Biochemistry is the study of life at the molecular level. Based on underlying chemical principles biochemists study the details of biological systems at both macro- and micro- scales in whole organisms, in cells, in the test tube and by structural and computational based analysis. Even the simplest living systems are extremely complicated, and comprise a vast array of interconnecting processes. These processes are said to be governed by our genes, the genetic code which makes us who and what we are. Genes are not everything though; the information encoded within them is converted into proteins and it is proteins that are the primary workers in the cell, playing fundamental roles in all aspects of biochemistry. Smaller molecules also play a key role, both though the complex cycles of metabolism, generating energy and essential cellular precursors from nutrients taken from the external world and by playing a role in modulating the function of genes and of proteins.

Sometimes cellular processes go wrong, due to genetic mutations or to external environmental factors or to chance events, and then disease states such as cancer, diabetes, cystic fibrosis, Alzheimer's arise. Only by understanding both the details of the underlying mechanisms of cellular action and the complex interplay of 30,000 gene products, a million different proteins and thousands of metabolites can these diseases be understood and effective treatments generated. These treatments may be small molecules, designed both to be targeted to the appropriate site within the body and to inhibit a specific cellular process through rational drug design, or they may be macromolecules, such as proteins produced on an industrial scale by the biotech industry, or there is the growing area of gene therapy, replacing a loss of function by introducing a working gene.

All of this, the understanding of the mechanisms of cellular action at a molecular level along with the rational design and production of therapeutic treatments, is the work of the biochemist.

Education

The education of biochemists was changed in autumn 2005 to a new degree system across the EU. The first degree is a 3-year candidate degree (BSc, Bachelor of Science) followed by a 2-year master degree (MSc, Master of Science). The purpose of the change is to harmonize degrees in biochemistry in different universities, shorten graduating times and facilitate transfer of students between universities in different EU countries. The first MSc degree programmes under a new degree system started in autumn 2008. Since autumn 2007, the Department of Biochemistry has organized a Master Degree Programme in Protein Science and Biotechnology for international students.

Students who have started their studies before autumn 2005 in the old system are allowed to take their degrees with courses from the old degree system not later than study year 2009/2010. Each student makes a personal study plan (HOPS) for the BSc degree (180 credits) and for the MSc degree (120 credits). Since the study year 2010/2011 all students must take their degrees with courses from the new system.

The Mission of the Department of Biochemistry is based on the fact that current and high level teaching cannot be given without strong basic research. This can be seen in the operational principles of the department. Innovative specialists will be needed in the field. Teaching is seen as an entity where high quality basic and doctoral education, including post doctoral training abroad, is a fundamental part of the departmental structure.
Post graduate training has an important role in the department. Research work starts at the end of MSc phase when a student is doing his Pro gradu project with research work towards a PhD being started after this. Many research groups of international level are operating in the department and about 40 PhD students are working here at present. Post graduate training involves high level training and is linked to clear research projects.

Most of the students who have graduated from the Department of biochemistry, University of Oulu are working in universities within research and teaching, while some are employed by industry, business or by different educational institutes for tasks in research, development, communication and management. One third of the graduated students have taken a degree of licenciate and about one fifth have PhD degree. Most of the latter have spent a post-doctoral period in abroad.

Studies

The Amanuensis of the department helps in matters related to studies. In questions concerning a single study module student can contact the responsible person of the course

All courses and exams organized by department must be subscribed to via WebOodi before the relevant deadline.

Recommended order for courses for a bachelor degree is presented in the figure (www.biochem.oulu.fi/studies/BSc_eng.pdf). For many biochemistry courses there are some previous courses required as a prerequisite.

As a part of the studies in biochemistry, a student will use literature and/or results from course experiments to make many kinds of written exercises (reports, Pro gradu etc) and presentations. A report cannot be a copy of the other text and all citations from other texts or figures must be clearly presented as references. Copying, using of the text of other students and other forms of plagiarism are forbidden and will lead to punishment and rejection of the report.

Biochemistry as a minor subject

Biochemistry courses can be attended freely by students from other departments with only one restriction: We reserve right to not allow students on the course if the work places available in the laboratory or equipment available are insufficient.

All courses and exams organized by department must be subscribed to via WebOodi (https://weboodi.oulu.fi/oodi) before the relevant deadline.

A record of biochemistry as a minor subject will be given when the amount of accepted studies is at least 15 credits.

Examinations and grades

The time and place of examinations are informed via timetables in the home page of department (http://www.biochem.oulu.fi). Students must subscribe to exams via WebOodi (https://weboodi.oulu.fi/oodi) before the relevant deadline. The grading scale is 0-5. The lowest passing grade is 1. Some courses are graded pass/fail. Three exams are organized for each course. A course must be passed during the given time, not in another year.

The final grade for Bachelor and Master degree in biochemistry and for biochemistry as a minor subject will be calculated as follows: the Grades of graded courses are multiplied by the number of credits. The final grade is the sum of products divided by the total number of credits.

Final grades will be determined as follows:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Description</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>1/5</td>
<td>Sufficient</td>
<td>1.00 - 1.49</td>
</tr>
<tr>
<td>2/5</td>
<td>Satisfactory</td>
<td>1.50 - 2.49</td>
</tr>
<tr>
<td>3/5</td>
<td>Good</td>
<td>2.50 - 3.49</td>
</tr>
<tr>
<td>4/5</td>
<td>Very Good</td>
<td>3.50 - 4.49</td>
</tr>
<tr>
<td>5/5</td>
<td>Excellent</td>
<td>4.50 - 5.00</td>
</tr>
</tbody>
</table>
The final grade will be given by Tuula Koret (BK228)

Lines and degrees

Department of biochemistry offers one bachelors level degree, **Biochemistry** and two masters level degrees, **Protein Science and Biotechnology** and **Molecular and Cellular Biology**.

1) **Biochemistry.** B.Sc. Degree In finnish and in english

2) **Protein Science and Biotechnology.** Entirely in english.

3) **Molecular and Cellular Biology.** In finnish and in english.

In addition, the Department of Biochemistry offers a Master’s Degree Programme in Protein Science and Biotechnology for international students, in which curriculum differs slightly from the Protein Science and Biotechnology MSc.

Bachelor of Science (Biochemistry)

Education leading to a Bachelor's degree in biochemistry provides the student with:

- fundamental knowledge in biochemistry and ancillary subjects as well as the ability to follow developments in that field;
- capability to understand scientific thinking and to use scientific methods
- capability to continue to the higher university degree and the capability for life-long learning;
- capability to respond to the high public awareness and impact of the Biosciences
- capability to participate in cooperative and goal-oriented teamwork and in individual working
- capability to apply the acquired knowledge in working life;
- proficiency in Finnish and Swedish as stipulated in the Degree Statute, as well as proficiency in English;
- transferable and cognitive skills, including the ability to communicate effectively.

The credit requirement for the lower university degree of Bachelor of Science (Biochemistry) is 180. Studies are organized such that students can complete the degree within three years of full-time study.

Obligatory course units at the beginning of studies are common to all students, but students also select course units specific to their longer-term goals.

A Bachelor's degree consists of the following elements:

B.Sc. Degree

<table>
<thead>
<tr>
<th>Course Unit</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>General studies</td>
<td>10</td>
</tr>
<tr>
<td>Basic studies in Biochemistry</td>
<td>28</td>
</tr>
<tr>
<td>Intermediate studies in Biochemistry</td>
<td>69</td>
</tr>
<tr>
<td>Maturity test</td>
<td>0</td>
</tr>
<tr>
<td>Chemistry</td>
<td>29</td>
</tr>
<tr>
<td>Biology and statistic</td>
<td>24</td>
</tr>
<tr>
<td>Optional studies</td>
<td>20</td>
</tr>
</tbody>
</table>

Total at least 180 credits
Master of Science (Protein Science and Biotechnology; Molecular and cellular biology)

Education leading to a Master's degree in Protein Science and Biotechnology or Molecular and cellular biology provides the student with:

- advanced knowledge in the major subject;
- capacity to apply scientific knowledge and methods to topical tasks and to undertake scientific research;
- capacity to master information and data and their setting within a theoretical network accompanied by critical analysis and assessment to enable understanding of the subject area as a coherent whole;
- good language skills for national and international tasks;
- transferable and cognitive skills, including the ability to communicate effectively and critically about science using a variety of approaches;
- The skills required for the acquisition of further knowledge, including the abilities to conceive, design and implement independent research and
- capability for scientific postgraduate work.

A Master degree consists of the following elements:

M.Sc. Degree

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obligatory advanced courses</td>
<td>67-74 credits</td>
</tr>
<tr>
<td>Maturity test</td>
<td>0 credits</td>
</tr>
<tr>
<td>Optional studies</td>
<td>46-54 credits</td>
</tr>
<tr>
<td>Total at least</td>
<td>120 credits</td>
</tr>
</tbody>
</table>

STUDIES FOR B.Sc. DEGREE

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>General studies</td>
<td>10 credits</td>
<td></td>
</tr>
<tr>
<td>Orientation (740072Y)</td>
<td>1</td>
<td>Autumn yr 1</td>
</tr>
<tr>
<td>English for biochemists I (902100Y)</td>
<td>3</td>
<td>Autumn yr 1-Spring yr 1</td>
</tr>
<tr>
<td>English for biochemists II (902101Y)</td>
<td>3</td>
<td>Spring yr 2</td>
</tr>
<tr>
<td>Swedish (901004Y)</td>
<td>3</td>
<td>Spring yr 3</td>
</tr>
<tr>
<td>Basic studies in biochemistry</td>
<td>28 credits</td>
<td></td>
</tr>
<tr>
<td>Biomolecules for biochemists (740143P)</td>
<td>8</td>
<td>Autumn yr 1-Spring yr 1</td>
</tr>
<tr>
<td>Biochemical methodologies I (740144P)</td>
<td>8</td>
<td>Spring yr 1</td>
</tr>
<tr>
<td>Metabolism I (740146P)</td>
<td>6</td>
<td>Spring yr 1</td>
</tr>
<tr>
<td>Physical biochemistry (740145P)</td>
<td>6</td>
<td>Spring yr 1</td>
</tr>
<tr>
<td>Intermediate studies in biochemistry</td>
<td>69 credits</td>
<td></td>
</tr>
<tr>
<td>Molecular biology I (740361A)</td>
<td>8</td>
<td>Autumn yr 2</td>
</tr>
<tr>
<td>Mikrobiology (740363A)</td>
<td>6</td>
<td>Autumn yr 2</td>
</tr>
<tr>
<td>Protein chemistry I (740364A)</td>
<td>8</td>
<td>Autumn yr 2-Spring yr 2</td>
</tr>
<tr>
<td>Biochemical methodologies II (740365A)</td>
<td>8</td>
<td>Spring yr 2</td>
</tr>
<tr>
<td>Cellular biology (740362A)</td>
<td>6</td>
<td>Autumn yr 3</td>
</tr>
<tr>
<td>Metabolism II (740367A)</td>
<td>6</td>
<td>Autumn yr 3</td>
</tr>
<tr>
<td>Radiation and safety (740368A)</td>
<td>5</td>
<td>Autumn yr 3</td>
</tr>
<tr>
<td>Essay (B.Sc. thesis) (740376A)</td>
<td>10</td>
<td>Autumn yr 3-Spring yr 3</td>
</tr>
<tr>
<td>Cellular communication (740366A)</td>
<td>6</td>
<td>Spring yr 3</td>
</tr>
<tr>
<td>Maturity test (740377A)</td>
<td>0</td>
<td>Spring yr 3</td>
</tr>
<tr>
<td>Final examination (740372A)</td>
<td>6</td>
<td>Spring yr 3</td>
</tr>
</tbody>
</table>
Chemistry 29 credits
Introduction to chemistry (780113P) 12 Autumn yr 1
Introductory laboratory course in chemistry (780122P) 3 Autumn yr 1
Introduction to organic chemistry (780103P) 6 Autumn yr 1-Spring yr 1
Introduction to analytical chemistry (780111P) 4 Spring yr 1
Laboratory course in organic chemistrl (780332A) 4 Autumn yr 2

Biology and statistic 24 op
Cell biology (750121P) 5 Autumn yr 1
Concepts of genetics (753124P) 4 Spring yr 2
Basic methods in statistic I (806109P) 9 Spring yr 2
Introduction to the use of lab. animals (040910A/S) 6 Spring yr 3

Recommended optional studies
Physiological biochemistry(740371A) * 4 Spring yr 3
Animal physiology (751388A) * 8 Spring yr 2- Autumn yr 3
Developmental biology-histology (751367A) 9 Spring yr 3
Tutoring / confidential posts (740074Y) 1.5 Year 1-3
Introduction to information retrieval (030005P) 1 Year 3
* at least one of these is required

Courses for minor subject students

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomolecules (740148P)</td>
<td>5</td>
<td>autumn</td>
</tr>
<tr>
<td>Biomolecules for bioscientists (740147P)</td>
<td>8</td>
<td>aut-spr</td>
</tr>
<tr>
<td>Metabolism I (740149A)</td>
<td>4</td>
<td>spring</td>
</tr>
<tr>
<td>Metabolism II (740375A)</td>
<td>4</td>
<td>autumn</td>
</tr>
<tr>
<td>Microbiology (740374A)</td>
<td>3</td>
<td>autumn</td>
</tr>
<tr>
<td>Molecular biology I (740373A)</td>
<td>4</td>
<td>autumn</td>
</tr>
</tbody>
</table>

STUDIES FOR M.Sc. DEGREE

Protein Science and Biotechnology (120 credits)

Compulsory courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein chemistry II (744620S)</td>
<td>3</td>
<td>Aut</td>
</tr>
<tr>
<td>Molecular biology II (744621S)</td>
<td>3</td>
<td>Aut</td>
</tr>
<tr>
<td>Orientation to research work (744617S)</td>
<td>12-20</td>
<td></td>
</tr>
<tr>
<td>Pro gradu experimental work in protein science and biotechnology (747691S)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pro gradu thesis in protein science and biotechnology (747692S)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Maturity test (740672S)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Optional specialist courses (a minimum of 4 of these courses must be taken)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic aspects of protein crystallographic methods (747605S)</td>
<td>3</td>
<td>Aut</td>
</tr>
<tr>
<td>Structural enzymology (747606S)</td>
<td>3</td>
<td>Spr</td>
</tr>
</tbody>
</table>
Biochemistry of protein folding (747602S)
Systems biology (744619S)
Bioinformatics (747603S)
Biological NMR spectroscopy (784637S, Dept. of Chemistry)
Introduction to biocomputing (747604S)
Introduction to membrane proteins I (747609S)
Introduction to membrane proteins II (747610S)

Other optional courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation (744618S)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Final examination in protein science and biotechnology (747693S)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Yeast genetics (744623S)</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Bioreactor technology (488304S, Bioprocess Engineering Laboratory)</td>
<td>6</td>
<td>Aut</td>
</tr>
<tr>
<td>Advanced course for biotechnology (488305S, Bioprocess Engineering Laboratory)</td>
<td>5</td>
<td>Spr</td>
</tr>
<tr>
<td>Advanced information skills (300002M, Science and Technology library Tellus)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Optional courses at any university</td>
<td>0-12</td>
<td></td>
</tr>
</tbody>
</table>

Any other optional MSc level course offered by the Department of Biochemistry

Molecular and cellular biology (120 credits)

Obligatory courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein chemistry II (744620S)</td>
<td>3</td>
<td>Autumn yr</td>
</tr>
<tr>
<td>Molecular biology II (744621S)</td>
<td>3</td>
<td>Autumn yr</td>
</tr>
<tr>
<td>Orientation to research work (744617S)</td>
<td>12-20</td>
<td></td>
</tr>
<tr>
<td>Pro gradu experimental work in molecular and cellular biology (743694S)</td>
<td>28</td>
<td>Autumn yr</td>
</tr>
<tr>
<td>Pro gradu thesis in molecular and cellular biology (743695S)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Maturity test(740672S)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Optional specialist courses (a minimum of 4 of these courses must be taken)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biochemistry of inherited diseases (743604S)</td>
<td>3</td>
<td>Autumn</td>
</tr>
<tr>
<td>Systems biology (744619S)</td>
<td>4</td>
<td>Spring</td>
</tr>
<tr>
<td>Neurobiology (743655S)</td>
<td>4</td>
<td>Spring</td>
</tr>
<tr>
<td>Bioinformatics (747603S)</td>
<td>2.5</td>
<td>Spring</td>
</tr>
<tr>
<td>Biochemistry of cell organells (743659S)</td>
<td>3</td>
<td>Autumn</td>
</tr>
<tr>
<td>Cell cycle, DNA replication and repair</td>
<td>2.5</td>
<td>Spring</td>
</tr>
<tr>
<td>Tumor cell biology</td>
<td>3</td>
<td>Spring</td>
</tr>
</tbody>
</table>

Other optional courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation (744618S)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Molecular Development Biology (040120A) (LTK)</td>
<td>2</td>
<td>Spring (ev)</td>
</tr>
<tr>
<td>Final examination in molecular and cellular biology (743696S)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Yeast genetics (744623S)</td>
<td>6</td>
<td>Spring</td>
</tr>
<tr>
<td>Advanced information skills (300002M, Tiedekirjasto Tellus)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Biological NMR spectroscopy (784637S, Dept. of Chemistry)</td>
<td>3</td>
<td>Spring</td>
</tr>
<tr>
<td>Optional courses at any university</td>
<td>0-12</td>
<td></td>
</tr>
</tbody>
</table>

Any other MSc level course offered by the Department of Biochemistry
International Master’s Degree Programme in Protein Science and Biotechnology (120 credits)

Obligatory courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein production and analysis (747601S)</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Biochemical methodologies II (747608S)</td>
<td>8</td>
<td>A</td>
</tr>
<tr>
<td>Orientation to research work (744617S)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pro gradu experimental work in protein science and biotechnology (747691S)</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>Pro gradu thesis in protein science and biotechnology (747692S)</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>Maturity test (740672S)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Optional specialist courses (at least 4 must be taken)

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic aspects of protein crystallographic methods (747605S)</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Structural enzymology (747606S)</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Biological NMR spectroscopy (784637S) (Dept. of Chemistry)</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Biochemistry of protein folding (747602S)</td>
<td>2.5</td>
<td>S</td>
</tr>
<tr>
<td>Systems biology (744619S)</td>
<td>4</td>
<td>S</td>
</tr>
<tr>
<td>Bioinformatics (747603S)</td>
<td>2.5</td>
<td>S</td>
</tr>
<tr>
<td>Introduction to biocomputing (747604S)</td>
<td>3</td>
<td>A</td>
</tr>
<tr>
<td>Introduction to membrane proteins I (747609S)</td>
<td>2.5</td>
<td>S</td>
</tr>
<tr>
<td>Introduction to membrane proteins II (747610S)</td>
<td>2.5</td>
<td>A</td>
</tr>
</tbody>
</table>

Optional courses

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dissertation (744618S)</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Final examination in protein science and biotechnology (747693S)</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Bioreactor technology (488304S) (Bioprocess Engineering Laboratory)</td>
<td>6</td>
<td>A</td>
</tr>
<tr>
<td>Advanced course for biotechnology (488305S) (Bioprocess Engineering Laboratory)</td>
<td>5</td>
<td>S</td>
</tr>
<tr>
<td>English for biochemists III (902122Y)</td>
<td>3</td>
<td>S</td>
</tr>
<tr>
<td>Information Skills / Sources of Scientific Information (030005P Science and Technology library Tellus)</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Yeast genetics (744623S)</td>
<td>6</td>
<td>S</td>
</tr>
<tr>
<td>Optional courses at any university</td>
<td>0-12</td>
<td></td>
</tr>
</tbody>
</table>

Optional courses at any universities

Up to 12 credits of courses can be taken from other suitable courses taught at any university. Courses must be connected to biochemistry or logically support some aspect of it and they will have to be at an appropriate level. The content of the courses must not be too similar to other courses which have counted towards the students BSc degree or towards their MSc. In all cases the departmental amanuensis should be contacted to confirm acceptance / suitability. We would advise that this is done before the course is taken, especially in the case of courses taken from universities outside Finland. A list of previously accepted courses can be found on the teaching pages of the departmental web pages, please consult this list before contacting the amanuensis.

Department Staff
Tutkintorakenteisiin kuulumattomat opintokokonaisuudet ja -jaksot

488305S: Advanced Course for Biotechnology, 5 op
300002M: Advanced Information Skills, 1 op
751388A: Animal physiology, 4 op
806109P: Basic Methods in Statistics I, 9 op
747605S: Basic aspects of protein crystallographic methods, 3 op
740144P: Biochemical Methodologies I, 8 op
740365A: Biochemical Methodologies II, 8 op
747608S: Biochemical methodologies II, 8 op
743659S: Biochemistry of cell organelles, 3 op
743604S: Biochemistry of inherited diseases, 3 op
747602S: Biochemistry of protein folding, 2,5 op
747603S: Bioinformatics, 2,5 op
784637S: Biological NMR Spectroscopy, 3 op
740148P: Biomolecules, 5 op
740143P: Biomolecules for Biochemists, 8 op
740147P: Biomolecules for Bioscientists, 8 op
488304S: Bioreactor Technology, 6 op
750121P: Cell biology, 5 op
743658S: Cell cycle, DNA replication and repair, 2,5 op
740362A: Cellular Biology, 6 op
740366A: Cellular Communication, 6 op
753124P: Concepts of genetics, 4 - 7 op
751367A: Developmental biology-histology, 4 op
744618S: Dissertation, 18 op
902100Y: English for Biochemists 1, 3 op
902122Y: English for Biochemists 3, 3 op
740376A: Essay (B.Sc. thesis), 10 op
740372A: Final Examination, 6 op
743696S: Final examination in molecular and cellular biology, 9 op
747693S: Final examination in protein science and biotechnology, 9 op
030005P: Information Skills, 1 op
780111P: Introduction to Analytical Chemistry, 4 op
780113P: Introduction to Chemistry, 12 op
780103P: Introduction to Organic Chemistry, 6 op
747604S: Introduction to biocomputing, 3 op
747609S: Introduction to membrane proteins I, 3 op
747610S: Introduction to membrane proteins II, 2,5 op
780122P: Introductory Laboratory Course in Chemistry, 3 op
040910S: Laboratory Animal Course For Scientists, 6 op
780332A: Laboratory Course I in Organic Chemistry, 4 op
740377A: Maturity test (B.Sc. degree), 0 op
740672S: Maturity test (M.Sc. degree), 0 op
740149P: Metabolism I, 4 op
740146P: Metabolism I, 6 op
Opintojaksojen kuvaukset

488305S: Advanced Course for Biotechnology, 5 op

Voimassaalo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Sanna Taskila
Opintokohteen kielet: English

Leikkaavuudet:
480450S Bioprocesses III 5.0 op

ECTS Credits: 5.0 credits
Language of instruction: English
Timing: Implementation in 2nd-3rd periods.
Learning outcomes:
This course aims to give the student a more profound and advanced perspective to major biotechnological applications with recombinant microbes and other current topics in the field.

Objectives: After completing this course, the student will be able to describe the most important recombinant protein and metabolite production processes used in biotechnology, e.g. production of proteins in bacteria and yeast, and in animal and plant cells. Further, the student will be able to compare between the different production processes and to choose techniques for different purposes.

Contents:

Learning activities and teaching methods:
Lectures 34 h + seminars and report depending of the amount of students. Homework.

Recommended optional programme components:
Prerequisites: The preceding courses by the Bioprocess Engineering Laboratory (especially 488302A Basics of biotechnology and 488304S Bioreactor Technology) or respective knowledge.

Recommended or required reading:
Will be announced at the lectures / seminars.

Assessment methods and criteria:
Lectures and intermediate exams (välikokeet) and/or final examinations, or seminars and report. Grade will be composed of homework, intermediate exams (välikokeet) and/or final examinations, or seminars and report.

Person responsible:
Professor Heikki Ojamo

300002M: Advanced Information Skills, 1 op

Voimassaolo: 01.08.2009 -
Opiskelumuoto: Other Studies
Laji: Course
Vastuuksikkö: Faculty of Science
Arvostelu: 1 - 5, pass, fail
Opettajat: Sassali, Jani Henrik
Opintokohteen kielet: Finnish

Ei opintojaksokuvauksia.

751388A: Animal physiology, 4 op

Voimassaolo: - 31.07.2015
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuksikkö: Department of Biology
Arvostelu: 1 - 5, pass, fail
Opettajat: Saarela, Seppo Yrjö Olavi
Opintokohteen oppimateriaali:
Campbell, Neil A. , , 2005
Opintokohteen kielet: Finnish
Leikkaavuudet:
755323A Animal physiology 5.0 op

ECTS Credits:
4-8 cr.
Language of instruction:
Finnish.
Timing:
B.Sc. 2nd spring (lect), 3rd autumn (prac).
Learning outcomes:
After completing the course the student is able to form a general view of animal body functions, the regulation of organ systems, and the background of human health and diseases. In addition, the students learn basic methods in animal physiology research.

Contents:
The practical laboratory experiments focus on the basic problematic of physiological themes including nervous system, muscles, circulation, nutrition, metabolism, immune system, hormones and reproduction using the principal physiological methods and computer aided measurements.

Learning activities and teaching methods:
50 h lectures and independent studying, mid-semester exams, home essays (spring) 32 h laboratory, final exam (autumn).

Target group:
Lectures 4 cr compulsory to the biology students. Exercises compulsory BS students. TEAbs exercises 4 cr optional.

Recommended optional programme components:
750121P or equivalent knowledge. This course is a prerequisite for courses 751x84A/S, 751636S and 751635S.

Recommended or required reading:

Assessment methods and criteria:
Home essays and final exam.

Grading:
1-5 / Fail.

Person responsible:
Prof. Seppo Saarela.

806109P: Basic Methods in Statistics I, 9 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Mathematical Sciences
Arvostelu: 1 - 5, pass, fail
Opettajat: Jari Päkkilä
Opintokohteen oppimateriaali:
Grönroos, Matti (2) , , 2003
Heikkilä, Tarja , , 1998
Helenius, Hans , , 1989
Ranta, Esa (2) , , 1991
Wild, Christopher J. , , 2000
Opintokohteen kielet: Finnish
Leikkaavuudet:
806119P A Second Course in Statistics 5.0 op
806116P Statistics for Economic Sciences 5.0 op
806117P Analysis of continuous response variable 5.0 op
ay806109P Basic Methods in Statistics I (OPEN UNI) 9.0 op

ECTS Credits:
9 cr

Learning outcomes:
On successful completion of this course, the student will be able to
- use basic methods of collecting and describing data
- apply methods of statistical inference in some simple situations
- interpret listing of some statistical software

Contents:
Principles of collecting data and describing data with suitable tables, graphs and numerical measures are treated. The basic idea of estimation and statistical tests will be presented as well as some of the most common used confidence intervals and statistical tests. One aim is also to give basic knowledge from some statistical software.

Person responsible:
Marjatta Mankinen (economics) and Jari Päkkilä (others)
747605S: Basic aspects of protein crystallographic methods, 3 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Wierenga Rikkert
Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
3 credits
Language of instruction:
English
Timing:
M.Sc. yr1-yr2 autumn
Learning outcomes:
Students should understand
- Key aspects of the protein crystallization methods
- The importance of crystals for obtaining the structure of a protein
- The importance of the Fourier transform method in the structure determination method
- The phase problem
- The importance of the anomalous differences
Contents:
The course will describe the principles of x-ray diffraction theory. It will focus on aspects used in the field of protein crystallography including following topics: Crystallisation of proteins, symmetry properties of crystals, X-ray sources and detectors, the diffraction pattern and the reciprocal lattice, the phase problem, isomorphous differences and the MIR-method, anomalous differences and the MAD-method.
Learning activities and teaching methods:
20 h lectures and seminars
Recommended optional programme components:
Biomolecules and Protein chemistry I or Protein production and analysis or equivalent
Recommended or required reading:
Grading:
pass/fail
Person responsible:
Rik Wierenga

740144P: Biochemical Methodologies I, 8 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Jari Heikkinen
Opintokohteen kielet: Finnish
Leikkaavuudet:

ay740153P Basic biochemistry 2: Methods (OPEN UNI) 2.0 op
740151P Biochemical methodologies I 10.0 op
740117P Basic methods in biochemistry 4.0 op
740136P Laboratory course in basic methods of biochemistry 3.0 op
Voidaan suorittaa useasti: Kyllä
ECTS Credits: 8 credits
Language of instruction: Finnish
Timing: B.Sc. yr1 spring
Learning outcomes: Upon completion the student should be able to:
- Know and use basic methods used in biochemical research laboratory
- Use laboratory equipment and work safely
- Prepare solutions used in the lab
- Keep a lab note book and document experiments in the laboratory

Contents: This module covers the basic methodologies used in practical biochemistry. The following topics will be addressed: safety in the laboratory, qualitative and quantitative observations, the calculations of concentrations and dilution factors (includes a workshop), pipette cleaning and calibration, identification and quantification of biological molecules, principals and practice of the use of centrifuges, spectrophotometry, SDS-PAGE, agarose gel electrophoresis, thin-layer and paper chromatography, basics of protein purification, extraction of chromosomal DNA from bacteria, mini-prep extraction of plasmid DNA, extraction of RNA from mammalian tissue, extraction of lipids from nutmeg, sterile technique, basic microbial growth, dialysis, filtration, titration and pH measurement.

Learning activities and teaching methods: 20 h le, 120 h lab

Recommended optional programme components: Biomolecules, Biomolecules for Biochemists or Biomolecules for Bioscientists

Grading: 1-5/fail

Person responsible: Jari Heikkinen

740365A: Biochemical Methodologies II, 8 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Ulrich Bergmann
Opintokohteen kielet: English
Leikkaavuudet: 747608S Biochemical methodologies II 8.0 op

ECTS Credits: 8 credits
Language of instruction: English
Timing: B.Sc. yr2 spring
Learning outcomes: At the end of the course, participants should
* understand the theoretical basis of the main biochemical analysis methods
* be familiar with the different instruments and their use.
* know the potential of the different analytical techniques be able to develop strategies for specific questions in protein and proteome-analysis.

Contents: During this module students will analyze their own protein samples that have been produced in the previous "protein chemistry I / protein production and analysis course". The course will cover principles and practical applications of some of the more advanced methodologies used in practical biochemistry, including fluorescence spectroscopy, stopped and
quenched flow analysis of enzymatic reactions, circular dichroism, surface plasmon resonance, micro-calorimetry, micro-array technology, mass spectrometry, and proteomics based on 2D electrophoresis. For assessment each student has to write a research report in the style of a scientific publication. Attendance is compulsory.

Learning activities and teaching methods:
120 h lab., including pre-lab lectures plus exercises

Recommended optional programme components:
Biomolecules for Biochemists and Biochemical methodologies I

Grading:
1-5/fail

Person responsible:
Ulrich Bergmann

747608S: Biochemical methodologies II, 8 op

Voimassaolo: 01.08.2009 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettaja: Ulrich Bergmann
Opintokohteen kielet: English

Leikkaavuudet:
740365A Biochemical Methodologies II 8.0 op

Language of instruction:
English
Timing:
Int MSc 1st autumn

Learning outcomes:
At the end of the course, participants should
- understand the theoretical basis of the main biochemical analysis methods
- be familiar with the different instruments and their use.
- know the potential of the different analytical techniques be able to develop strategies for specific questions in protein and proteome-analysis.

Contents:
During this module students will analyze their own protein samples that have been produced in the previous "protein chemistry I / protein production and analysis course". The course will cover principles and practical applications of some of the more advanced methodologies used in practical biochemistry, including fluorescence spectroscopy, stopped and quenched flow analysis of enzymatic reactions, circular dichroism, surface plasmon resonance, micro-calorimetry, micro-array technology, mass spectrometry, and proteomics based on 2D electrophoresis. For assessment each student has to write a research report in the style of a scientific publication. Attendance is compulsory

Learning activities and teaching methods:
120 h lab., including pre-lab lectures plus exercises

Target group:
Int M.Sc.

Recommended optional programme components:
Previous studies: Protein production and analysis (747601S)

Grading:
1-5/fail

Person responsible:
Ulrich Bergmann

743659S: Biochemistry of cell organelles, 3 op

Voimassaolo: 01.08.2010 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Kalervo Hiltunen

Opintokohteen kielet: English

Leikkaavuudet:

743656S Biochemistry of cell organelles 2.5 op

ECTS Credits:
3 credits

Language of instruction:
Finnish/English

Timing:
M.Sc. yr1-yr2 autumn

Learning outcomes:
Upon completion student should understand:
• Why is metabolism compartmentalized in eukaryotic cells?
• Role of cell organelles in metabolism
• Targeted transport of biomolecules across membranes of cell organelles

Contents:
Metabolism in eukaryotic cell is compartmentalized to cell organelles. The course will cover biogenesis and biochemistry of following organelles: mitochondria, endoplasmic reticulum, lysosomes, peroxisomes and nucleus. Also transport of proteins to these cell organs is discussed.

Learning activities and teaching methods:
18 contact hours of lectures and seminars

Recommended optional programme components:
Cellular biology or equivalent course

Grading:
pass/fail

Person responsible:
Kalervo Hiltunen

743604S: Biochemistry of inherited diseases, 3 op

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Heli Ruotsalainen

Opintokohteen kielet: Finnish

ECTS Credits:
3 credits

Language of instruction:
Finnish

Timing:
M.Sc yr1-yr2 autumn

Learning outcomes:
Upon completion the student should understand
• The most common inherited diseases and how they can be analyzed and treated
• Biochemistry behind the inherited diseases
• How to make an understandable presentation from the field of inherited diseases
• how to answer questions raised by the presentation

Contents:
This course provides information on mutations behind inherited diseases: how mutations are inherited, how they will be found and how they can be cured by gene therapy. Scientific articles will also be studied by small groups.

Recommended or required reading:
747602S: Biochemistry of protein folding, 2,5 op

Voimassaolo: - 31.05.2011
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettaja: Lloyd Ruddock
Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
2.5 credits
Language of instruction:
English
Timing:
M.Sc., yr1-yr2 spring
Learning outcomes:
Upon successful completion students should:
- Be able to present and discuss issues presented in primary literature on a variety of aspects of protein folding.
- Display an understanding of the theoretical and practical implications of in vivo and in vitro studies on protein folding and the integration of results.
- Demonstrate the ability to interpret a wide range of data from multiple sources, to critically evaluate and contextualise this data and to solve problems relating to interpretation.

Contents:
This module provides an introduction to protein folding in vivo. Topics covered include protein folding and quality control in the endoplasmic reticulum, mechanisms regulating protein folding including the unfolded protein response, the catalysis of native disulphide bond formation, the biochemistry of molecular chaperones and the role of molecular chaperones and protein folding catalysts in other cellular events. The module is assessed based on a report prepared on individual topics and on participation in the seminars.

Learning activities and teaching methods:
16 contact hours of lectures and seminars
Target group:
M.Sc. in Protein science and biotechnology
Recommended optional programme components:
Protein chemistry I or Protein production and analysis or equivalent
Assessment methods and criteria:
The module is assessed based on a report prepared on individual topics and on participation in the seminars.
Grading:
1-5/fail
Person responsible:
Lloyd Ruddock

747603S: Bioinformatics, 2,5 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
ECTS Credits: 2.5 credits
Language of instruction: English
Timing: M.Sc. yr1-yr2 spring
Learning outcomes: Upon completion the course student should be able to:
* Use web-based bioinformatics tools.
* Process the information and find solutions into various problems
* Analyse and present the findings in the form of report

Contents: This course introduces basic concepts and methodology in bioinformatic research. Basic computational methods of DNA and protein handling and database searches are introduced. Other methods may include joining database and proteomic searches and evolutionary views of biocomputing. After this course a student has insight of basic methodology of bioinformatics.

Learning activities and teaching methods: 14 contact hours of lectures and practicals
Grading: 1-5/fail
Person responsible: Ari-Pekka Kvist

784637S: Biological NMR Spectroscopy, 3 op
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Mattila, Sampo Antero
Opintokohteen oppimateriaali:
Cavanagh, John, , 1996
Opintokohteen kielet: English

ECTS Credits: 3 credits
Language of instruction: Finnish and English on demand.
Timing: The course is lectured every other year.
Learning outcomes: After this course the students are familiar with production of most common 2D, 3D and 4D double and triple resonance NMR spectra.
Contents: During the course the students get hands on experience on setting up and acquiring multi dimensional spectra as well as processing and converting data to other formats and assigning protein backbones.
Learning activities and teaching methods: 14 hours of lectures + applications, 30 hours of exercises, one final examination.
Target group: Chemistry, optional.
Person responsible: Senior assistant S. Mattila
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

Leikkaavuudet:
- ay740157P Basic biochemistry 1: Biomolecules (OPEN UNI) 4.0 op
- ay740152P Basic biochemistry 1: Biomolecules (OPEN UNI) 5.0 op
- 740143P Biomolecules for Biochemists 8.0 op
- 740147P Biomolecules for Bioscientists 8.0 op

ECTS Credits:
5 credits
Language of instruction:
English
Timing:
autumn-spring

Learning outcomes:
Upon successful completion students should:
• Have a basic understanding of the composition, structure and function of the major groups of biomolecules in cells; nucleic acids, proteins, carbohydrates and lipids and the forces that modulate their function.
• Have an appreciation of the requirement to contextualize and critically evaluate information.

Contents:
This module provides an overview of biochemistry, outlining the forces involved in biomolecule structure and the chemical structures and properties of polynucleic acids, proteins, carbohydrates and lipids. There will also be an introduction to prebiotic evolution and a student debate on this subject. The module is arranged into lectures, workshops, a student debate. All of the exercises are in English. Both a final examination and continuous assessment will count towards the final mark and attendance of some parts is compulsory.

Learning activities and teaching methods:
30 h lectures, plus exercises

Target group:
Minor subject students

Recommended or required reading:
Mathews, van Holde & Ahern: Biochemistry, (3rd edition) , published by Addison Wesley Longman, Inc. or equivalent

Grading:
1-5/pass

Person responsible:
Lloyd Ruddock

Other information:
This module is the same as Biomolecules for Biochemists except that it contains no practical component.

740143P: Biomolecules for Biochemists, 8 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

Leikkaavuudet:
- ay740157P Basic biochemistry 1: Biomolecules (OPEN UNI) 4.0 op
- ay740152P Basic biochemistry 1: Biomolecules (OPEN UNI) 5.0 op
- 740147P Biomolecules for Bioscientists 8.0 op
ECTS Credits: 8 credits
Language of instruction: English
Timing: B.Sc yr1 autumn-spring
Learning outcomes: Upon successful completion students should:
- Have a basic understanding of the composition, structure and function of the major groups of biomolecules in cells; nucleic acids, proteins, carbohydrates and lipids and the forces that modulate their function.
- Have an appreciation of the requirement to contextualize and critically evaluate information.
- In addition, students on the 8op versions should have acquired competence in basic biochemical laboratory skills, calculations, problem solving and the ability to interpret the scientific data they generate.
Contents: This module provides an overview of biochemistry, outlining the forces involved in biomolecule structure and the chemical structures and properties of polynucleic acids, proteins, carbohydrates and lipids. There will also be an introduction to prebiotic evolution and a student debate on this subject. The module is arranged into lectures, workshops, a student debate and laboratory work. All of the exercises are in English. Both a final examination and continuous assessment will count towards the final mark and attendance of some parts is compulsory.
Learning activities and teaching methods: 30 h lectures, 48 h lab., plus exercises
Target group: Major subject students
Recommended or required reading: Mathews, van Holde & Ahern: Biochemistry, (3rd edition), published by Addison Wesley Longman, Inc. or equivalent.
Grading: 1-5/fail
Person responsible: Lloyd Ruddock

740147P: Biomolecules for Bioscientists, 8 op
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuylsikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintojohdet: English
Leikkaavuudet:
- ay740157P Basic biochemistry 1: Biomolecules (OPEN UNI) 4.0 op
- ay740152P Basic biochemistry 1: Biomolecules (OPEN UNI) 5.0 op
- 740143P Biomolecules for Biochemists 8.0 op
- 740148P Biomolecules 5.0 op
ECTS Credits: 8 credits
Language of instruction: English
Timing: autumn-spring
Learning outcomes: Upon successful completion students should:
- Have a basic understanding of the composition, structure and function of the major groups of biomolecules in cells; nucleic acids, proteins, carbohydrates and lipids and the forces that modulate their function.
- Have an appreciation of the requirement to contextualize and critically evaluate information.
In addition, students on the 8op versions should have acquired competence in basic biochemical laboratory skills, calculations, problem solving and the ability to interpret the scientific data they generate.

Contents:
This module provides an overview of biochemistry, outlining the forces involved in biomolecule structure and the chemical structures and properties of polynucleic acids, proteins, carbohydrates and lipids. There will also be an introduction to prebiotic evolution and a student debate on this subject. The module is arranged into lectures, workshops, a student debate and laboratory work. All of the exercises are in English. Both a final examination and continuous assessment will count towards the final mark and attendance of some parts is compulsory.

Learning activities and teaching methods:
30 h lectures, 48 h lab., plus exercises

Target group:
Minor subject students

Recommended or required reading:
Mathews, van Holde & Ahern: Biochemistry, (3rd edition), published by Addison Wesley Longman, Inc. or equivalent

Grading:
1-5/fail

Person responsible:
Lloyd Ruddock

Other information:
This module is the same as Biomolecules for Biochemists except that there is the option for one of the exercises to be in Finnish.

488304S: Bioreactor Technology, 6 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Department of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Heikki Ojamo, Johanna Panula-Perälä
Opintokouhteen kielet: English

Leikkaavuudet:
488321S Bioreactor technology 5.0 op
480431S Bioprocesses II 5.0 op

ECTS Credits:
6,0 credits.

Language of instruction:
English

Timing:
Implemetation in periods 1st-2nd.

Learning outcomes:
The course provides the student the basics of bioreactor technology. It specifically focuses on bioreactor performance and operation and on the kinetics related to microbial growth, product formation and function of enzymes.

Learning outcomes: After completing this course, the student will be able to verbally describe the most common equipment, materials and methods related to biotechnological processes, micborial growth and cultivation and sterilisation. The student will be able to apply different mathematical formulas for biocatalysis and for the bioreactor performance and use those to plan and analyse bioprocesses. The student will also be able to produce, analyse and interpret microbial growth curves and other data from bioprocesses.

Contents:
Learning activities and teaching methods:
34 h lectures + 6 h exercises, homework.

Recommended optional programme components:
The bachelor level courses by the Bioprocess Engineering Laboratory or respective knowledge.

Recommended or required reading:

Assessment methods and criteria:
Lectures, exercises, intermediate exams (välikokeet) and/or final exam, homework. Grade will be composed of intermediate exams (välikokeet) and/or final exam, exercises and homework.

Person responsible:
Professor Heikki Ojamo

750121P: Cell biology, 5 op

Voimassaolo: - 31.07.2020
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuyksikkö: Department of Biology
Arvostelu: 1 - 5, pass, fail
Opettajat: Saarela, Seppo Yrjö Olavi

Opintokohteen oppimateriaali:
Heino, Jyrki (2), , 2004
Alberts, B. ym., , 2008
Lodish et al., , 2003
Opintokohteen kielet: Finnish

ECTS Credits:
5 cr.

Language of instruction:
Finnish.

Timing:
B.Sc. 1st autumn.

Learning outcomes:
The student is familiar with cellular structure and functioning in plant and animal cells, understands the social structures in multicellular species and knows why and how the genetic organizations (in nucleus, chloroplast and mitochondria) are co-operating, maintaining and regulating the cellular metabolism. Student understands the common origin and evolution of life on planet Earth, and understands the material basis and mechanisms of this continuity.

Contents:
During the recent years especially the development of molecular and microscopic and imaging techniques has increased our knowledge on cells and their social interactions. The structural and functional characteristics of plant and animal cells will be covered as well as the genetic organization maintaining and regulating the system.

Learning activities and teaching methods:
72 h lectures, three final exams (zoology, botany, genetics). Home essays and internet material.

Target group:
Compulsory to the biology and biochemistry students.

Recommended optional programme components:
Cell biology is prerequisite for the following courses: 751367A, 751388A, 752345A, 753124P. Course gives readiness for studies in molecular biology and biochemistry.

Recommended or required reading:
Assessment methods and criteria:
Three final exams.

Grading:
1-5 / Fail. Final grade is average value of the three final exams.

Person responsible:
Prof. Seppo Saarela, Prof. Hely Häggman and Prof. Jaakko Lumme.

743658S: Cell cycle, DNA replication and repair, 2,5 op

Voi massaalo: 01.08.2010 -
Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Pospiech, Helmut

Opintokohteen kielet: English

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
MSc yr1-yr2 spring

Learning outcomes:
In this lecture course, we seek answers to the following questions:

- Why is the maintenance of the genomic stability required and how is it achieved?
- How does DNA replication work and how is it studied?
- How is DNA damage repaired?
- How is DNA replication and repair coordinated within the cell cycle, the DNA damage response and the cell growth?
- How can DNA replication and repair be associated with disease and cancer?

Contents:
The genetic information of all organisms is stored in the form of DNA. Since loss of DNA signifies loss of genetic information, DNA has to be maintained. This is in contrast to other biological macromolecules, which can be degraded and replaced by newly synthesised molecules. As a consequence, DNA has also to be copied faithfully during the process of DNA replication that precedes every cell division. Damage inflicted continuously to the DNA has to be repaired.

Learning activities and teaching methods:
16 h lectures

Recommended optional programme components:
B.Sc. in Biochemistry or Molecular Biology (or equivalent)

Assessment methods and criteria:
Presence at the lectures compulsory, preparatory questions and colloquium

Grading:
1-5/fail

Person responsible:
Helmut Pospiech

740362A: Cellular Biology, 6 op

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Sakari Kellokumpu

Opintokohteen kielet: Finnish

Leikkaavuudet:
ECTS Credits: 6 credits
Language of instruction: Finnish
Timing: B.Sc. yr3 autumn
Learning outcomes:
- Understand the general molecular mechanisms of cell functions
- Understand how such molecular mechanisms can be studied in vitro and in vivo
- Be able to track the molecular defects that might be responsible for abnormal functioning of cells e.g. in disease states
Contents:
The aim of the course is to deepen the knowledge about where in the cell different biochemical reactions take place, how the molecules are trafficked between organelles, and how these phenomena can be studied in cultured cells. The course aims to address specifically the specific functions of the organelles in an eukaryotic cell, transport of material into and out of the cells, and how the cytoskeleton serves many of these functions. The course contains practical lab work, during which the students learn basic skills on cell culture and fluorescence microscopy. The practical course is compulsory for the Biochemistry students.
Learning activities and teaching methods:
24 h lectures, 40 h lab
Recommended optional programme components:
Cell biology, Biomolecules for biochemists, Biochemical methodologies I
Recommended or required reading:
Grading:
1-5/fail
Person responsible:
Sakari Kellokumpu

740366A: Cellular Communication, 6 op
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Thomas Kietzmann
Opintokohteen kielet: English

ECTS Credits: 6 credits
Language of instruction: English
Timing: B.Sc. yr3 spring
Learning outcomes:
Upon completion of the course the students should be able to:
- Discuss the major intra- and intercellular signalling pathways
- Present and discuss characteristic features of signalling pathways
- Have knowledge about methods to study and to analyse signalling pathways
Contents:
The course covers basic aspects of the main cellular signalling pathways. The main emphasis will be made on the signalling pathways involved in the action of various hormones, growth factors, lipid-derived signaling molecules, and their cell surface and intracellular receptors, intracellular second messengers and protein kinases and
phosphatases. The course involves a 40 h practical course (+written reports) in which cultured cells are used as targets to visualize certain hormone or drug-induced signaling molecules, their interactions, and how these regulate e.g. normal cell growth and/or cell death in culture.

Learning activities and teaching methods:
24 h lectures and student presentations, 40 h practicals

Recommended optional programme components:
Cellular biology

Grading:
1-5/fail

Person responsible:
Thomas Kietzmann

753124P: Concepts of genetics, 4 - 7 op

Voimassaolo: - 31.07.2015
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Biology
Arvostelu: 1 - 5, pass, fail
Opettajat: Lumme, Jaakko Ilmari
Opintokohteen oppimateriaali:
Alberts, B. ym., , 2008
Opintokohteen kielet: Finnish
Leikkaavuudet:
757109P Concepts of genetics 5.0 op

ECTS Credits:
4-7 cr.
Language of instruction:
Finnish.
Timing:
B.Sc. 1st spring. Biology students: compulsory, Biochemistry students: parts 1 and 3 4 cr. compulsory, biophysics students.
Learning outcomes:
To understand and remember the genetic basis of life and evolution, on Mendelian and molecular level.
Contents:
Learning activities and teaching methods:
Lectures, homework, the book.
Target group:
Compulsory to the biology students 7 cr. Biochemistry students: parts 1 and 3 4 cr. compulsory, biophysics students: Biochemistry students: compulsory parts 1 and 3 (4 cr).

Recommended optional programme components:
Course 750121P or equivalent knowledge. This course is prerequisite to all other genetics courses.

Recommended or required reading:

Assessment methods and criteria:
Homeworks, participation, exams.
Grading:
1-5 / Fail.
Person responsible:
Prof. Jaakko Lumme.

751367A: Developmental biology-histology, 4 op
Learning outcomes:
After completing the developmental biology-part of the course the student is able to name the most important events of embryonic development and the structural changes related to them. The student is also able to describe the principles gene regulation related to embryonic development. After completing the histology-part of the course the student is able to describe the various tissue types and the microscopic structure of important organs and is also able to identify tissue types and organs from microscopic sections.

Contents:
Motto: "It is not birth, marriage, or death, but gastrulation, which is truly the most important time in your life." Lewis Wolpert (1986).
Developmental biology will cover gametogenesis, fertilization, forming of embryonic tissue layers (gastrulation), embryonic induction, signal molecules and the differentiation of the most important tissues and organs (organogenesis). Histology will first cover various tissue types, their cell types and matrix composition. Thereafter, the microscopic structure and tissue composition of various organs and organ systems will be covered. In both parts, drawing from microscopic slides will support lectures.

Learning activities and teaching methods:
38 h lectures and 44 h exercises, microscopic studying and drawing from the preparates.

Target group:
Compulsory to BS 9 cr, TEAbs, TEAeco and ECO compulsory 4 cr (lectures), exercises optional for TEAeco.

Recommended or required reading:
Lecture notes, lecture handouts, laboratory handouts.

Assessment methods and criteria:
Exams (2 exams of lectures, 1 exam of laboratory exercises).

Grading:

Person responsible:
Prof. Esa Hohtola (lectures), Prof. Seppo Saarela (laboratory exercises).
ECTS Credits:
18 credits

Language of instruction:
English

Timing:
M.Sc. yr1-yr2

Learning outcomes:
Upon successful completion students should have:

- Developed skills in retrieving, appraising critically, contextualising and integrating information from a wide range of sources
- Developed skills in communicating science in extensive written format and in making and defending scientific arguments
- Developed their abilities to work independently including self motivation, planning, organizational skills and time management.

Contents:
This module is based around the student producing an extensive, in-depth literature report in the style of a scientific review. Students are responsible for finding a suitable supervisor for their dissertation with whom they will discuss the scientific background and relevant literature. Students are strongly encouraged to meet with their supervisor weekly to discuss progress and ideas and to resolve problems. A one-page outline of the dissertation subject area, including details of the supervisor (who need not be from the University of Oulu), must be approved by the module convener before starting this module. While the dissertation subject can be closely linked with the Pro Gradu project subject, students are advised that having distinct topics from these two modules will look better on their CV.

Learning activities and teaching methods:
480 hours of student work

Grading:
1-5/fail

Person responsible:
Lloyd Ruddock

902100Y: English for Biochemists 1, 3 op

Voimassaalo: 01.08.2005 -
Opiskelumuoto: Language and Communication Studies
Laji: Course
Vastuuysikkö: Language Centre
Arvostelu: 1 - 5, pass, fail
Opintokohteenv kielet: English
Leikkaavuudet:
ay902100Y English for Biochemists 1 (OPEN UNI) 3.0 op

Proficiency level:
CEFR B2 - C1 for Reading, Speaking and Listening

Status:
Compulsory for all 1st year biochemistry students unless you have received the grade "L" or "E" in the Finnish matriculation exam, in which case you can be exempted for some of the course.

Required proficiency level:
English must have been the A1 or A2 language at school or equivalent English skills acquired otherwise.

ECTS Credits:
The student workload is 80 hrs work/ 3 ECTS credits.

Language of instruction:
English

Timing:
1st year autumn and spring term

Learning outcomes:
The aim of this course is to develop both the students' reading strategies and their oral/aural fluency.

Learning outcomes: By the end of the course you are expected to:
be familiar with various reading strategies for different purposes
apply personalised vocabulary-learning techniques
demonstrate effective note-taking techniques and the ability to summarise when working with texts
have demonstrated lecture listening and note-taking skills in field related situations
be able to present field-related subjects and use appropriate field-related vocabulary
be able to defend a position in a debate
have demonstrated the ability to participate in pair work communication and small group discussions.

Contents:
Core skills practiced on this course are the following:

EfB 1a: reading in order to understand biochemistry texts or textbooks and research articles; applying different reading strategies to extract global or detailed information according to the reading purpose; understanding word formation in order to expand vocabulary, both general scientific and field specific; understanding basic grammatical structures of scientific English as well as text structure and cohesion markers for improved comprehension.

EfB 1b: oral/aural skills connected to the students’ academic field as well as in everyday conversational situations are practiced to develop communicative fluency. There is a focus on pronunciation, listening and speaking skills.

Target group:
1st year Biochemistry students

Recommended or required reading:
Course materials will be provided by the teacher and a copy fee will be collected for the handouts.

Assessment methods and criteria:
Evaluation is based on assessment of active participation in class and the completion of homework tasks. A reading and/or oral exam will be organised if necessary.

Grading:
Pass/fail

Person responsible:
Jolene Gear

Other information:
Registration will take place through WebOodi.

902122Y: English for Biochemists 3, 3 op

Voimassaolo: 01.08.2008 -
Opiskelumuoto: Language and Communication Studies
Lajii: Course
Vastuuysikkö: Language Centre
Arvostelu: 1 - 5, pass, fail
Opintokohteen kielet: English
Leikkaavuudet:
ay902122Y English for Biochemists 3 (OPEN UNI) 3.0 op

Proficiency level:
C1 on the CEFR scale

Status:
Optional but highly recommended for Int MSc Students

ECTS Credits:
3 ECTS credits

Language of instruction:
English

Timing:
spring term

Learning outcomes:
The course aims to help students acquire understanding of the conventions and expectations of the academic community of biochemists for scientific reporting, and develop presentation and writing skills for their future professional life.

Learning outcomes:
By the end of the course, students are expected to be able to

1.
1. write a research article that follows the main discourse conventions of biochemistry
2. prepare and deliver an oral scientific presentation supported by an effective slideshow
3. apply the rules of referencing
4. use a sufficient range of appropriate academic vocabulary relevant to their discipline
5. report their work orally or in writing with accuracy and in an appropriate academic style
6. structure their work for optimal clarity and impact
7. make good use of feedback from peers and teachers to improve their own scientific production

Contents:
This course will cover presentation skills (1 ECTS credit) and writing for scientific purposes (2 ECTS credits).

Learning activities and teaching methods:
The course will comprise 26 classroom hours plus tutorials and independent work on presentation skills and scientific writing. Attendance at all classroom sessions is compulsory.

Target group:
students taking the International Master's programme in Protein Science and Biotechnology

Recommended or required reading:
Course materials will be provided by the teachers and a copy fee will be collected.

Assessment methods and criteria:
Assessment is based on regular completion and quality of course tasks, with particular emphasis on the final product of each part of the course: the final presentation and the final draft of a research article.

Grading:
pass/fail

Person responsible:
Heather Kannasmaa (presentation skills) and Eva Braidwood (scientific writing)

740376A: Essay (B.Sc. thesis), 10 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: Finnish

ECTS Credits:
10 credits

Language of instruction:
Finnish

Timing:
B.Sc. yr3 autumn

Learning outcomes:
Students should be able to execute a project to produce a thesis type of output, be well aware of current research trends in biochemistry, be able to critically select knowledge from the literature, be able to discuss and debate scientific results, and be able to choose and evaluate proper form of presentation for each purpose.

Contents:
The theme of the module is public understanding of science and the reporting of biochemical research using different methods and for different audiences. During the course students will learn on a general level about different fields of biochemistry and their specific questions, orientation of biochemical research and organization of research into projects. Practical exercises will contain presenting of a given subject in different forms, which may be a talk, a short article, a poster, a press release or a research proposal. In addition the course is linked to the module Ruotsin kieli (Swedish language).

Learning activities and teaching methods:
about 50 h lectures, seminars, small groups and practicals, also self study and student presentations

Grading:
pass/fail

Person responsible:
Tuomo Glumoff

740372A: Final Examination, 6 op

Opiskelumuoto: Intermediate Studies
ECTS Credits: 9 credits
Timing: M.Sc. yr1-yr2
Learning outcomes: Upon successful completion students should be able to:
 - Demonstrate deep understanding of the full breadth of the core topics of biochemistry and molecular and cellular biology
 - Integrate material from multiple sources
Contents: This examination will test the ability of students to integrate knowledge from BSc and MSc level molecular and cellular biology. The questions will require an understanding of the principles of biochemistry and molecular and cellular biology and will be based on subject specific material from relevant BSc and MSc level modules. The format will be an oral examination.
Learning activities and teaching methods: Student self-study
Assessment methods and criteria: Oral examination
Grading: 1-5/fail
747693S: Final examination in protein science and biotechnology, 9 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

ECTS Credits:
9 credits
Language of instruction:
English
Timing:
M.Sc. yr1-yr2
Learning outcomes:
Upon successful completion students should be able to:
- Demonstrate deep understanding of the full breadth of the core topics of biochemistry, protein science and biotechnology
- Integrate material from multiple sources
Contents:
This examination will test the ability of students to integrate knowledge from BSc and MSc level protein science and biotechnology. The questions will require an understanding of the principles of biochemistry and protein science and will be based on subject specific material from relevant BSc and MSc level modules. The format will be an oral examination.
Learning activities and teaching methods:
Student self-study
Assessment methods and criteria:
Oral examination
Grading:
1-5/fail
Person responsible:
Lloyd Ruddock

030005P: Information Skills, 1 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Faculty of Technology
Arvostelu: 1 - 5, pass, fail
Opettajat: Sassali, Jani Henrik, Koivuniemi, Mirja-Liisa
Opintokohteen kielet: Finnish
Leikkaavuudet:
030004P Introduction to Information Retrieval 0.0 op

ECTS Credits:
1 credit.
Language of instruction:
Finnish/English
Timing:
2nd or 3rd year.
Learning outcomes:
Students know the different phases of information retrieval process and basic techniques of scientific information retrieval. They will find the most important reference databases of their discipline and know how to evaluate information sources and retrieval results.

Contents:
Retrieval of scientific information, the retrieval process, key databases of the discipline, and evaluation of information retrieval and information sources.

Learning activities and teaching methods:
The course involves training sessions (8h), web-based learning materials, exercises in the Optima learning environment and a final assignment on a topic of the student's own choice.

Recommended or required reading:
Web-based learning material from Toolbox of Research (https://wiki.oulu.fi/display/tor/1.1+Finding+scientific+information)

Assessment methods and criteria:
Passing the course requires participation in the training sessions and successful completion of the course assignments.

Grading:
pass/fail

Person responsible:
Science and Technology Library Tellus, tellustieto(at)oulu.fi

Other information:

780111P: Introduction to Analytical Chemistry, 4 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuyksikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Paavo Perämäki
Opintokohteen oppimateriaali:
Saarinen, Heikki (1), , 2004
Kellner, R., Mermet, J.-M., Otto, M., , 2004
Opintokohteen kieleet: Finnish
Leikkaavuudet: 780110P Analytical Chemistry I 5.5 op

ECTS Credits:
4 credits

Language of instruction:
Finnish

Timing:
1st Spring.

Learning outcomes:
Upon completion of the course, student should have acquired knowledge and understanding of basic concepts of quantitative chemical analysis employing classical methods of analysis.

Contents:
Steps in quantitative analysis, statistical evaluation of analytical data, chemical equilibrium in aqueous solutions, gravimetry, titrimetry, spectrophotometry.

Learning activities and teaching methods:
30 hours of lectures plus 10 hours of exercises, two intermediate examinations or one final examination.

Target group:
Biochemistry, Chemistry, compulsory. Mathematical Sciences, Physical Sciences, optional.

Recommended optional programme components:
Introduction to Chemistry (780113P) or 780101P Introduction to Physical Chemistry and 780102P Introduction to Inorganic Chemistry or Basic Principles in Chemistry (780109P).

Recommended or required reading:

Person responsible:
780113P: Introduction to Chemistry, 12 op

Voimassaolo: 01.08.2009 -
Opiskelumuoto: Basic Studies
Laji: Course
Vastuuyksikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Leena Kaila
Opintokohteen oppimateriaali:
Petrucci, R.H., Harwood, W.S., Herring, F.G. ja Madura, J.D., 2007
Opintokohteen kielet: Finnish
Leikkaavuudet:
- ay780118P General and Inorganic Chemistry B (OPEN UNI) 5.0 op
- 780101P Introduction to Physical Chemistry 7.0 op
- 780102P Introduction to Inorganic Chemistry 5.0 op
- 780109P Basic Principles in Chemistry 4.0 op

ECTS Credits:
12 credits
Language of instruction:
Finnish
Timing:
1st autumn.
Learning outcomes:
After this course the student should understand basic concepts of chemistry as described in international general chemistry curriculum.
Contents:
Basic concepts of chemistry, chemical formula, chemical reaction, chemical equation, oxidation-reduction reactions, stoichiometry, gases, thermodynamics, electrons in atoms, periodic table, chemical bond, phase equilibrium, reaction kinetics, chemical equilibrium, acid-base equilibrium, equilibrium in water solutions of slightly soluble salts.

Learning activities and teaching methods:
70 hours of lectures and applications plus 50 hours of exercises, three intermediate examinations or one final examination.

Target group:
Biochemistry, Chemistry, compulsory.
Physical sciences, Mathematical sciences, optional.
Recommended optional programme components:
Upper secondary school chemistry.

Recommended or required reading:

Person responsible:
Lecturer L. Kaila

780103P: Introduction to Organic Chemistry, 6 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuyksikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Koskela, Juha Pekka, Marja Lajunen

Opintokohteen oppimateriaali:
Hart, Harold, , 1999
Hart, Harold, , 1999

Opintokohteen kielet: Finnish

Leikkaavuudet:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>780112P</td>
<td>Introduction to Organic Chemistry</td>
<td>4.0 op</td>
</tr>
<tr>
<td>780103P2</td>
<td>Organic Chemistry I</td>
<td>6.0 op</td>
</tr>
<tr>
<td>780108P</td>
<td>Basic Course in Organic Chemistry</td>
<td>6.0 op</td>
</tr>
</tbody>
</table>

Voidaan suorittaa useasti: Kyllä

Required proficiency level:

ECTS Credits:
6 credits

Language of instruction:
Finnish

Timing:
1st autumn and 1st spring.

Learning outcomes:
Upon completion of the course, student should have acquired knowledge and understanding of fundamentals of organic chemistry: structures and properties of organic compounds, basic reactions and basic types of mechanisms.

Contents:
Basic reactions of organic compounds, basic principles of stereochemistry and reaction mechanisms: Addition, eliminations, substitutions, including aromatic electrophic one, reactions of carbonyl group. Applications.

Learning activities and teaching methods:
52 hours of lectures and applications plus 6 hours of exercises, three intermediate examinations or one final examination.

Target group:
Biochemistry, Chemistry, compulsory.
Physical Sciences, Mathematical Sciences, optional.

Recommended optional programme components:
Upper secondary school chemistry.

Recommended or required reading:

Person responsible:
Prof. Marja Lajunen and Dr. Juha P. Koskela

747604S: Introduction to biocomputing, 3 op

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: André Juffer

Opintokohteen kielet: English

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
M.Sc. yr1-yr2 autumn

Learning outcomes:
Students should be able to:
Discuss several biocomputing techniques
Decide which method to use under what circumstances
Judge the quality of an analysis of a given problem by means of biocomputing techniques

Contents:
An overview is given of commonly employed techniques of biocomputing to study the structural, dynamical, functional and thermodynamical properties of proteins and membranes and their interaction with other molecules. This will include an overview of computer simulation techniques such as molecular dynamics, Monte Carlo and Langevin (stochastic, Brownian) dynamics, but also concepts of continuum electrostatics, statistical thermodynamics, protein modeling techniques, protein-ligand affinity calculations and the computer simulation of the protein folding process and enzyme action. In addition, some topics in the field of Bioinformatics are discussed as well and certain commonly employed protein modeling software is introduced.

Learning activities and teaching methods:
20 h lectures, student tasks
Grading:
pass/fail
Person responsible:
Andre Juffer

747609S: Introduction to membrane proteins I, 3 op

Voimassaolo: 01.05.2010 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Veli-Pekka Jaakola
Opintokohteen kielet: English

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
M.Sc. yr1 spring

Learning outcomes:
Upon completion the students should be able to:

• describe the difference between soluble, membrane associate and integral membrane proteins (MPs), be able to describe the importance of MPs in health and disease, and be able to describe important structural and sequence features of membrane proteins.

• identify the various classes of MPs, and be able to describe the differences between them.

• understand the structure and composition of the biological membranes: lipid bilayer and the three types of lipids contained (their general functions and properties), the properties of liposomes, membrane carbohydrates (oligosaccharides) and the conditions influencing membrane fluidity.

• use the Protein Data Bank to retrieve coordinate files of proteins whose 3D structures are known and to be familiar with various MP structure resources.

• describe specific techniques used to study MPs in lipid bilayers, detergent micelles and reconstituted vesicles

Contents:
In the part one of this course, we will discuss the basic principles that govern the function-structure relationship of membrane proteins (MPs). Students will be introduced to the different classes of MPs using examples that play important roles in human health and disease. Concepts of MP function and structure will be introduced. Full description and course website: http://www.biochem.oulu.fi/tutkimus/vjaakola/membraneproteins.html

Learning activities and teaching methods:
12 h lectures, 4-6 homework problems or quantitative aspect and final exam

Grading:
1-5/fail

Person responsible:
Veli-Pekka Jaakola
747610S: Introduction to membrane proteins II, 2.5 op

Voimassaolo: 01.08.2010 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Veli-Pekka Jaakola
Opintokohteen kielet: English

ECTS Credits:
2.5 credits
Language of instruction: English
Timing:
M.Sc. yr2 autumn or spring
Learning outcomes:
After completion of this course student should:
- be able to present a short review of a current research status in membrane protein biochemistry and biophysics
- be able to describe various MPs of known structure and explain their basic mechanisms (such as G protein coupled receptors, Na-K ATPase, Co-transporters, Complex I-IV, Porins and Connexins).
- be able to describe conceptually and mathematically some of the basic energy, signal and material transfers across membrane bilayer (such as membrane polarity, action potential and electron transport)
- be able to use graphical software (such as pymol and VMD) to visualize and manipulate MP and membrane bilayer 3D structures.

Contents:
In the part two of membrane protein course, working in study groups students are required to study a MP of known structure in details, analyze and understand the details of the structure carefully, and summarize their findings in a short project paper. Groups will prepare a short presentation (20 min presentation and 10 min discussion) about their assignment system. All students will be responsible for reading the papers, give feedback during discussions and grade the papers.

Learning activities and teaching methods:
lectures, group work, student presentations and discussions

Recommended optional programme components:
Introduction to membrane proteins I; Structural enzymology or equal recommended

Grading:
1-5/fail

Person responsible:
Veli-Pekka Jaakola

780122P: Introductory Laboratory Course in Chemistry, 3 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opintokohteen kielet: Finnish

Language of instruction:
Finnish.

Timing:
1st autumn or spring.

Learning outcomes:
After this course the student is familiar with safety aspects in laboratory, can safety handle and use basic laboratory equipments in experiments. The student knows micro and semi-micro inorganic, analytical methods, is familiar with inorganic or organic synthesis and can determine the yield and purity.

Contents:
Laboratory safety, bunsen burner, balances, volumetric measures, gravimetric determination, acid-base titration, pH, titration curves, acid-base indicators, buffer solutions, synthesis and analysis of Fe(II)oxalate, spectrophotometric determination, synthesis of acetyl salicylic acid, TLC.

Learning activities and teaching methods:
40 hours of laboratory work + demonstrations, one final examination.

Target group:

Recommended optional programme components:
The course Basic Principles in Chemistry (780109P) passed or Biochemistry, Chemistry and teacher education students of Mathematics and Physics: simultaneous participation in the course Introduction to Chemistry (780113P).

Recommended or required reading:
Instruction Book (in Finnish): Kemian perustyöt

Assessment methods and criteria:
Laboratory works and final examination has to be completed within next two terms.

Grading:
Pass/fail

Person responsible:
Prof. M. Lajunen and teaching assistants.

040910S: Laboratory Animal Course For Scientists, 6 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Laboratory Animal Centre
Arvostelu: 1 - 5, pass, fail
Opettajat: Voipio Hanna-marja
Opintokohteen kielet: Finnish

Ei opintojaksokuvauksia.

780332A: Laboratory Course I in Organic Chemistry, 4 op

Voimassaolo: - 31.07.2013
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Chemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Koskela, Juha Pekka
Opintokohteen kielet: Finnish

ECTS Credits:
4 credits

Language of instruction:
Finnish

Timing:
2nd autumn.

Learning outcomes:
At the end of the course, the students should have acquired an understanding of basic techniques of organic chemistry such as distillation, extraction, crystallization, TLC, as well as safety issues, glassware and equipment, laboratory notebooks and written reporting of laboratory experiments. Student familiarises with practical laboratory work by carrying out reactions in aromatic substitution with protective group strategy, organometallic chemistry, Aldol condensation, elimination and disproportionation.

Contents:

Learning activities and teaching methods:
22 h/week laboratory works.

Target group:
Biochemistry, compulsory.

Recommended optional programme components:
Courses 780113P or 780101P and 780102P or 780109P, 780103P, and 780122P passed.

Recommended or required reading:
Laboratory Course Manual.

Person responsible:
Senior assistant Dr. J. Koskela.

740377A: Maturity test (B.Sc. degree), 0 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opintokohteen kielet: Finnish

ECTS Credits:
0 credits
Timing:
BSc yr3 spring
Contents:
Maturity test (B.Sc.) will be written in the topic of B.Sc. thesis. In the test student proves to command both the subject of B.Sc thesis and native language.
Grading:
pass/fail

740672S: Maturity test (M.Sc. degree), 0 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opintokohteen kielet: Finnish

ECTS Credits:
0 credits
Timing:
M.Sc. yr2
Contents:
Will be written in context to Pro gradu thesis. In the test student must show a good command of both language skills and their field of Pro gradu thesis. If student’s native language is not finnish or swedish the Faculty of Science will define language in the test.
Grading:
pass/fail

740149P: Metabolism I, 4 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: Finnish

Leikkaavuudet:
ay740158P Basic biochemistry 3: Metabolis (OPEN UNI) 4.0 op
ay740154P Basic biochemistry 3: Metabolis (OPEN UNI) 3.0 op
740146P Metabolism I 6.0 op

ECTS Credits:
4 credits

Language of instruction:
Finnish

Timing:
spring

Learning outcomes:
Students should be able to understand in detail how cells transform energy for their needs.

Contents:
On this course the central concepts and mechanisms of metabolism, its regulation and the integration of metabolic pathways will be introduced, like anabolism and catabolism, linking of different pathways, and metabolic regulation. Especially the energy metabolism will be studied, concerning carbohydrates, lipids and the respiratory chain. Combined with the course Metabolism II the students will get a good overview on the principles of metabolism, metabolic integration and the methods to study metabolism.

Learning activities and teaching methods:
The module is arranged into 30 h of lectures and problem-based exercises

Target group:
Minor subject students

Recommended optional programme components:
Biomolecules for Biochemists or Biomolecules for Bioscientists or Biomolecules

Grading:
1-5/fail. Problem-based exercises and a final exam will count towards the final grade.

Person responsible:
Tuomo Glumoff

Other information:
This module is the same as Metabolism I (740146P), except that it contains no practical component

740146P: Metabolism I, 6 op

Opiskelumuoto: Basic Studies
Laji: Course
Vastuuyksikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: Finnish
Leikkaavuudet:
ay740158P Basic biochemistry 3: Metabolis (OPEN UNI) 4.0 op
ay740154P Basic biochemistry 3: Metabolis (OPEN UNI) 3.0 op
740149P Metabolism I 4.0 op

ECTS Credits:
6 credits

Language of instruction:
Finnish

Timing:
B.Sc. yr1 spring

Learning outcomes:
Students should be able to understand in detail how cells transform energy for their needs. Students of the 6 op course will also learn some basic experiments and analyses concerned with energy metabolism; topics include glycogen, citric acid cycle and digestive enzymes.

Contents:
On this course the central concepts and mechanisms of metabolism, its regulation and the integration of metabolic pathways will be introduced, like anabolism and catabolism, linking of different pathways, and metabolic regulation. Especially the energy metabolism will be studied, concerning carbohydrates, lipids and the respiratory chain. Combined with the course Metabolism II the students will get a good overview on the principles of metabolism, metabolic integration and the methods to study metabolism.

Learning activities and teaching methods:
The module (6 credits) is arranged into 30 h of lectures and problem-based exercises and 40 h of laboratory work

Target group:
Major subject students

Recommended optional programme components:
Biomolecules, Biomolecules for Biochemists tai Biomolecules for Bioscientists

Grading:
1-5/fail. Problem-based exercises, laboratory work and a final exam will count towards the final grade.

Person responsible:
Tuomo Glumoff

740367A: Metabolism II, 6 op

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettaja: Tuomo Glumoff

Opintokokteet: Finnish

Leikkaavuudet:

<table>
<thead>
<tr>
<th>ECTS Credits:</th>
<th>Language of instruction:</th>
<th>ECTS Credits</th>
<th>Language of instruction:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 credits</td>
<td>Finnish</td>
<td>4.0 op</td>
<td>Finnish</td>
</tr>
</tbody>
</table>

Learning outcomes:
Students should be able to understand in detail how cells use various small and large molecules, how cells synthesize and degrade metabolites for their needs, and how metabolic network is connected and integrated. Students of the 6 op course will additionally learn through experimentation the photosynthetic pigments as well as purification of mitochondrial components from the cell.

Contents:
Metabolism II is a module that extends many of the fundamentals that were introduced in the module Metabolism I. It will be seen how the metabolic pathways that were examined separately will be connected to each other and regulated. Some chemical mechanisms of pathways as well as ways to supply precursors for the main stream pathways will be handled as well as the biosynthesis and degradation of central metabolites and structural molecules of the cell, like amino acids and nucleotides. Special aspects of metabolism, like tissue specificity and physiological states, will also be studied. Photosynthesis will be studied in detail and principles of cellular traffic will be introduced.

Learning activities and teaching methods:
The module (6 credits) is arranged into 30 h of lectures and problem-based exercises and 40 h of laboratory work.

Target group:
Major subject students

Recommended optional programme components:
Metabolism I

Grading:
1-5/fail. Problem-based exercises, laboratory work and a final exam will count towards the final grade.

Person responsible:
Tuomo Glumoff
Metabolism II, 4 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: Finnish

Leikkaavuudet:
740367A Metabolism II 6.0 op

ECTS Credits:
4 credits

Language of instruction:
Finnish

Timing:
autumn

Learning outcomes:
Students should be able to understand in detail how cells use various small and large molecules, how cells synthesize and degrade metabolites for their needs, and how metabolic network is connected and integrated.

Contents:
Metabolism II is a module that extends many of the fundamentals that were introduced in the module Metabolism I. It will be seen how the metabolic pathways that were examined separately will be connected to each other and regulated. Some chemical mechanisms of pathways as well as ways to supply precursors for the main stream pathways will be handled as well as the biosynthesis and degradation of central metabolites and structural molecules of the cell, like amino acids and nucleotides. Special aspects of metabolism, like tissue specificity and physiological states, will also be studied. Photosynthesis will be studied in detail and principles of cellular traffic will be introduced.

Learning activities and teaching methods:
The module is arranged into 30 h of lectures and problem-based exercises

Target group:
Minor subject students

Recommended optional programme components:
Metabolism I

Grading:
1-5/fail. Problem-based exercises and a final exam will count towards the final grade.

Person responsible:
Tuomo Glumoff

Other information:
This module is the same as Metabolism II (740367A), except that it contains no practical component

Microbiology, 6 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Johanna Panula-Perälä
Opintokohteen kielet: Finnish

Leikkaavuudet:
740374A Microbiology 3.0 op
740322A Microbiology 3.0 op
740324A Laboratory course in microbiology 3.0 op
ECTS Credits: 6 credits
Language of instruction: Finnish
Timing: B.Sc. yr2 autumn
Learning outcomes:
After successful completion of the course, the student should:
- be able to define the typical features of bacteria, archaea, fungi and virus and give examples of cell structure for the different groups of microorganisms
- be able to categorise microorganisms according to their energy metabolism and carbon source preferences
- understand the basics of microbial growth, enrichment, culture and growth control both in the environment and in contained culture
- be able to explain the essential role of microorganisms as decomposers in the cycle matter
- be able to apply his knowledge for the growth and its control of standard laboratory microorganisms
- have a basic understanding of the industrial use of microorganisms or microbial compounds.

Contents:
This module is an introduction to general and applied microbiology and consists of lecture and laboratory exercises. In the lectures, the diversity and classification of microorganisms, especially bacteria will be introduced. Further topics are the structure and function of the prokaryotic cell, bacterial growth, metabolism and physiology, the importance of bacteria in different ecosystems as well as the industrial use of bacteria. The exercises introduce basic microbiological methods and techniques for the aseptic work. These include culture on solid and in liquid media, transfer of bacteria by streaking or spreading, the use of dilution and enrichment techniques, the inhibition of bacterial growth, measurement of bacterial growth and death, and finally the basics of transformation and bacteriophage infection and its use in molecular biology.

Learning activities and teaching methods:
24 hours lecture and 60 hours laboratory exercises in co-operation with the Bioprocess Engineering Laboratory.

Target group:
Major subject students

Recommended optional programme components:
Biomolecules for Biochemists and Biochemical methodologies I

Recommended or required reading:

Grading:
1-5/fail

Person responsible:
Johanna Panula-Perälä

740374A: Microbiology, 3 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Johanna Panula-Perälä
Opintokohteen kielet: Finnish
Leikkaavuudet:
740363A Microbiology 6.0 op
740322A Microbiology 3.0 op

ECTS Credits: 3 credits
Language of instruction:
Learning outcomes:
After successful completion of the course, the student should:

- be able to define the typical features of bacteria, archaea, fungi and virus and give examples of cell structure for the different groups of microorganisms
- be able to categorise microorganisms according to their energy metabolism and carbon source preferences
- understand the basics of microbial growth, enrichment, culture and growth control both in the environment and in contained culture
- be able to explain the essential role of microorganisms as decomposers in the cycle matter
- be able to apply his knowledge for the growth and its control of standard laboratory microorganisms
- have a basic understanding of the industrial use of microorganisms or microbial compounds.

Contents:
This module is an introduction to general and applied microbiology and consists of lecture and laboratory exercises. In the lectures, the diversity and classification of microorganisms, especially bacteria will be introduced. Further topics are the structure and function of the prokaryotic cell, bacterial growth, metabolism and physiology, the importance of bacteria in different ecosystems as well as the industrial use of bacteria.

Learning activities and teaching methods:
24 h le

Target group:
Minor subject students

Recommended or required reading:

Grading:
1-5/fail

Person responsible:
Johanna Panula-Perälä

Other information:
This module is the same as Microbiology (740363A) except that it contains no practical component.

740361A: Molecular Biology I, 8 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Pospiech, Helmut, Martti Koski
Opintokohteen kielet: Finnish
Leikkaavuudet:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>740373A</td>
<td>Molecular Biology I</td>
<td>4.0 op</td>
</tr>
<tr>
<td>740318A</td>
<td>Molecular Biology</td>
<td>4.0 op</td>
</tr>
<tr>
<td>740337A</td>
<td>Laboratory Course in Molecular Biology</td>
<td>3.0 op</td>
</tr>
</tbody>
</table>

ECTS Credits:
8 credits

Language of instruction:
Finnish

Timing:
B.Sc. yr2 autumn

Learning outcomes:
After this course students should understand and be able to use modern molecular biology methods.

Contents:
The course covers gene structure, DNA replication, recombination, transcription and translation. The student will learn the most common recombinant DNA techniques, such as PCR, use of restriction endonucleases, preparation of recombinant plasmids and DNA sequencing.

Learning activities and teaching methods:
22 h lectures, 80 h lab, theoretical exercises

Target group:
Major subject students

Recommended optional programme components:
Cellular biology, Biomolecules for Biochemists and Biochemical methodologies I

Recommended or required reading:

Grading:
1-5/fail. Attendance on lectures 20%, homeworks 30%, reports from practicals 10%, final exam 40%

Person responsible:
Helmut Pospiech

740373A: Molecular Biology I, 4 op

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuysikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Martti Koski, Pospiech, Helmut

Opintokohteen kielet: Finnish

Leikkaavuudet:
- 740361A Molecular Biology I 8.0 op
- 740318A Molecular Biology 4.0 op

ECTS Credits:
4 credits

Language of instruction:
Finnish

Timing:
autumn

Learning outcomes:
After this course students should understand modern molecular biology methods.

Contents:
The course covers gene structure, DNA replication, recombination, transcription and translation. The student will learn the most common recombinant DNA techniques, such as PCR, use of restriction endonucleases, preparation of recombinant plasmids and DNA sequencing.

Learning activities and teaching methods:
22 h lectures, plus exercises

Target group:
Minor subject students

Recommended optional programme components:
Cellular biology, Biomolecules for Biochemists, Biochemical methodologies I

Recommended or required reading:

Grading:
1-5/fail. Attendance on lectures 20%, homeworks 40%, final exam 40%

Person responsible:
Helmut Pospiech

Other information:
This course is the same as Molecular biology I (740361A) but without practical part

040120A: Molecular Development Biology, 2 op

Voimassaolo: 01.08.2005 -

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuysikkö: Medicine

Arvostelu: 1 - 5, pass, fail
744621S: Molecular biology II, 3 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Elitsa Dimova, Daniela Mennerich
Opintokohteen kielet: English

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
M.Sc. yr1 autumn

Learning outcomes:
- Familiarity with general features of DNA manipulating/amplifying enzymes
- Ability to (on paper or in silico) design oligonucleotides for PCR amplification, set up restriction digests and ligation reactions in order to carry out basic and advanced cloning procedures
- Basic understanding of tools used in the genetic manipulation of mice

Contents:
This module provides a “real-life” approach to practical molecular biology, including DNA technology, protein analysis, cloning strategies, generation of transgenic mice, etc. It comprises a small number of revision lectures, but it is primarily based on complex problem solving based exercises. The module includes a student presentation, but does not include a final examination. The final mark comprises marks from continuous assessment. Attendance of some parts of the course is compulsory.

Learning activities and teaching methods:
12 h seminars, plus exercises and a student presentation

Grading:
pass/fail

Person responsible:
Elitsa Dimova

743655S: Neurobiology, 4 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Heape Martin
Opintokohteen kielet: English

ECTS Credits:
4 credits

Language of instruction:
English

Timing:
M.Sc. yr1-yr2 spring

Learning outcomes:
The course is intended for students with little, or no prior education in the Neurosciences. At the end of the course, the students should have acquired:
• an understanding of the general structural and functional organisation of the mammalian nervous system, and of the developmental and functional differentiation, and roles of its cellular components.
• a more detailed knowledge of selected areas of the neurosciences in which major research drives are currently undertaken.
• a background knowledge of Neurobiology sufficient to feel comfortable in undertaking a postgraduate research project in diverse fields of the Neurosciences.

Contents:
The course will focus mainly on the cell biology and biochemistry of cellular differentiation and function in the mammalian nervous system. Lectures cover: Embryology and structure of the mammalian nervous system - Cells and the extracellular environment in nervous tissues - Neuronal structure and function - Glial cells of the CNS and PNS - Functional and structural relationships between neurons and glia - Myelin synthesis, maintenance and function in the CNS and PNS - Cellular biochemistry of the transmission of the nervous impulse. The module includes an article analysis in small groups and presentation. A final examination and the active participation and performance in article analysis exercises will contribute to the final mark.

Learning activities and teaching methods:
8-10 h lectures and 5-7 h group work (depending on number of students: maximum = 30 students).

Recommended optional programme components:
Previous studies: Biomolecules for Biochemists, Cellular Biology (740362A) or equivalent. In addition, the "Cellular communication" course (740366A) is a strong advantage, but not required.

Grading:
1-5/fail

Person responsible:
Anthony Heape

740072Y: Orientation, 1 op

Opiskelumuoto: General Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Jari Heikkinen
Opintokohteen kielet: Finnish
Leikkaavuudet:
740076Y Orientation 2.0 op

ECTS Credits:
1 credit
Timing:
B.Sc. yr1 autumn

Contents:
Introduction of the new students to university, academic studies and academic learning environment and give information about goal and content of the degree programme in biochemistry.

Learning activities and teaching methods:
10-20 h visits, discussion, group work
Grading:
pass/fail
Person responsible:
Amanuensis and small group tutors

744617S: Orientation to research work, 0 - 20 op

Opiskelumuoto: Advanced Studies
Laji: Practical training
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Jari Heikkinen
Opintokohteen kielet: English
ECTS Credits:
12 - 20 credits (for Int MSc in Protein science and Biotechnology line 12-18 credits)

Language of instruction:
English

Timing:
MSc yr 1

Learning outcomes:
After this course student has gained experience of practical work done in research groups.

Contents:
This module provides an introduction to research work via the active integration of students into research groups and/or via one to two week advanced practical courses. The integration into groups can be either full-time or part-time research work, with 1.5 credits being awarded for each full-time week equivalent worked. A maximum of 6 credits can be awarded for working in one research group. The research groups do not need to be in the Department of Biochemistry, University of Oulu, but advance permission should be sought if the research group is not part of the University of Oulu.

Grading:
pass/fail

Person responsible:
Jari Heikkinen

740145P: Physical Biochemistry, 6 op

Opiskelumuoto: Basic Studies

Laji: Course

Vastuuyksikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: André Juffer

Opintokohteen kielet: English

ECTS Credits:
6 credits

Language of instruction:
English

Timing:
B.Sc. yr1 spring

Learning outcomes:
After completion of the course, students should be able to

- understand the relevance of theoretical concepts to the biosciences.
- understand where various equations of physical biochemistry come from.
- understand the link between theory and experiment.
- to perform simple but realistic calculations.

Contents:
This module will cover the concepts of thermodynamics and their application to biochemical systems plus chemical and enzymatic kinetics. Topics covered will include:

- **Applications of thermodynamics:** Chemical reactions, Protein-ligand association, Acids, bases and pH regulation, Acid-dissociation constants, introduction to thermodynamics of protein folding.

- **Chemical kinetics:** Basic chemical reactions and single step reactions, Applications of chemical kinetics to multistep reactions, Catalysis and enzyme kinetics.

Attendance of some parts of the course is compulsory.

Learning activities and teaching methods:
36 h le and exercises

Recommended or required reading:

Grading:
1-5/fail
740371A: Physiological Biochemistry, 4 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Kalervo Hiltunen
Opintokohteen oppimateriaali:
Murray, R.K., 2006
Opintokohteen kielet: English
Leikkaavuudet:
742627S Physiological biochemistry 4.0 op

ECTS Credits:
4 credits
Language of instruction:
Finnish
Timing:
B.Sc. yr3 spring
Learning outcomes:
Upon completion student should be able to:
- Understand the tasks of different organs in metabolism
- Understand the basics of regulation of metabolism
- Understand connection between the nutrition and regulation of metabolism
Contents:
Aim of the course is to familiarize students with specific characteristic of biochemistry of human body, the roles of organs and basics of regulation of human metabolism. The following topics will be addressed: endocrinology, the biochemistry of a digestive tract, muscles, fat tissue, kidney and liver. A compulsory laboratory experiment about the regulation of lipolysis is included.
Learning activities and teaching methods:
18 h lect, 8 h lab
Recommended optional programme components:
Metabolism I and Molecular biology I
Recommended or required reading:
Grading:
1-5/fail
Person responsible:
Kalervo Hiltunen
Other information:
Recommended optional course

743694S: Pro gradu experimental work in molecular and cellular biology, 28 op

Opiskelumuoto: Advanced Studies
Laji: Practical training
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

ECTS Credits:
28 credits
Timing:
Learning outcomes:
On successful completion of this course, the student has

- Increased appreciation of how research leads to knowledge and how technologies may be applied/adapted to address a research question
- Developed abilities to work independently and as part of a team - self motivation, diplomacy, planning and organizational skills and time management.
- Developed abilities to identify and solve practical problems, to design and execute experiments and how to record and critically evaluate data.

Contents:
This module provides an extensive, 6 month, project in a research group. The experimental work can be started after 30 op of Master studies have been completed. Students are responsible for finding a suitable research group in which they wish to undertake the Pro Gradu work. Students should produce a short (typically 2 page) study plan detailing the proposed content of their Pro Gradu work, supervisor(s) and start date which must be approved before they start work. The Pro Gradu thesis is based only on the work done during the first 6 months of work by the student on the project, except in cases of mitigating circumstances. The work may be undertaken in the research groups of department of Biochemistry or in any other suitable research group in Finland or abroad.

Learning activities and teaching methods:
6 months project in a research group
Grading:
pass/fail
Person responsible:
Lloyd Ruddock

747691S: Pro gradu experimental work in protein science and biotechnology, 28 op

Opiskelumuoto: Advanced Studies
Laji: Practical training
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

ECTS Credits:
28 credits
Timing:
M.Sc. yr1-yr2
Learning outcomes:
On successful completion of this course, the student has

- Increased appreciation of how research leads to knowledge and how technologies may be applied/adapted to address a research question
- Developed abilities to work independently and as part of a team - self motivation, diplomacy, planning and organizational skills and time management.
- Developed abilities to identify and solve practical problems, to design and execute experiments and how to record and critically evaluate data.

Contents:
This module provides an extensive, 6 month, project in a research group. The experimental work can be started after 30 op of Master studies have been completed. Students are responsible for finding a suitable research group in which they wish to undertake the Pro Gradu work. Students should produce a short (typically 2 page) study plan detailing the proposed content of their Pro Gradu work, supervisor(s) and start date which must be approved before they start work. The Pro Gradu thesis is based only on the work done during the first 6 months of work by the student on the project, except in cases of mitigating circumstances. The work may be undertaken in the research groups of department of Biochemistry or in any other suitable research group in Finland or abroad.

Grading:
pass/fail
Person responsible:
Lloyd Ruddock

743695S: Pro gradu thesis in molecular and cellular biology, 20 op
Opiskelumuoto: Advanced Studies
Laji: Diploma thesis
Vastuuysikkö: Department of Biochemistry
Arvostelu: A,B,N,C,M,EX,L
Opettajat: Tuomo Glumoff
Opintokohteen kielet: English

ECTS Credits:
20 credits
Timing:
M.Sc. yr2
Learning outcomes:
On successful completion of this course, the student has
- Developed skills in retrieving, appraising critically and integrating information.
- Developed skills in communicating science and in making and defending scientific arguments.

Contents:
The Pro gradu thesis (typically around 50-60 pages long) is based on the experimental work undertaken by the student and the contextualization of the research and the results based on the published literature in the field. For detailed instructions see http://www.biochem.oulu.fi/.

Grading:
1-5/fail

747692S: Pro gradu thesis in protein science and biotechnology, 20 op

Opiskelumuoto: Advanced Studies
Laji: Diploma thesis
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: English

ECTS Credits:
20 credits
Timing:
M.Sc. yr2
Learning outcomes:
On successful completion of this course, the student has
- Developed skills in retrieving, appraising critically and integrating information.
- Developed skills in communicating science and in making and defending scientific arguments.

Contents:
The Pro gradu thesis (typically around 50-60 pages long) is based on the experimental work undertaken by the student and the contextualization of the research and the results based on the published literature in the field. For detailed instructions see http://www.biochem.oulu.fi/.

Grading:
1-5/fail

746606S: Project work in Biochemistry, 1,5 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock
Opintokohteen kielet: English

Language of instruction:
Contents:
Research work done in the Department of Biochemistry or elsewhere which is not compensated in other courses. 40 hours of work gives 1.5 ECTS. The project work must be accepted beforehand and a report must be written and approved.

Target group:
This module is meant for exchange students only

Grading:
pass/fail

Person responsible:
Lloyd Ruddock

840364A: Protein Chemistry I, 8 op

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuyksikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Antti Haapalainen

Opintokohteen kielet: English

ECTS Credits:
8 credits

Language of instruction:
English

Timing:
B.Sc. yr2 autumn-yr2 spring

Learning outcomes:
Upon successful completion students should have:
- An understanding of the relevance of protein structure, including post-translational modification, to protein function
- An awareness of the techniques available to purify proteins and to study protein function and an appreciation of the applications and limitations of these techniques
- The ability to interpret a wide range of biochemical data and to solve problems relating to the interpretation of data relating to protein function and basic structural characterization

Contents:
This module provides more detailed information on the chemistry of proteins. Topics covered include protein purification, reversible and irreversible covalent modifications of proteins, protein degradation, an introduction to the protein folding problem, protein structure analysis, basic enzyme catalysis mechanisms and co-enzymes. The module includes student presentations and the final examination is problem solving based. Both a final examination and continuous assessment will count towards the final mark and attendance of some parts is compulsory.

Learning activities and teaching methods:
30 h lectures, 64 h lab, exercises

Recommended optional programme components:
Biomolecules for Biochemists, Biochemical methodologies I and Physical Biochemistry

Grading:
1-5/fail

Person responsible:
Antti Haapalainen

744620S: Protein chemistry II, 3 op

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuyksikkö: Department of Biochemistry

Arvostelu: 1 - 5, pass, fail

Opettajat: Evangelia Kapetaniou
Opintokohteen kielet: English

ECTS Credits:
3 credits

Language of instruction:
English

Timing:
M.Sc. yr1 autumn

Learning outcomes:
the students are able to:
- read and understand professional literature dealing with advanced techniques of protein analysis
- plan the purification of a given protein in large scale
- present work related to protein purification and analysis

Contents:
This module provides a "real-life" approach to practical protein chemistry, including purification, biophysical analysis, enzymatics, etc. It comprises a small number of revision lectures, but it is primarily based on problem solving based exercises with a further level of complexity built in compared with Protein Chemistry I. The module includes a student presentation, but does not include a final examination. The final mark comprises marks from continuous assessment. Attendance of some parts of the course is compulsory.

Learning activities and teaching methods:
12 h seminars, plus exercises and a student presentation

Person responsible:
Vanja Kapetaniou

747601S: Protein production and analysis, 8 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Lloyd Ruddock

Opintokohteen kielet: English

Leikkaavuudet:
747618S Protein production and analysis 10.0 op

ECTS Credits:
8 credits

Language of instruction:
English

Timing:
Int M.Sc. yr1 autumn

Learning outcomes:
Upon successful completion students should have:
- An understanding of the relevance of protein structure, including post-translational modification, to protein function
- An awareness of the techniques available to purify proteins and to study protein function and an appreciation of the applications and limitations of these techniques
- The ability to interpret a wide range of biochemical data and to solve problems relating to the interpretation of data relating to protein function and basic structural characterization

Contents:
This module provides an overview of recombinant protein production and analysis. Topics covered include an overview of DNA technology, PCR, cloning, mutagenesis, protein production, purification, enzyme catalysis, protein structure analysis, basic proteomics and mass spectrometry. This course covers some of the material taught in Protein Chemistry I (740364A) and Molekyylibiologia I (740361A) and therefore cannot be taken by students who have either of these modules.

Learning activities and teaching methods:
46 contact hours of lectures and seminars, 80 hours of lab

Target group:
Int MSc in Prot Sci

Recommended optional programme components:
740368A: Radiation and Safety, 5 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Sakari Kellokumpu
Opintokohteen kielet: Finnish

Leikkaavuudet:
740320A Radiochemistry and Radiation Safety 4.5 op
740339A Laboratory course in isotope techniques 1.5 op

ECTS Credits:
5 credits
Language of instruction:
Finnish
Timing:
B.Sc. yr3 autumn

Learning outcomes:
Upon completion the students should be able to
- understand the character of ionizing radiation
- know biological effects of radiations
- work safely in the isotope laboratory
- know legislation and regulatory guides on radiation safety

Contents:
This course is composed of two lecture items, radiochemistry and radiation legislation, and practical course. Radiochemistry course will describe nature of radioactivity, decay types, interaction of radiation with matter and biological effects of ionizing radiation. In the legislation part radiation law and regulatory guides on radiation safety will be examined. During the practical course students will be familiarized with the use of radioisotopes, radiation protection and radiation safety rules. They will also be familiarized with some typical ways to use radiation in research work. Passing the lecture part not less than 3 (and the legislation part at least 3) and completion of practical course will qualify to act as a radiation safety officer (radiation law 592/91 18§) in the following fields of competence: 1) Use of unsealed sources in industry, research and education, 2) Use of sealed sources and X-ray appliances in industry, research and education, 3) Trade in radioactive substances.

Learning activities and teaching methods:
10 h lectures, self study, 40 h lab

Recommended optional programme components:
Biochemical methodologies I, Metabolism I and Molecular biology I

Recommended or required reading:
Lecture handout, Radiation act and Radiation degree, Regulatory Guides on radiation safety

Grading:
1-5/fail

Person responsible:
Sakari Kellokumpu

747606S: Structural enzymology, 3 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
ECTS Credits: 3 credits
Language of instruction: English
Timing: M.Sc. yr1-yr2 spring
Learning outcomes: Students should be able to understand
- The methods that are used to crystallize proteins
- The basic concepts of the transition state theory
- The relation between reaction rates and free energy barriers
- Enzyme reaction mechanisms
- The concepts of catalytic bases and acids
- Active site strain
- The importance of active site electrostatics
- The concept of transition state analogues

Contents:
General and specific aspects of the reaction mechanism of several well studied enzymes will be discussed. It will include the serine proteases (such as chymotrypsine and trypsine). The following topics will be addressed:
Chemical catalysis, transition state theory, forces stabilizing the enzyme-ligand interaction, structural properties of proteins, enzyme kinetics, crystallization of proteins, general aspects of enzyme catalysed reactions, reaction mechanisms of serine proteases, transition state analogues. The course is aimed at biochemistry and chemistry students.

Learning activities and teaching methods:
20 h lectures and seminars
Grading: pass/fail
Person responsible: Rik Wierenga

901004Y: Swedish, 2 - 3 op

Voimassaolo: 01.08.1995 -
Opiskelumuoto: Language and Communication Studies
Laji: Course
Vastuuysikkö: Language Centre
Opintokohteen kielet: Swedish
Leikkaavuudet:
901035Y Second Official Language (Swedish), Oral Skills 1.0 op
901034Y Second Official Language (Swedish), Written Skills 1.0 op
ay901004Y Swedish (OPEN UNI) 2.0 op

Ei opintojaksokuvauksia.

744619S: Systems biology, 4 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Tuomo Glumoff
Opintokohteen kielet: English
Learning outcomes:
Students will be better able to see the cell as an ensemble of structural and functional parts, and the course helps them to place their current knowledge on cellular, molecular and structural biology into a general view. They are also expected to further strengthen their ability to think critically on novel research findings and the problems associated with massive amounts of novel scientific information.

Contents:
The module aims to give a holistic picture of the cell as a system. Cells contain numerous molecules and complex structures that interact with each other to form complex interaction networks such that when taken together they form a new whole, which cannot be understood by just investigating the parts. Methods to collect and assemble biological/biochemical information for systems analysis will be introduced. Possibilities of systems approach will be discussed in relation to available research techniques, techniques of the future, applications, research targets, as well as from the philosophical point of view including applicability of the systems theory in biosciences.

Learning activities and teaching methods:
The module consists of 22 h of lectures, discussions and case studies, ca 5h of computing exercises

Recommended optional programme components:
Previous studies: B.Sc. in biochemistry or a related subject or otherwise adequate knowledge on cellular, molecular and structural biology.

Assessment methods and criteria:
Study diaries will be assessed for a mark on scale 1 to 5 upon request. Otherwise marking will be pass/fail. There is no exam and thus presence on certain amount of the course is compulsory.

Person responsible:
Tuomo Glumoff

743657S: Tumor cell biology, 3 op

Voimassaolo: 01.08.2010 -
Opiskelumoto: Advanced Studies
Laji: Course
Vastuuysikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Thomas Kietzmann
Opintokohteen kielet: English

Learning outcomes:
Upon completion of the course students should be able to:
- Discuss the major aspects including formation of a tumor cell
- Present and discuss characteristic aspects of oncogenes and tumor suppressor genes
- Have knowledge about methods to study and to analyse tumor genesis and tumor progression

Contents:
The course covers basic aspects of the main pathways inducing formation of a tumor. The main emphasis will be made on the formation of oncogenes, the action of tumor suppressor genes and the induction of tumors by viruses

Learning activities and teaching methods:
16 h lectures and students presentations
Grading:
1-5/fail

Person responsible:
Thomas Kietzmann
740074Y: Tutoring/confidential posts, 1.5 op

Opiskelumuoto: General Studies
Laji: Course
Vastuuyksikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Jari Heikkinen
Opintokohteen kielet: Finnish

ECTS Credits: 1.5 credits
Contents: For this study a student acts as a tutor for a group of new students, as a member of Working group on development of teaching (OKTR) or as a member of working committee of OKTR.
Learning activities and teaching methods: 10-20 h tutoring of a small group, autumn yr2-yr3, activity in Working group on development of teaching (OKTR) or in working committee of OKTR. Optional.

Grading: pass/fail
Person responsible: Amanuensis

744623S: Yeast genetics, 6 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Department of Biochemistry
Arvostelu: 1 - 5, pass, fail
Opettajat: Alexander Kastaniotis
Opintokohteen kielet: English
Leikkaavuudet:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>744616S</td>
<td>Yeast genetics and molecular biology</td>
<td>2.5 op</td>
</tr>
<tr>
<td>744613S</td>
<td>Yeast genetics</td>
<td>1.5 op</td>
</tr>
</tbody>
</table>

ECTS Credits: 6 credits
Language of instruction: English
Timing: M.Sc. yr1-yr2 spring
Learning outcomes: As a result of participation in this course, students should
- have acquired a basic knowledge of yeast genetics and physiology
- understand basic principles of using the yeast model organism to address fundamental genetic and cell biological problems
- (practical course) be familiar with a variety of genetic and molecular biology techniques commonly used to manipulate baker's yeast in the pursuit of biological questions

Contents: This course is an introduction to *Saccharomyces cerevisiae* as a model organism and the use of classical and molecular genetic approaches in this yeast to study basic cellular processes. We will also focus on genetic screens and selections designed to identify targets of interest. Aspects of transcriptional regulation will be discussed to provide a basic understanding for some of the screens and selections introduced. The lecture part is
open to all students that fulfill the enrollment requirements, and equals 3 credits. Performance in the course will be assessed by participation in the course review session at the beginning of each lecture (10% of total grade) and by a final written examination.

The practical part of this is a block practical spread over two weeks and is designed to provide training in techniques and concepts commonly used in yeast genetics (streaking, spotting, mating, tetrad analysis, transformation, colony-color based assays, carbon source-dependent expression of genes, as well as generation and cloning of mutants). This part of the course has limited enrollment for 10-15 people, and preference will be given to students who performed well in the lecture course (3 credits).

Learning activities and teaching methods:
15 h lectures, 10 days practical, final exam and oral participation in course review session

Grading:
1-5/fail

Person responsible:
Alexander Kastaniotis