control both in the environment and in contained culture
explain the essential roles of microorganisms in our environment
apply their knowledge for the growth and its control of standard laboratory microorganisms
have a basic understanding of the industrial use of microorganisms or microbial compounds.

Contents:
This module is an introduction to general and applied microbiology and consists of lecture and laboratory exercises. In the lectures, the diversity and classification of microorganisms, especially bacteria will be introduced. Further topics are the structure and function of the prokaryotic cell, bacterial growth, metabolism and physiology, the importance of bacteria in different ecosystems as well as the industrial use of bacteria. The exercises introduce basic microbiological methods and techniques for the aseptic work. These include culture on solid and in liquid media, transfer of bacteria by streaking or spreading, the use of dilution and enrichment techniques, the inhibition of bacterial growth, measurement of bacterial growth and death, and finally the basics of transformation and bacteriophage infection and its use in molecular biology. Attendance at practical course is obligatory.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
24 hours lecture and 60 hours laboratory exercises

Target group:
Major students

Prerequisites and co-requisites:
Biomolecules for Biochemists and Biochemical methodologies I

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Continuous assessment (home works, lab reports), final exam
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Helmut Pospiech

Working life cooperation:
No

Other information:
Location of instruction: Lectures: Linnanmaa, laboratory: Kontinkangas

740374A: Microbiology, 3 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Pospiech, Helmut
Opintokohteen kielet: Finnish
Leikkaavuudet:
740363A Microbiology 6.0 op
740322A Microbiology 3.0 op

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
spring

Learning outcomes:
Upon successful completion students are able to:
define the typical features of bacteria, archaea, fungi and virus and explain the diversity of different groups of microorganisms
explain the basic aspects of microbial metabolism
understand the basics of microbial growth, enrichment, culture and growth control both in the environment and in contained culture
explain the essential roles of microorganisms in our environment
apply their knowledge for the growth and its control of standard laboratory microorganisms
have a basic understanding of the industrial use of microorganisms or microbial compounds.

Contents:
This module is an introduction to general and applied microbiology and consists of lecture and laboratory exercises. In the lectures, the diversity and classification of microorganisms, especially bacteria will be introduced. Further topics are the structure and function of the prokaryotic cell, bacterial growth, metabolism and physiology, the importance of bacteria in different ecosystems as well as the industrial use of bacteria.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
24 h lectures

Target group:
Minor subject students

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Continuous assessment (home works), final exam

Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Helmut Pospiech

Working life cooperation:
No

Other information:
This module is the same as Microbiology (740363A) except that it contains no practical component. Location of instruction: Linnanmaa campus

740361A: Molecular Biology I, 8 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuyksikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Mirva Saaranen
Opintokohteen kielet: Finnish

Leikkaavuudet:
740373A Molecular Biology I 4.0 op
740318A Molecular Biology 4.0 op
740337A Laboratory Course in Molecular Biology 3.0 op

ECTS Credits:
8 credits

Language of instruction:
Lectures: Finnish, laboratory practicals: English

Timing:
B.Sc. yr2 autumn

Learning outcomes:
After this course students should understand the basics of molecular biology and be able to use modern molecular biology methods.

Contents:
The course covers gene structure, DNA replication, recombination, transcription, translation and basics of gene expression. The student will learn the most common recombinant DNA techniques, such as PCR, use of restriction endonucleases, preparation of recombinant plasmids and DNA sequencing. Attendance of some parts is compulsory.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
20 h lectures, 4 h computer exercise, 80 h lab, homeworks. Laboratory and computer practicals are compulsory

Target group:
Major subject students

Prerequisites and co-requisites:
Cellular biology, Biomolecules for Biochemists and Biochemical methodologies I

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Homeworks 35 %, lab reports 30 % and final exam 35 %.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail.

Person responsible:
Mirva Saaranen and Henrika Honkanen

Working life cooperation:
No

Other information:
Location of instruction: Lectures: Linnanmaa, laboratory: Kontinkangas

744627S: Molecular biology II, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettaja: Elitsa Dimova
Opintokohteen kielet: English

ECTS Credits:
5 credits

Language of instruction:
English

Timing:
M.Sc. yr1 autumn

Learning outcomes:
After the course students are able to:
- describe the general features of DNA manipulating enzymes and CRISPR-Cas9
- design (on paper or in silico) oligonucleotides for PCR amplification
- design and set up restriction digests and ligation reactions in order to carry out basic and advanced cloning procedures
- analyze experimental results from basic cloning procedure
- use basic datasets and basic online bioinformatics tools for genetic engineering

Contents:
This module provides a "real-life" approach to practical molecular biology, including DNA cloning strategies, site directed mutagenesis, generation of transgenic mice, etc. It comprises concept overview
lectures, complex problem solving based exercises and includes written reports and student presentations. Attendance of the course is required.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
18 h seminars, plus student presentations

Target group:
Major students

Prerequisites and co-requisites:
The course is designed for MSc students familiar with DNA organization, gene structure & genetic concepts (ORF, codon, heterologous and homologous recombination).

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
This course utilizes continuous assessment based on problem solving based exercises, written reports, student presentation, and crossword solutions. All tasks should be passed by minimum of 60%.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
pass/fail

Person responsible:
Elitsa Dimova

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas

743665S: Molecular, cell biological and genetic aspects of diseases, 5 op

Voimassaolo: 01.08.2016 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Valerio Izzi
Opintokohteen kielet: English

Leikkaavuudet:
740396A Molecular, cell biological and genetic aspects of diseases 5.0 op
743659S Biochemistry of cell organelles 3.0 op
743604S Biochemistry of inherited diseases 3.0 op

ECTS Credits:
5 credits

Language of instruction:
English

Timing:
MSc yr1-2 autumn

Learning outcomes:
Upon completion the student should be able to:
- based on biogenesis, structure and function of the key cell organelles discuss their role in pathology and describe organelle-specific disease mechanisms
- describe typical inherited diseases in terms of their occurrence, biochemistry behind their origin, and their analysis and treatment possibilities
- present and defend a scientific presentation on a theme related to inherited diseases.

Contents:
The course provides knowledge on structure and function of mitochondria, peroxisomes, endoplasmic reticulum (ER) and the Golgi apparatus, and diseases - also inherited ones - concerned with these cell organelles; as well as gene defects, their inheritance, detection and correction with gene therapy. The course involves student presentations of latest findings on inherited diseases as pair work.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
34 h lectures and seminars including student presentation and student opponents. Seminars are obligatory.

Target group:
MSc / Molecular medicine

Prerequisites and co-requisites:
B.Sc. in biochemistry or biology or otherwise adequate knowledge on basic biochemistry and cellular and molecular biology.

Recommended optional programme components:
-

Recommended or required reading:
Lecture notes, student seminar presentations, research articles. Recommended accompanying texts: Thompson & Thompson, Genetics in Medicine; Strachan, T., Read, A.P.: Human Molecular Genetics, Bios. Scientific Publishers Limited; Aula et al., Perinnöllisyyslääketiede

Assessment methods and criteria:
Seminars and exam. 1/5 of the grade is based on the seminar presentation and opponent work and 4/5 on the exam in which the student must display an understanding on how the basic biochemical knowledge translates from the bench to the bedside.

Grading:
1-5/fail

Person responsible:
Valerio Izzi

Working life cooperation:
no

Other information:
Location of instruction: Kontinkangas

740145P: Physical Biochemistry, 6 op

Opiskelumuoto: Basic Studies

Laji: Course

Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine

Arvostelu: 1-5, pass, fail

Opettajat: André Juffer

Opintokohteen kielet: English

ECTS Credits:
6 credits

Language of instruction:
English

Timing:
B.Sc. yr2 spring

Learning outcomes:
Upon successful completion students are able to:
- define the relevance of theoretical concepts to the biosciences
- tell where various equations of physical biochemistry come from
- discuss the link between theory and experiment
- perform simple but realistic calculations

Contents:
This module will cover the concepts of thermodynamics and their application to biochemical systems plus chemical and enzymatic kinetics. Topics covered will include:

Applications of thermodynamics: Chemical reactions, Protein-ligand association, Acids, bases and pH regulation, Acid-dissociation constants, introduction to thermodynamics of protein folding.
Chemical kinetics: Basic chemical reactions and single step reactions, Applications of chemical kinetics to multistep reactions, Catalysis and enzyme kinetics. Attendance of some parts of the course is compulsory.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
36 h le and exercises

Target group:
Major students

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Recommended books:

Assessment methods and criteria:
Homeworks, workshops, no exam

Grading:
1-5/fail

Person responsible:
André Juffer

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus

740386A: Physiological biochemistry, 5 op

Voimassaolo: 01.01.2017 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Kalervo Hiltunen
Opintokohteen kielet: English, Finnish
Leikkaavuudet:
740371A Physiological Biochemistry 4.0 op

ECTS Credits:
5 credits

Language of instruction:
English / Finnish

Timing:
B.Sc. yr2-3 spring

Learning outcomes:
Aim of the course is to get students familiar with :
- Specific aspects of human biochemistry
- Structure, tasks and function of different organs
- Systemic and intracellular regulation of metabolism
- Functional and regulatory relations of different organs

Contents:
Lectures include information about morphology, function and role in metabolism of adipose tissue, kidney, muscle tissue and cytoskeleton, alimentary system and liver. They also focus on structure of biomembranes, composition
and function of endocrine system, hormone synthesis and signal transduction. Mechanisms of action of hormones (especially steroid hormones), their cell surface and intracellular receptors, second messengers and other regulatory molecules will be discussed.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
20 h lectures, 2 h seminars, 10 h laboratory work and home work. Seminars, home work and laboratory work are compulsory.

Target group:
Major students

Prerequisites and co-requisites:
Basic biochemistry, cellular and molecular biology

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Home work and final exam

Grading:
1-5/fail

Person responsible:
Kalervo Hiltunen

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas

746606S: Project work in Biochemistry, 1,5 op

Opiskelumuoto: Advanced Studies

Lahti: Course

Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine

Arvostelu: 1 - 5, pass, fail

Opettajat: Lloyd Ruddock

Opintokohteen kielet: English

ECTS Credits:
1,5 credits

Language of Instruction:
English

Learning outcomes:
Upon successful completion students are able to:
- apply scientific knowledge and methods to undertake scientific research with supervision

Contents:
Research work done in the Faculty of Biochemistry and Molecular Medicine or elsewhere which is not compensated in other courses. 40 hours of work gives 1.5 ECTS. The project work must be accepted beforehand and a report must be written and approved.

Mode of delivery:
Face to face teaching

Target group:
This module is meant for exchange students only

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Research work in the lab

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
740364A: Protein Chemistry I, 8 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Rajaram Venkatesan
Opintokohteen kielet: English

ECTS Credits:
8 credits
Language of instruction:
English
Timing:
B.Sc. yr2 autumn
Learning outcomes:
Upon successful completion students are able to:

- tell the relevance of protein structure, including post-translational modification, to protein function
- describe the techniques available to purify proteins and to study protein function and have an appreciation of the applications and limitations of these techniques
- analyze a wide range of biochemical data and solve problems relating to the interpretation of data concerning protein function and basic structural characterization

Contents:
This module provides more detailed information on the chemistry of proteins. Topics covered include protein purification, reversible and irreversible covalent modifications of proteins, protein translocation, protein degradation, an introduction to the protein folding problem, protein structure analysis, basic enzyme catalysis mechanisms and co-enzymes. The module includes lectures, continuous assessments, group works, student presentations, and laboratory exercises. Final examination, lecture attendance/continuous assessments, presentations and laboratory reports will all count towards the final mark. Attendance at laboratory exercises is obligatory.

Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
36 h lectures including student presentations, 80 h lab, exercises
Target group:
Major students
Prerequisites and co-requisites:
Biomolecules for Biochemists, Biochemical methodologies I
Recommended optional programme components:
-
Recommended or required reading:
Assessment methods and criteria:
Presentation, lab reports, attendance/continuous assessment
Read more about assessment criteria at the University of Oulu webpage.
Grading:
1-5/pass, fail
Person responsible:
Rajaram Venkatesan
Working life cooperation:
No
Other information:
744626S: Protein chemistry II, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Lari Lehtiö
Opintokohteen kielet: English

Leikkaavuudet:
- 744620S Protein chemistry II 3.0 op
- 747606S Structural enzymology 3.0 op

ECTS Credits:
5 credits
Language of instruction:
English
Timing:
M.Sc. yr1 autumn

Learning outcomes:
After completion of this course students are able to:
- Discuss professional literature dealing with advanced techniques of protein analysis
- Plan the expression, purification and characterization of a given protein
- Present and analyze work related to protein purification and analysis
- Describe enzyme reaction mechanisms and the meaning of Michaelis-Menten kinetic constants
- Define the relation between reaction rates and free energy barriers
- Describe the basic concepts of the transition state theory
- Tell the importance of active site electrostatics and dynamics

Contents:
The course provides a “real-life” problem-based approach to practical protein chemistry, including purification, biophysical analysis, kinetics and protein structures. It comprises a small number of revision lectures and advanced lectures on structural enzymology. The course contains problem solving based exercises with a further level of complexity built in compared with Protein Chemistry I. The course includes a student presentation, homework and a student report in the form of a research plan, but does not include a final examination. Attendance to the seminars is compulsory.

Mode of delivery:
Face to face teaching and home exercises

Learning activities and teaching methods:
32 hr Lectures and seminars, plus exercises and writing of a research plan

Target group:
Major students

Prerequisites and co-requisites:
Protein Chemistry I or Protein production and analysis or equivalent

Recommended optional programme components:
-

Recommended or required reading:
Alan Fersht, Structure and Mechanism in Protein Science; http://www.fersht.com/Structure.html

Assessment methods and criteria:
Continuous assessment, presentations, research plan

Grading:
1-5/fail

Person responsible:
Lari Lehtiö

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas. For study year 2020-21 course will be replaced by 744635S Protein production and analysis I
747618S: Protein production and analysis, 10 op

ECTS Credits:
10 credits

Language of instruction:
English

Timing:
Int M.Sc. yr1 autumn

Learning outcomes:
Upon successful completion students are able to:
- tell and discuss the relevance of protein structure, including post-translational modification, to protein function
- assess the techniques available to purify proteins and to study protein function and an appreciation of the applications and limitations of these techniques
- interpret a wide range of biochemical data and to solve problems relating to the interpretation of data relating to protein function and basic structural characterization

Contents:
This module provides an overview of recombinant protein production and analysis. Topics covered include an overview of DNA technology, PCR, cloning, mutagenesis, protein production, purification, enzyme catalysis, protein structure analysis, and protein folding. This course covers some of the material taught in Protein Chemistry I (740364A) and Molekyylibiologia I (740361A) and therefore cannot be taken by students who have either of these modules.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
56 contact hours of lectures and seminars, 3 assignments, 80 hours of lab

Target group:
Int MSc in Prot Sci and exchange students

Prerequisites and co-requisites:
A BSc in biochemistry or a closely related subject.

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Continuous assessment (problem solving exercises, lab reports) Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5/fail

Person responsible:
Lloyd Ruddock

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus. For study year 2020-21 course will be replaced by 744635S Protein production and analysis I (5 credits) 744636S and Protein production and analysis II (5 credits)

743668S: Tumor cell biology, 5 op
ECTS Credits: 5 credits
Language of instruction: English
Timing: M.Sc. yr1-yr2 spring
Learning outcomes:
Upon successful completion students are able to:
- name, list and discuss the major aspects including formation of a tumor cell
- present, describe and discuss characteristic aspects of oncogenes and tumor suppressor genes
- use methods to study, examine and to analyse tumor genesis and tumor progression
Contents:
The course covers basic aspects of the main pathways inducing formation of a tumor. The main emphasis will be made on modes of carcinogenesis, tumor metabolism, the formation of oncogenes, the action of tumor suppressor genes and the induction of tumors by viruses.
The course covers also aspects of tumor diagnostics and therapy. The course involves lectures 20h with included 10h seminars, and reading literature with which the students should be able to recapitulate major aspects of the taught material in 5-7 min presentations
Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
20 h lectures and student presentations upon request in seminars
Target group:
MSc / Molecular medicine
Prerequisites and co-requisites:
-
Recommended optional programme components:
-
Recommended or required reading:
-
Assessment methods and criteria:
Final exam
Read more about assessment criteria at the University of Oulu webpage
Grading:
1-5/fail
Person responsible:
Thomas Kietzmann
Working life cooperation:
No
Other information:
Location of instruction: Kontinkangas campus

740385A: Virology, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Thomas Kietzmann
Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
5 credits
Language of instruction:
English
Timing:
B.Sc. yr3 spring or M.Sc yr1-yr2 spring

Learning outcomes:
Upon successful completion students are able to:
• discuss the major groups of viruses and their infection and replication mechanisms
• present and discuss characteristic features of specific viruses and their relation to pathogenesis and immuni-ty
• describe diagnostic methods and antiviral therapy

Contents:
The course covers basic aspects of virology. The main emphasis will be made on viral infection, replication, transcription, proteinsynthesis, virological diagnostics, infection kinetics, defense against viruses, ways of infection, vaccination, and antiviral therapy. The course involves lectures 10h, 10h seminars, and reading literature with which the students should be able to recapitulate major aspects of the taught material in 5-7 min presentations.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
24 h lectures and student presentations in seminars

Target group:
Major students

Prerequisites and co-requisites:
Cellular biology

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Final exam

Grading:
1-5/fail

Person responsible:
Thomas Kietzmann

Working life cooperation:
No

Other information:
This module is the same as Virology (743667S). Location of instruction: Kontinkangas

744632S: Yeast genetics, 5 op

Voimassaolo: 01.08.2017 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Faculty of Biochemistry and Molecular Medicine
Arvostelu: 1 - 5, pass, fail
Opettajat: Alexander Kastaniotis
Opintokohteen kielet: English
Leikkaavuudet:

744623S Yeast genetics 6.0 op
ECTS Credits: 5 credits
Language of instruction: English
Timing: M.Sc. yr1-yr2 spring

Learning outcomes:
Upon successful completion students are able to:
- tell a basic knowledge of yeast genetics and physiology
- tell the basic principles of using the yeast model organism to address fundamental genetic and cell biological problems
- (practical course) describe variety of genetic and molecular biology techniques commonly used to manipulate baker’s yeast in the pursuit of biological questions

Contents:
This course is an introduction to Saccharomyces cerevisiae as a model organism and the use of classical and molecular genetic approaches in this yeast to study basic cellular processes. We will also focus on genetic screens and selections designed to identify targets of interest. Aspects of transcriptional regulation will be discussed to provide a basic understanding for some of the screens and selections introduced. Performance in the course will be assessed by participation in the course review session at the beginning of each lecture (10% of total grade) and by a final written examination. The practical part of this is a block practical spread over two weeks (2 days – 3 days – 2 days – 3 days) running almost parallel to lecture course. It is designed to provide training in techniques and concepts commonly used in yeast genetics (streaking, spotting, mating, tetrad analysis, transformation, colony-color based assays, carbon source-dependent expression of genes, as well as generation and cloning of mutants). The course has limited enrollment for 16 people. It is also possible to only attend the lecture part of the course for 2.5 ECTS credits.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
14 h lectures, 10 days practical, final exam and oral participation in course review session

Target group:
Major students

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Course review sessions, final exam, experiment reports Read more about assessment criteria at the University of Oulu webpage

Grading:
1-5/fail

Person responsible:
Alexander Kastaniotis

Working life cooperation:
No

Other information:
Location of instruction: Kontinkangas campus