FTech - Courses in English for exchange students, Field of Process and Environmental Engineering (2017 - 2018)

Courses in English for exchange students in the study fields of PROCESS and ENVIRONMENTAL ENGINEERING

This Catalogue lists the courses that are available in English for exchange students during the Academic Year 2017-2018 in the Field of Process and Environmental Engineering, at the Faculty of Technology, University of Oulu.

The courses are either lectured/taught in English, or there is a book exam for the course available in English.

NB! Course availability: Most of the listed courses are available for all exchange students hosted by the Faculty of Technology (study fields of process engineering, environmental engineering, mechanical engineering, and industrial engineering and management), if the student has the required previous knowledge.

Please check the requirements of the course - see "Prerequisites and co-requisites" in the course's description.

If you wish to do an internship or a final thesis project during your exchange at our Faculty, you need to contact the Faculty International Liaison already when planning the exchange, before applying.

Exchange students hosted by other University of Oulu faculties have to contact the Liaison of the Faculty of Technology (see below) to ask if it is possible to participate to the courses, but also they must have the previous knowledge required for the course in question.

When preparing your study plan please use the information provided under the Courses tab in this catalogue. Read carefully the information of each course you wish to take (language of instruction, target group, course content, timing, preceding studies, additional information etc.).

For information on the exchange application process please see www.oulu.fi/university/studentexchange. All exchange applicants must submit their exchange application through SoleMOVE by the deadline (30.4./15.10.), proposed study plan (a Learning Agreement signed by you and your home coordinator) is attached to the online application.

Accepted exchange students are required to register to all courses. Course registration takes place once you have received your University of Oulu login information close to the start of your exchange period.

When registering you will be able to find detailed information on teaching and schedule here under Instruction tab. Our courses' schedules are based on so-called periodical schedules. Courses which are organised during periods 1-2 are given on the autumn term (September-December), and respectively the periods 3-4 refer to courses given during the spring term (January-May).

Teaching periods for 2017-18

Autumn term 2017
Period 1: Sept 4 - Oct 27, 2017
Period 2: Oct 30 – Dec 22, 2017
Spring term 2018
Period 3: Jan 8 – March 9, 2018
Period 4: March 12 – May 11, 2018 (after period 4 there can be some final exams, until the end of May)

For arrival and orientation dates see www.oulu.fi/university/studentexchange/academic-calender

Any questions about these courses should be addressed to
Ms. M.Sc. Marita Puikkonen
International Affairs Liaison for the Faculty of Technology Student Exchange (Incoming & Outgoing Mobility), Process, Environmental and Mechanical Engineering, and Industrial Engineering and Management & Chemistry
Faculty of Technology, University of Oulu, Finland
Eddress: Study.Technology@oulu.fi

Further information on application process and services for incoming exchange students: www.oulu.fi/university/studentexchange or at International.Office@oulu.fi

Tutkintorakenteisiin kuulumattomat opintokokonaisuudet ja -jaksot

477607S: Advanced Control and Systems Engineering, 5 op
488305S: Advanced Course for Biotechnology, 5 op
477223S: Advanced Process Design, 5 op
477311S: Advanced Separation Processes, 5 op
488204S: Air Pollution Control Engineering, 5 op
477508S: Automation in Metallurgical Industry, 5 op
477713S: Automation in Mineral Processing, 5 op
477507S: Automation in Pulp and Paper Industry, 5 op
488321S: Bioreactor technology, 5 op
477209S: Chemical Process Simulation, 5 op
477123S: Chemical processing of biomasses, 5 op
477525S: Computational intelligence in automation, 5 op
477621A: Control System Analysis, 5 op
477622A: Control System Design, 5 op
477624S: Control System Methods, 5 op
488201A: Environmental Ecology, 5 op
488221S: Environmental Load of Industry, 5 op
477041S: Experimental Design, 5 op
477305S: Flow Dynamics, 5 op
477052A: Fluid Mechanics, 5 op
488504S: Fundamentals of nuclear energy, 5 op
477322A: Heat and Mass Transfer, 5 op
488102A: Hydrological Processes, 5 op
488203S: Industrial Ecology, 5 op
488311S: Industrial Microbiology, 5 op
477207S: Industrial Water and Wastewater Technologies, 5 op
488052A: Introduction to Bioproduct and Bioprocess engineering, 5 op
477126S: Manufacturing of fibre products, 5 op
477201A: Material and Energy Balances, 5 op
477124S: Mechanical processing of biomasses, 5 op
477506S: Modelling and Control of Biotechnical Processes, 5 op
477308S: Multicomponent Mass Transfer, 5 op
477306S: Non-ideal Reactors, 5 op
477625S: Power Plant Automation, 5 op
477203A: Process Design, 5 op
477623S: Process Information Systems, 10 op
477524S: Process Optimization, 5 op
477309S: Process and Environmental Catalysis, 5 op
477501A: Process dynamics, 5 op
Opintojaksojen kuvaukset

Tutkintorakenteisiin kuulumattomien opintokokonaisuuksien ja -jaksojen kuvaukset

477607S: Advanced Control and Systems Engineering, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ikonen, Mika Enso-Veitikka
Opintokohteen kielet: Finnish
Leikkaavuudet:

ECTS Credits:
5 ECTS, 135 h of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Period 3

Learning outcomes:
After completing the course the student can design the model based control systems, can formulate and solve state estimation problems, and discover research trends in control and systems engineering

Contents:
1. Model-based control: as DMC, QDMC; GPC. 2. State estimations: as Kalman filtering and particle filters. 3. Active research directions (elected annually)

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and demonstration exercises

Target group:
M.Sc. students in process and environmental engineering

Prerequisites and co-requisites:
The courses 477621A Control system analysis, 477622A Control system design and 477624S Control system methods recommended beforehand

Recommended or required reading:
Materials distributed during the contact teaching and through the course web pages

Assessment methods and criteria:
Exam and homework
488305S: Advanced Course for Biotechnology, 5 op

Voimassaalo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Sanna Taskila
Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
English
Timing:
The course is held in spring semester during period 3. It is recommended to complete the course in the 4th (1st Master's) year.
Learning outcomes:
After completing this course, the student will be able to describe the most important techniques - both up- and downstream - in biotechnological production of proteins and metabolites.
Contents:
Microbial homologous and heterologous protein production. Physiological and process related items in the production of selected microbial metabolites. Methods for process intensification. Scale-up of bioprocesses. Unit operations in product recovery and purification.
Mode of delivery:
Blended teaching.
Learning activities and teaching methods:
Lectures 36 h / homework 48 h / self-study 51 h.
Target group:
Master students in bioprocess engineering. Master students in process engineering, environmental engineering and biochemistry with required prerequisites.
Prerequisites and co-requisites:
Courses 488309A Biocatalysis, 488052A Introduction to Bioproduct and Bioprocess Engineering and 488304S Bioreactor technology, or respective knowledge.
Recommended optional programme components:

Recommended or required reading:
Will be announced at the lectures.
Assessment methods and criteria:
Lectures, exercises and report. Grade will be composed of homework exercises and reports or final examination. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Dr. Sanna Taskila
Working life cooperation:
No
Other information:
477223S: Advanced Process Design, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ahola, Juha Lennart
Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
English
Timing:
Spring, period 4
Learning outcomes:
The student is able to produce a preliminary chemical process concept. She/he can apply systematic process synthesis tools, chemical process simulation tools and whole process performance criteria in the conceptual process design phase. Furthermore, the student is able to produce process design documents. The student will acquire skills how to work as a member in an industrial chemical process design project. She/he will experience by team work the hierarchical character of the conceptual process design, the benefits of the systematic working methods and the need to understand the whole process performance when optimal design is sought. The student understands the importance of innovation and creative work.
Contents:
Mode of delivery:
Design projects in small groups
Learning activities and teaching methods:
Project meetings 10h and project group work 120h
Target group:
Master's students of process and environmental engineering
Prerequisites and co-requisites:
Learning outcomes of 477203A Process Design or similar knowledge
Recommended or required reading:
Assessment methods and criteria:
Project work with oral and written reporting. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
University Lecturer Juha Ahola
Working life cooperation:
No
Other information:

477311S: Advanced Separation Processes, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail

Opettajat: Keiski, Riitta Liisa, Ainassaari, Kaisu Maritta, Muurinen, Esa Ilmari

Opintokohteen kielet: English

ECTS Credits:
5 ECTS / 133 hours of work

Language of instruction:
English

Timing:
Implementation in autumn semester during 2nd period every odd year

Learning outcomes:
After completing the course the student is able to review the most recent methods and techniques for separation and purification of components and products, e.g. in the chemical, food, and biotechnology industries. He/she is able to define the principles of green separation processes and their research status and potentiality in industrial applications.

Contents:
The course is divided into lectures given by experts from different fields (industry, research institutes and universities) and seminars given by students and senior researchers. The lectures open up the newest innovations in separation and purification technologies. The lectures can include for example the following themes: Phenomena in Supercritical fluid extraction, Pressure-activated membrane processes, Reverse osmosis, Nanofiltration, Ultrafiltration, Microfiltration, Pervaporation, Polymer membranes, Dialysis, Electrolysis and Ion-exchange, Forces for adsorption and Equilibrium adsorption isotherms, Sorbent materials and heterogeneity of surfaces, Predicting mixture adsorption, Rate processes in adsorption/adsorbers and adsorber dynamics, Cyclic adsorption processes, Temperature and pressure swing adsorption. Innovative separation methods, Phenomena integration, New hybrid materials as separation agents. Fluids and their application in gas extraction processes, Solubility of compounds in supercritical fluids and phase equilibrium. Extraction from solid substrates: Fundamentals, hydrodynamics and mass transfer, applications and processes (including supercritical water and carbon dioxide). Counter-current multistage extraction: Fundamentals and methods, hydrodynamics and mass transfer, applications and processes. Solvent cycles, heat and mass transfer, methods for precipitation. Supercritical fluid chromatography. Membrane separation of gases at high pressures. The topics of the course seminars will change annually depending on the research relevance and visiting scientists.

Mode of delivery:
Face-to-face teaching and seminars.

Learning activities and teaching methods:
Lectures 30 h, seminar work 25 h, 78 h

Target group:
Master’s degree students of the Process and Environmental Engineering study programmes

Prerequisites and co-requisites:
The courses 477304A Separation Processes and 477308S Multicomponent Mass Transfer are recommended beforehand

Recommended optional programme components:
-

Recommended or required reading:
The course literature will be chosen when the course is planned. Latest scientific research articles.

Assessment methods and criteria:
Portfolio or written examination and a seminar work including reporting and presentation.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Riitta Keiski

Working life cooperation:
No

Other information:
-

488204S: Air Pollution Control Engineering, 5 op
Learning outcomes:
Student is able to explain what kind of air emissions originate from certain industries and power plants, and can explain their effects on environment and health. He/she can describe how air emissions are measured. Student is also aware of common air pollution control systems for different emissions (particulates, VOCs, SO2, NOx) and is able to design air pollution cleaning devices. In addition, the student is able to describe the main laws related to air emission control.

Contents:
Atmosphere and air pollutants. Air pollution effects and regulations. Emission measurements. General ideas in air pollution control. Emission control technologies; primary particulates, VOC emissions, SOx emissions, NOx emissions. Motor vehicle problem, CO, lead, HAP, Indoor air pollution, and radon.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h, exercises 12 h, homework 8 h, teamwork presentations 10 h, and self-study 75.

Target group:
Master's degree students of the Process and Environmental Engineering study programmes.

Prerequisites and co-requisites:
The courses 477011P Introduction to Process and Environmental Engineering I, 488011P Introduction to Process and Environmental Engineering II (or 477013P Introduction to Process and Environmental Engineering) and 780109P Basic Principles in Chemistry recommended beforehand.

Recommended optional programme components:

Recommended or required reading:
Materials in the Optima environment. de Nevers; N.: Air Pollution Control Engineering. 2nd ed. McCraw-Hill 2000. 586 pp

Assessment methods and criteria:
Written final exam or intermediate exams.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Postdoctoral researcher Satu Pitkäaho

Other information:
477508S: Automation in Metallurgical Industry, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Leiviskä, Kauko Johannes
Opintokohteen kielet: English

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
English
Timing:
Implementation in the 4th period (spring term)
Learning outcomes:
After the course, the student knows the management and control problems in metallurgical industry and can choose between the main modelling and control methods to solve them. He can apply the skills of earlier studies in analysing the control of separate processes and larger process lines and can estimate technical and economic effects of automation in metallurgical industry.
Contents:
Modelling and control examples of steel production processes: coking, sintering, blast furnace, steel converter, continuous casting, and rolling mill. Model solutions by special-purpose simulators. Also some special measurements are introduced.
Mode of delivery:
Lectures, practical group work using simulators
Learning activities and teaching methods:
Lectures during one period
Target group:
Master’s students in the study programmes of Process or Environmental Engineering/study option Automation Technology. Exchange and other international students.
Prerequisites and co-requisites:
-
Recommended optional programme components:
-
Recommended or required reading:
Lecture notes in English. Everyone does his/her material during the course in the form of lecture diary that is returned and evaluated at the end. Group work uses the simulator in the Internet.
Assessment methods and criteria:
Continuous evaluation: lectures, lecture diaries, test, and practical work using simulation. Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Professor Kauko Leiviskä
Working life cooperation:
No
Other information:
-

477713S: Automation in Mineral Processing, 5 op

Voimassaalo: 01.08.2013 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Operttajat: Leiviskä, Kauko Johannes, Jari Ruuska
Opintokohteen kielet: Finnish
Leikkaavuudet:
477510S Automation in Mineral Processing 5.0 op
477724S Numerical Mine Modelling 5.0 op

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
Implementation in the 4th period (spring term)

Learning outcomes:
The target is to give the students the skills to understand and develop models for minerals processing and apply these models in process monitoring and control.

Contents:
Models for processes like crushing, grinding, flotation, leaching, separation etc. Examples how to use these models in process control and what kind of benefits can be drawn from their use.

Mode of delivery:
Lectures and demonstrations

Learning activities and teaching methods:
Lectures during one period

Target group:
Master’s students in process and environmental engineering. Exchange students.

Prerequisites and co-requisites:
Basic knowledge in minerals processing and control engineering

Recommended optional programme components:

Recommended or required reading:
Lecture notes in English

Assessment methods and criteria:
Continuous evaluation: lectures and test

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Kauko Leiviskä

Working life cooperation:
No

Other information:

477507S: Automation in Pulp and Paper Industry, 5 op

Voimassaolo: 01.08.2005 - 31.07.2021
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Leiviskä, Kauko Johannes
Opintokohteen kielet: English
Leikkaavuudet:
470338S Process Control in Pulp and Paper Industry 3.5 op

ECTS Credits:
5 ECTS /133 hours of work

Language of instruction:
English

Timing:
Learning outcomes:
After the course, the student knows the management and control problems in pulp and paper industry and can choose between the main means to solve them. He knows also the need and practice of special measurements on this area. He can apply the skills of earlier studies in analysing the control of separate processes and larger process lines and can estimate technical and economic effects of automation in pulp and paper industry.

Contents:
Control systems and methods, special measurements, automation in pulp industry (fibres, chemicals, mechanical pulping, paper machines, mill-wide automation), process analysis, modelling, and simulation. Application of intelligent methods in paper industry.

Mode of delivery:
Individual work (self-study/group work); no lectures given

Learning activities and teaching methods:
The course includes a literature review of a given topic done in groups of 2-3 students and a written test from the book given below. The course can be taken any time regardless of teaching periods.

Target group:
Master's students in study programmes Process or Environmental Engineering /study option Automation Technology. Exchange and other international students of the field.

Prerequisites and co-requisites:
Course Pulp and Paper Technology recommended beforehand

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Book examination, literature report.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Kauko Leiviskä

Working life cooperation:
No

Other information:

488321S: Bioreactor technology, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail

Opettajat: Petri Tervasmäki, Ville-Hermanni Sotaniemi

Opintokohteen kielet: English
Leikkaavuudet:

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
The course is held in autumn semester during period 2. It is recommended to complete the course in the 4th (1st Master's) year.

Learning outcomes:
After completing this course, the student will be able to verbally describe the most common equipment, materials and methods related to biotechnological processes, microbial growth and cultivation and sterilization. The student
will be able to apply different mathematical formulas for biocatalysis and for the bioreactor performance and use those to plan and analyze bioprocesses. The student will also be able to produce, analyze and interpret data from bioprocesses.

Contents:

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Lectures 50 h / exercises 8 h / homework 16 h / self-study 61 h.

Target group:
Master students in bioprocess engineering. Master students in process engineering, environmental engineering and biochemistry with required prerequisites.

Prerequisites and co-requisites:
The previous bachelor level courses in Process or Environmental Engineering (especially 488309A Biocatalysis, 488052A Introduction to Bioproduct and Bioprocess Engineering) or respective knowledge.

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Lectures, exercises, final exam, homework. Grade will be composed of final exam, exercises and homework. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Petri Tervasmäki

Working life cooperation:
No

Other information:
-

477209S: Chemical Process Simulation, 5 op

Voimassaolo: 01.08.2011 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikökä: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Jani Kangas
Opintokohteen kielet: English

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
English
Timing:
Autumn, periods 1-2
Learning outcomes:
The student has the ability to convert a process flow diagram into a form compatible with process simulation software. She/he has skills to evaluate realistic process conditions in a typical chemical process. The student can apply proper thermodynamic property models for simulation purposes. She/he can name the advantages and disadvantages of using the sequential modular solving approach in chemical process modelling and simulation.
She/he is capable of solving a computer simulation case for a typical chemical process. The student is able to analyze the simulation results with respect to realistic values.

Contents:

Mode of delivery:
Face-to-face teaching, introductory examples and group exercises with process simulation software.

Learning activities and teaching methods:
Guided exercises 46 h and group work 89 h

Target group:
Master's students in Chemical Engineering study option

Prerequisites and co-requisites:
477204S Chemical Engineering Thermodynamics or equivalent knowledge

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Group exercise reports and a simulation study exam performed individually.

Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Dr Jani Kangas

Working life cooperation:
No

Other information:

477123S: Chemical processing of biomasses, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Field of Process and Environmental Engineering

Arvostelu: 1 - 5, pass, fail

Opettajat: Maria Salmela-Karhu

Opintokohteen kielet: English

Leikkaavuudet:
477104S Chemical Processing of Biomasses 3.0 op

ECTS Credits:
5 ECTS /133 h of work

Language of instruction:
English

Timing:
Implementation in autumn period 1

Learning outcomes:
Upon completion of the course, a student should be able to explain the value chain of chemical processing of renewable lignocellulosic raw materials to pulp and different end-products. A student is able to identify lignocellulosic raw material sources, their properties, their main components and utilization potential of components. The student also identifies the unit operations of chemical pulping processes, can explain their operational principles and their objectives in the process and their role in end product properties. Besides cellulose fibre production, the student identifies biorefining concepts of chemical pulp components (cellulose, hemicelluloses, lignin and extractives) into high value products; cellulose derivatives, special fibres, nanofibrillar and micronized celluloses, and green chemicals.

Contents:
Lignocellulosic raw materials, fundamentals of chemical pulping, recovering of chemicals in kraft pulping, bleaching of pulp. High value biomass products by biorefining (e.g. nanocelluloses and soluble cellulosates).

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
The implementation methods of the course vary. Lectures and exercises 36 h, web learning and self-study 97 h. A part of the teaching can be replaced by group work or home work.

Target group:
Students interested in bioeconomy

Prerequisites and co-requisites:
488052A Introduction to Bioproduct and Bioprocess Engineering is recommended.

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
This course utilizes continuous assessment including three intermediate exams with potential web learning, lecture diary and/or homework. Alternatively, the course can also be completed by taking the end exam. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Maria Salmela-Karhu

Working life cooperation:
No

Other information:
-

477525S: Computational intelligence in automation, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Esko Juuso, Aki Sorsa
Opintokohteen kielet: Finnish

Leikkaavuudet:
477505S Fuzzy-neuromethods in Process Automation 4.0 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
Finnish and English

Timing:
Implementation in the spring term, on the 3rd period. Recommended for 4th year students (first M.Sc. year)

Learning outcomes:
After the course the student is capable of explaining the concepts of intelligent systems and operation principles of fuzzy set systems, neural networks, neuro-fuzzy systems and evolutionary computation. The student has skills to construct and tune fuzzy models in Matlab-Simulink environment and to explain the operation of these models. The student is able to explain in an integrating way the principle concepts of neural computing and construct neural network models in Matlab-Simulink environment. The student recognizes the key problems of the data-driven modelling and is able to choose suitable solutions which ensure generalization. The student is able to explain the operation principles of genetic algorithms and to use them in tuning of fuzzy set systems and neural network models. Moreover, the student is able to describe alternative solutions for dynamic models, hyperplane methods and hybrid solutions. The student can explain the key concepts of cellular automata and evolutionary computation. After the course the student is able to search other relevant programming tools.

Contents:
Fuzzy logic and fuzzy set systems, fuzzy calculus, fuzzy modeling and control, neural computation, learning algorithms, neuro-fuzzy methods, linguistic equations, evolutionary computation, hyperplane methods, cellular automata, intelligent diagnostics and decision making, adaptive intelligent systems, hybrid systems.

Mode of delivery:
Tuition is implemented mainly as face-to-face teaching.

Learning activities and teaching methods:
The amount of guided teaching is 32 hrs, including lectures (16), exercises (10) and seminars (6). Totally 58 hrs are allocated for self-study, which consists of three parts: (1) a case study covering several topics applied in a chosen problem, (2) a seminar work concentrating on a single topic, and (3) the final report.

Target group:
M.Sc. students in process and environmental engineering, machine engineering, computer engineering and industrial engineering and management.

Prerequisites and co-requisites:
No specific prerequisites, but skills for simulation, and programming in Matlab are a benefit. See "Recommended optional programme components" below.

Recommended optional programme components:
Courses Simulation, and Programming in Matlab reinforce abilities for the exercises and the case study

Recommended or required reading:
Lecture notes and exercise materials. Material is in Finnish and in English.

Assessment methods and criteria:
The assessment of the course is based on the exercises, case study, seminar and the final report. Final exam is an alternative for the final report. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit uses a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
D.Sc. (Tech.) Esko Juuso

Working life cooperation:
No

Other information:

477621A: Control System Analysis, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Hiltunen, Jukka Antero, Ikonen, Mika Enso-Veitikka, Seppo Honkanen
Opintokohteen kielet: Finnish
Leikkaavuudet:

ECTS Credits:
5 ECTS / 133 hours of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Period 1 (autumn term)

Learning outcomes:
After completing the course the student can describe the process dynamics with mathematical and graphical methods. The student can independently: form linear process models, analyse linear system stability, Bode diagrams, Routh's stability criterion and the Jury's test, and evaluate the behavior of processes through time and frequency range specifications.

Contents:
Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and exercises

Target group:
B.Sc. students in process and environmental engineering

Prerequisites and co-requisites:
The courses 477011P Introduction to process and environmental engineering I, 488010P Introduction to process and environmental engineering II, and 477051A Automation engineering recommended beforehand

Recommended optional programme components:
None

Recommended or required reading:

Assessment methods and criteria:
Exam and in addition extra points from homeworks

Grading:
Numerical grading scale 1-5 or fail

Person responsible:
Lecturer Jukka Hiltunen and university teacher Seppo Honkanen

Working life cooperation:
No

Other information:

477622A: Control System Design, 5 op

Voimassaolo: 01.08.2015
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuyksikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Seppo Honkanen, Hiltunen, Jukka Antero, Ikonen, Mika Enso-Veitikka
Opintokohteen kielet: Finnish
Leikkaavuudet:
477603A Control System Design 4.0 op

ECTS Credits:
5 ECTS / 133 hours of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Period 3 (spring term)

Learning outcomes:
After completing the course the students can apply mathematical and graphical methods to the dynamics of process characterisation and control design. The student can form PID controllers for the process, and tune them and evaluate the closed-loop requirements.

Contents:
Laplace-level vs, time level, poles of the system, closed loop and its design specifications, PID control and tuning, Matlab control designer tool, control design in frequency domain

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and exercises

Target group:
B.Sc. students in process and environmental engineering

Prerequisites and co-requisites:
The courses 477011P Introduction to process and environmental engineering I, 488010P Introduction to process and environmental engineering and 477602A Control system analysis recommended beforehand

Recommended optional programme components:
None

Recommended or required reading:

Assessment methods and criteria:
Exam

Grading:
Numerical grading scale 1-5 or fail

Person responsible:
Professor Enso Ikonen and university teacher Seppo Honkanen

Working life cooperation:
No

Other information:

477624S: Control System Methods, 5 op

Voimassaolo: 01.08.2015 -

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuyksikkö: Field of Process and Environmental Engineering

Arvostelu: 1 - 5, pass, fail

Opettajat: Seppo Honkanen

Opintokohde kielet: Finnish

Leikkaavuudet:

- 477614S Control System Methods 3.0 op
- 477605S Digital Control Theory 4.0 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Period 1 (autumn term)

Learning outcomes:
After completing the course students can identify the problems of the sampled data systems, and know how to apply discrete time methods for systems analysis and control design.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and exercises include guided computer simulations

Target group:
M.Sc. students in process and environmental engineering

Prerequisites and co-requisites:
The courses 477621A Control system analysis and 477622A Control system design recommended beforehand

Recommended optional programme components:
-
Relevant or required reading:

Assessment methods and criteria:
Final written exam; to request an exam in English, contact the lecturer via email beforehand.

Grading:
Numerical grading scale 1-5 or fail

Person responsible:
University teacher Seppo Honkanen

Working life cooperation:
No

Other information:

488201A: Environmental Ecology, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Väisänen, Virpi Maria
Opintokohteen kielet: English
Leikkaavuudet:

<table>
<thead>
<tr>
<th>Code</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>488210A</td>
<td>Environmental science and technology</td>
<td>5.0</td>
</tr>
<tr>
<td>ay488201A</td>
<td>Environmental Ecology (OPEN UNI)</td>
<td>5.0</td>
</tr>
<tr>
<td>488406A</td>
<td>Introduction to Environmental Science</td>
<td>5.0</td>
</tr>
<tr>
<td>480001A</td>
<td>Environmental Ecology</td>
<td>5.0</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
Implementation in spring semester during 4th period. It is recommended to complete the course at the first (Bachelor's) spring semester.

Learning outcomes:
Upon completion of the course, the student is able to define the basic concepts of environmental ecology. He/she has knowledge about the state of the environment and is able to explain the essential environmental problems and the main effects of pollution. In addition, the student knows some solutions to environmental problems and is aware of ethical thinking in environmental engineering. The student also has basic knowledge about toxicology and epidemiology.

Contents:

Mode of delivery:
Web-based teaching.

Learning activities and teaching methods:
Book examination 80 h / exercises as individual work 53 h.

Target group:
Bachelor's degree students of environmental engineering.

Prerequisites and co-requisites:
The courses 477011P Introduction to Process and Environmental Engineering I and 488011P Introduction to Environmental Engineering recommended beforehand.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
All students complete the course in a final examination. Also the exercises will be assessed. The assessment of the course is based on the learning outcomes of the course. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University teacher Virpi Väisänen

Working life cooperation:
No

Other information:

488221S: Environmental Load of Industry, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Niina Koivikko
Opintokohteen kielet: English
Leikkaavuudet:
488215S Industry and Environment 5.0 op
488205S Environmental Load of Process Industry 4.0 op

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
Implementation in spring semester during 3rd period.

Learning outcomes:
The student is able to identify the essential features of the environmental load in different types of (chemical, wood, metallurgical,...) industry. He/she is able to explain the type, quality, quantity and sources of the emissions. The student is familiarized with the main emission control systems and techniques in different industrial sectors. The student can explain the environmental management system of an industrial plant and is able to apply it to an industrial plant.

Contents:
Effluents: types, quality, quantity, sources. Unit operations in managing effluents, comprehensive effluent treatment. Environmental management systems, environmental licences, environmental reporting and BAT.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 40 h, self-study 93h.

Target group:
Master's degree students of the Process and Environmental Engineering study programmes.

Prerequisites and co-requisites:
The courses 477011P Introduction to Process and Environmental Engineering I, 488011P Introduction to Process and Environmental Engineering II, 488204S Air Pollution Control Engineering and 488110S Water and Wastewater Treatment recommended beforehand.

Recommended optional programme components:

Recommended or required reading:
Material represented in lectures and in the Optima environment.

Assessment methods and criteria:
Written final exam or a learning diary.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail

Person responsible:
Doctoral student Niina Koivikko

Working life cooperation:
No

Other information:
The course mainly consists of specific lectures presented by experts who are invited from industry.

477041S: Experimental Design, 5 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Leiviskä, Kauko Johannes
Opintokohteen kielet: English

ECTS Credits:
5 ECTS /133 hours of work

Language of instruction:
English

Timing:
Implementation in the 3rd period (spring term)

Learning outcomes:
After this course the student knows the main methods and software tools for experiment design and is able to use them. He can apply the main approaches for studying and evaluating the measurement reliability.

Contents:
Determining the uncertainty of measurements in chemical, physical and biochemical measurements, measurements reliability and traceability; Calculation examples support the learning of the assessment preparation for measurements uncertainty; Experimental design preparation and execution in process analysis and optimization. Test methods and variable significance, reliability of experimental data; Practical experiment design exercise using a simulation model and Modde software.

Mode of delivery:
Lectures and practical work

Learning activities and teaching methods:
Contact lectures

Target group:
Master's students in the study programmes of Process or Environmental Engineering; exchange students; doctoral students

Prerequisites and co-requisites:
No prerequisites

Recommended optional programme components:
-

Recommended or required reading:
Reading materials given during the lectures

Assessment methods and criteria:
Assessment during the course by continuous evaluation: lecture exams and the written report of the practical work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Kauko Leiviskä

Working life cooperation:
No
477305S: Flow Dynamics, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Muurinen, Esa Ilmari
Opintokohteen kielet: Finnish
Leikkaavuudet:
470303S Flow Dynamics 3.5 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
Finnish, can be completed in English as a book examination (see Mode of Delivery)

Timing:
Implementation in autumn semester during 1st period. It is recommended to complete the course at the fourth (1st Master's) autumn semester.

Learning outcomes:
After completing the course the student is able to formulate the partial differential equations describing flow of fluids and to solve these equations in systems with simple geometry using difference, finite element and finite volume methods. The student is also able to formulate and solve the equations describing flow of granular material based on molecular dynamics. He/she is able to choose the experimental methods for validation of the calculated results and the methods to measure the most common properties describing fluid flow. After the course the student is able to model simple flow configurations using CFD and to design experimental systems and measurements for verifying computational results.

Contents:

Mode of delivery:
In the Finnish version: Lectures and compulsory exercise done in small groups. In the English version, compulsory simulation exercise done in small groups and a book exam, which replaces the lectures given in Finnish.

Learning activities and teaching methods:
Lectures 25 h, and exercise 15 h, self-study 93 h. For foreign students written examination based on given literature and a compulsory simulation exercise.

Target group:
Master’s degree students of process and environmental engineering.

Prerequisites and co-requisites:
Courses 477301A Momentum Transfer or 477052A Fluid Mechanics, 031019P Matrix Algebra and 031022P Numerical Methods are recommended beforehand.

Recommended optional programme components:
The course is part of a stream that aims at skills needed in the phenomenon-based modelling and planning of industrial processes.

Recommended or required reading:

Assessment methods and criteria:
Examination or a learning diary, and simulation exercise.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Person responsible:
Laboratory manager Dr Esa Muurinen

Working life cooperation:
No

Other information:

477052A: Fluid Mechanics, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ainassaari, Kaisu Maritta, Anna-Kaisa Ronkanen
Opintokohteen kielet: Finnish
Leikkaavuudet:
477301A Momentum Transfer 3.0 op

ECTS Credits:
5 ECTS / 133 hours of work.

Language of instruction:
Finnish, can be completed in English as a book examination.

Timing:
Implementation in spring semester during 3rd period. It is recommended to complete the course at the second (Bachelor's) spring semester.

Learning outcomes:
After the course the student is able to determine the viscosity of pure substances and mixtures and to estimate the effect of temperature and pressure on viscosity. The student is able to recognise the interactions between a solid body and flowing fluid and to distinguish the forces, their directions and to calculate their magnitudes. The student is able to formulate momentum balance equations and to solve these in order to calculate velocity distribution, flow rate and pressure drop. The student is able to distinguish laminar and turbulent flow regimes from others and is able to use the correct equations according to flow regime. After the course the student is able to design pipelines and other simple flow mechanical process equipment.

Contents:

Mode of delivery:
Face-to-face teaching in Finnish. Book examination in English.

Learning activities and teaching methods:
Lectures 45 h, homework 15 h and self-study 73 h. For foreign students written examination based on given literature.

Target group:
Bachelor's degree students of process and environmental engineering.

Prerequisites and co-requisites:
Knowledge of solving differential equations.

Recommended optional programme components:
The course is part of a stream that aims at skills needed in the phenomenon-based modelling and planning of industrial processes.

Recommended or required reading:

Assessment methods and criteria:
This course utilizes continuous assessment. During the course there are 5 intermediate exams. The course can also be completed by final examination. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University researcher Antonio Caló

Working life cooperation:
No

Other information:

488504S: Fundamentals of nuclear energy, 5 op

Voimassaolo: 01.08.2016 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Antonio Caló
Opintokohteen kielet: English

ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Autumn semester during the 1st period.

Learning outcomes:
Upon completion of the course, students can define the basic elements of nuclear power production and technology. They are thus able to describe the physical processes as well as the different components of a nuclear power plant. Students can also describe different elements of nuclear power technology deployment such as safety, environmental and health related issues.

Contents:
Basics of nuclear physics, fission and fusion; introduction to nuclear power technology and components of a nuclear power plant; history of nuclear power production; nuclear fuel cycle, mining and uranium extraction, enrichment, fuel temporary and permanent disposal; introduction to nuclear power plant design, safety and auxiliary system design; principles of nuclear safety and strategy of accidents prevention and management; principles of health physics, monitoring safety and prevention; introduction to nuclear power safety and safety culture.

Mode of delivery:
lectures

Learning activities and teaching methods:
Lectures 36h; mandatory work assignment and written final exam.

Target group:
Second year Master degree students; the course is open to all interested doctoral students.

Recommended or required reading:
lecture slides and information on recommended reading material will be provided during the course

Assessment methods and criteria:
Written final exam.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University researcher Antonio Caló

Other information:
The course will include a number of guest lecturers’ contributions. When needed, lectures will happen through video conference. There might be the possibility for students located somewhere other than Oulu to attend the course via video conference as well. Such eventualities will have to be discussed and pre-arranged with the course organizers.

477322A: Heat and Mass Transfer, 5 op
Voimassaolo: 01.08.2015 - 31.07.2019
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ainassaari, Kaisu Maritta
Opintokohteen kielet: Finnish

Leikkaavuudet:
- 477323A Mass and Heat Transfer 5.0 op
- 477302A Heat Transfer 3.0 op
- 477303A Mass Transfer 3.0 op

ECTS Credits:
5 ECTS / 133 hours of work

Language of instruction:
Finnish, can be completed in English as a book examination

Timing:
Implementation in autumn semester during 1st period. It is recommended to complete the course at the third (Bachelor's) autumn semester.

--

Learning outcomes:
After passing the course the student knows what happens when heat is transferred by conduction, convection and radiation. The student can describe energy transfer with differential energy balances connected with momentum balances; In macro scale the student is able to solve practical heat transfer problems by correlating heat transfer coefficients to dimensionless flow and material characteristics; With the help of these transfer coefficients the student is capable of estimating the size of heat transfer equipment, especially heat exchangers and select the most suitable and profitable types; and to Sketch large heat nets and to diminish the costs of the equipments.

The student is able to use the pinch method which optimises the number of heat exchangers and total energy consumption. He/she is also able to apply the exergy principle to make work from thermal energy. With the aid of this principle he/she will be able to divide the costs of the used energy in right proportion based on the processing stage. He/she student is able to explain diffusion as a phenomenon and the factors affecting it. He/she is able to model mass transfer in simple systems by using the theory of Fick. The student is capable of modeling diffusion by differential mass balances. He/she recognises the special features of mass transfer in turbulent systems and the role of different transport phenomena in mass transfer equipment. He/she has rudimentary practical skills applicable to the scale-up of the equipment used for absorption.

Contents:

Mode of delivery:
Face-to-face teaching in Finnish. Book examination possible in English.

Learning activities and teaching methods:
Lectures 45 h, homework 15 h and self-study 73 h. For foreign students written examination based on given literature.

Target group:
Bachelor's degree students of process and environmental engineering.

Prerequisites and co-requisites:
Knowledge of solving differential equations.

Recommended optional programme components:
The course is part of a stream that aims at skills needed in the phenomenon-based modelling and planning of industrial processes.

Recommended or required reading:
(Will be announced later)

Assessment methods and criteria:
This course utilizes continuous assessment. During the course there are 4 intermediate exams. The course can also be completed by final examination.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University teacher Kaisu Ainassaari
Working life cooperation:
No
Other information:

488102A: Hydrological Processes, 5 op

Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opintokohteen kielet: Finnish
Leikkaavuudet:
ay488102A Hydrological Processes (OPEN UNI) 5.0 op
480207A Hydraulics and Hydrology 5.0 op

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
Finnish but also option to complete the course in English
Timing:
In the period 1
Learning outcomes:
After the course, the student understands and can describe the main hydrological processes, water movements and hydraulics phenomenon quantitatively through mathematical methods. The student also understands and quantifies the relation between state and flow with relation to snowmelt, evaporation, infiltration and groundwater flow.
Contents:
Hydrological cycle, physical properties of water, distribution of water resources, water balance, precipitation, evapotranspiration, soil and ground water, infiltration, runoff, snow hydrology, hydrometry, water quality of rivers and lakes.
Mode of delivery:
Face-to-face teaching and independent work with exercises.
Learning activities and teaching methods:
Lectures 10 h, exercises 16 h and independent work 109 h. Totally 135 h.
Target group:
Students in international master programs of environmental engineering
Prerequisites and co-requisites:
The recommended prerequisite is the completion of the following course or having corresponding knowledge prior to enrolling for the course unit: 477201A Material and Energy Balances and 477052A Fluid mechanics.
Recommended optional programme components:
The course is a prerequisite for Master level studies.
Recommended or required reading:
Assessment methods and criteria:
The assignments must be returned and passed with threshold of 50% in order to get final examination. The final grade of the course is weighted average of assignments (80%) and examination (20%).
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
University Lecturer Anna-Kaisa Ronkanen
Working life cooperation:
-
Other information:
-

488203S: Industrial Ecology, 5 op
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Väisänen, Virpi Maria
Opintokohteen kielet: English

Leikkaavuudet:
ay488203S Industrial Ecology and Recycling 5.0 op
480370S Industrial Ecology and Recycling 5.0 op

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
Implementation in autumn semester during 2th period.

Learning outcomes:
Upon completion of the course, the student will be able to use the tools of industrial ecology and apply them to industrial activity. The student can also analyze the interaction of industrial, natural and socio-economic systems and able to judiciously suggest changes to industrial practice in order to prevent negative impacts. The student can also analyze the examples of industrial symbioses and eco-industrial parks and able to specify the criteria of success for building eco-industrial parks.

Contents:
Material and energy flows in economic systems and their environmental impacts. Physical, biological and societal framework of industrial ecology. Industrial metabolism, corporate industrial ecology, eco-efficiency, dematerialization. Tools of industrial ecology, such as life-cycle assessment, design for the environment, green chemistry and engineering. Systems-level industrial ecology, industrial symbioses, eco-industrial parks.

Mode of delivery:
Face-to-face teaching in English.

Learning activities and teaching methods:
Lectures 30 h / Group work 30 h / Self-study 75 h. The exercises are completed as guided group work.

Target group:
Master’s degree students of process and environmental engineering.

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
All students complete the course in a final exam. Also the exercise will be assessed. The assessment criteria are based on the learning outcomes of the course.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University teacher Virpi Väisänen

Working life cooperation:
No

Other information:
-

488311S: Industrial Microbiology, 5 op

Voimassaolo: 01.08.2014 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Sanna Taskila
Opintokohteen kielet: English

Leikkaavuudet:

- 488310S Laboratory Course in Microbiology 2.0 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
English

Timing:
The course is held as intensive course in autumn semester during period 2

Learning outcomes:
After completing this course, the student will be able to operate in a microbiological laboratory. The student will be able to handle and cultivate microbes, follow the growth of microbes, and to apply these methods to different microbes. Student will be able to write a laboratory diary.
The student will be able to plan and conduct bench-scale research on biotechnical processes using aseptic techniques, and to evaluate and report the results of her/his research. The student will learn to apply microbes for the production of relevant biochemicals, to conduct analyses and mathematically examine the performance of studied production systems, to evaluate the challenges in up-scaling of the system, and to compare the results of research to existing literature.

Contents:
The topic of the course is related to current topics in biotechnology. The work will include laboratory exercises in the area of biocatalysis under supervision of researchers and a written final report including results of laboratory work. An industry excursion related to the course topic is arranged in Oulu area when possible.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 2 h/ laboratory exercises 70 h/ written report 35 h / self-study 28 h.

Target group:
Master's students of bioprocess engineering.

Prerequisites and co-requisites:
Courses 488309A Biocatalysis, 488052A Introduction to Bioproduct and Bioprocess Engineering, 488321S Bioreactor technology, or respective knowledge.

Recommended or required reading:
Working instructions; current publications and textbooks etc. on microbiology, biotechnology and environmental engineering.

Assessment methods and criteria:
Grade will be composed of supervised practical laboratory exercises and written report.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Dr. Sanna Taskila

Working life cooperation:
No

Other information:

477207S: Industrial Water and Wastewater Technologies, 5 op

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Field of Process and Environmental Engineering

Arvostelu: 1 - 5, pass, fail

Opettajat: Tiina Leiviskä

Opintokohteen kielet: Finnish
ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English.

Timing:
Spring period 3

Learning outcomes:
After completing the course student knows water use and management of water-intensive industrial sectors. He/she knows industrial raw water, process water and waste water treatment technologies and can evaluate optimal usage of water by considering external requirements as well as technical and economical factors. He/she can select water treatment operations on the basis of case-specific needs.

Contents:
Industrial water management. Physical, chemical and biological water treatment operations used by process industry. Detailed description of chemical water treatment processes. Pre-treatment of raw water, treatment of process water and water reuse, waste water treatment, disinfection.

Mode of delivery:
Lectures, group work and self-study

Learning activities and teaching methods:
Lectures 30h, group work 10h and self-study 90h

Prerequisites and co-requisites:
-

Recommended or required reading:

Assessment methods and criteria:
The students will be making an essay and a group exercise, which both will be evaluated. Student will participate in final exam after the course.

Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Dr Tiina Leiviskä

Working life cooperation:
No

Other information:
-

488052A: Introduction to Bioproduct and Bioprocess engineering, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Maria Salmela-Karhu
Opintokohteen kielet: English
Leikkaavuudet:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>488054A</td>
<td>Introduction to Bioproduct and Bioprocess engineering</td>
<td>5.0 op</td>
</tr>
<tr>
<td>488054A</td>
<td>Introduction to Bioproduct and Bioprocess engineering</td>
<td>5.0 op</td>
</tr>
<tr>
<td>488302A</td>
<td>Basics of Biotechnology</td>
<td>5.0 op</td>
</tr>
<tr>
<td>477103A</td>
<td>Pulp and Paper Technology</td>
<td>3.0 op</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
The course is held in spring semester during period 3. It is recommended to complete the course in the 3rd (Bachelor's) year

Learning outcomes:
After completing this course, a student should be able to identify key renewable natural resources and their sustainable and economical processing via mechanical, chemical and biotechnological methods. The student is able to recognize the major properties of the bioproducts and their use in different applications.

Contents:
Renewable raw materials and their properties, value chains of biomass processing, recycling of biomaterials, bioenergy, and economical and environmental aspects. Industrial biotechnology for food and pharmaceutical applications, materials industries and environmental applications.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Lectures 48 h/ self-study 85 h.

Target group:
Bachelor students in process engineering and environmental engineering.

Prerequisites and co-requisites:
488309A Biocatalysis or respective knowledge in biocatalysis.

Recommended optional programme components:
-

Recommended or required reading:
Lecture materials and other materials that will be announced at the lectures. Supplementary material: Book series: Fapet Oy. Papermaking Science and Technology; Aittomäki E et al.: Bioprosessitekniikka. WSOY 2002. 951-26995-6.

Assessment methods and criteria:
Lectures, intermediate exams and/or final exam. Grade will be composed of lecture exams and/or final exam. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Sanna Taskila, Maria Salmela-Karhu

Working life cooperation:
No

Other information:
- 477126S: Manufacturing of fibre products, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Maria Salmela-Karhu, Timo Jortama
Opintokohteen kielet: Finnish
Leikkaavuudet:
477107S Paper Manufacture 3.0 op
477106S Recycled Fiber Processes 3.0 op

ECTS Credits:
5 ECTS / 133 h of work

Language of Instruction:
Finnish. Possible to complete also in English as a book examination.

Timing:
Implementation in spring period 4

Learning outcomes:
Upon completion of the course, a student should be able to identify the unit operations paper and board manufacturing and can explain their purpose of use. The student can name the most important chemicals, fillers and coating pigments and can explain their importance in paper and board making. The student can present the
essential properties of papermaking fibres, the structure and properties of paper and board, as well as different paper and board grades. The student knows the fundamentals of printing technology and identifies paper properties essential for printing.

Contents:
Properties of fibers, web forming, chemicals in paper manufacture, coating process, structure and properties of paper, paper processing, paper grades, and fundamentals of printing technology.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and case studies, excursion to paper mill and printing laboratory.

Target group:
Students interested in bioeconomy

Prerequisites and co-requisites:
488052A Introduction to Bioproduct and Bioprocess Engineering is recommended

Recommended optional programme components:
-

Recommended or required reading:
Book series: Fapet Oy. Papermaking Science and Technology, books 8-11, and 13. Lecture materials and other materials that will be announced at the lectures.

Assessment methods and criteria:

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Maria Salmela-Karhu

Working life cooperation:
excursion to paper mills and printing laboratory

Other information:
-

477201A: Material and Energy Balances, 5 op

Voimassaolo: 01.08.2005 - 31.12.2019

Opiskelumuoto: Intermediate Studies

Laji: Course

Vastuuysikkö: Field of Process and Environmental Engineering

Arvostelu: 1 - 5, pass, fail

Opettajat: Tiina Leiviskä

Opintokohteen kielet: Finnish

Leikkaavuudet:
- 477221A Material and Energy Balances 5.0 op
- 470220A Fundamentals of Chemical Process Engineering 5.0 op

ECTS Credits:
5 ECTS /133 hours of work

Language of instruction:
Finnish. The course can be completed in English as a book examination.

Timing:
Spring periods 3 and 4.

Learning outcomes:
The student is able to formulate material and energy balances for a process by taking into account the restrictions set by reaction stoichiometry. The student knows how the created mathematical formulation can be exploited in process consideration.

Contents:
Formulation of material and energy balances by taking into account the effects of chemical reactions.

Mode of delivery:
Lectures and group exercise

Learning activities and teaching methods:
Lectures 40h, group work 10h and self-study 80h
Target group:
Bachelor students in of Process or Environmental Engineering

Prerequisites and co-requisites:
Basics from the course Introduction to Process Engineering

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
During the course, there are two intermediate exams and both of them must be passed. Alternatively student can participate in final exam after the course. In addition to this, the students will be making a group exercise, which will be evaluated.

Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Dr Tiina Leiviskä

Working life cooperation:
No

Other information:
-

477124S: Mechanical processing of biomasses, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Maria Salmela-Karhu
Opintokohteen kielet: English
Leikkaavuudet:
477105S Mechanical Processing of Biomasses 3.0 op

ECTS Credits:
5 ECTS / 133 h of work

Language of instruction:
English

Timing:
Implementation in autumn period 2

Learning outcomes:
Upon completion of the course, a student should be able to explain the value chain of mechanical and chemimechanical processing of renewable lignocellulosic raw materials. Upon completion of the course, a student should be able to identify the unit operations of mechanical and chemi-mechanical pulping process and can explain their operational principles. The student can evaluate the raw material properties and importance of different unit processes on the quality of the end products. In addition, the student can compare fibre properties of different mechanical and chemi-mechanical pulps and wood powders and can explain their effects on the quality of the end product. Student can explain production principle of engineered wood, biocomposites and pelletizing.

Contents:
Processing of wood, mechanical fibres, wood powders: raw material properties, mechanical and chemimechanical defibering, screening, bleaching, biomass micronization and pulverization, the production of engineered wood, wood-plastic composites and pellets. End product properties.

Mode of delivery:
Blended teaching

Learning activities and teaching methods:
The implementation methods of the course vary. Lectures and exercises 32 h, web learning and self-study 101 h. A part of teaching can be replaced by group work or home work.

Target group:
Students interested in bioeconomy
Prerequisites and co-requisites:
488052A Introduction to Bioproduct and Bioprocess Engineering is recommended

Recommended optional programme components:

Recommended or required reading:
Book series: Fapet Oy. Papermaking Science and Technology, book 5: Mechanical Pulping. Lecture materials and other materials that will be announced at the lectures.

Assessment methods and criteria:
This course utilizes continuous assessment including three intermediate exams with potential web learning, lecture diary and/or homework. Alternatively, the course can also be completed by taking the end exam. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Maria Salmela-Karhu

Working life cooperation:
No

Other information:

477506S: Modelling and Control of Biotechnical Processes, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Leiviskä, Kauko Johannes
Opintokohde: English
Leikkaavuudet:

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
Implementation in the 1st period (autumn term)

Learning outcomes:
After the course, the student can model kinetics and dynamics of bio-technical processes (mainly fermentation) starting from the process phenomena and mass balance models. He also understands the limitations of different approaches and the modelling assumptions. He also has preliminary skills to write models in Matlab/Simulink environment.

Contents:

Mode of delivery:
Contact lectures, individual work and home tests (one per week)

Learning activities and teaching methods:
The course is given within the period of five weeks. Laboratory exercises include computational exercises and writing the report.

Target group:
Master's students in Process and Environmental Engineering / Automation Technology

Prerequisites and co-requisites:
Course Process Dynamics (previous Process Control Engineering I) or respective recommended beforehand

Recommended optional programme components:

Recommended or required reading:
Lecture materials.

Call
Send SMS
Call from mobile
Add to Skype
You'll need Skype CreditFree via Skype

Assessment methods and criteria:
Grade given is based on home tests and exercise report; ratio is 4/1. Final examination is also possible. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Kauko Leiviskä, Dr Aki Sorsa

Other information:

477308S: Multicomponent Mass Transfer, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ainassaari, Kaisu Maritta, Muurinen, Esa Ilmari
Opintokohteen kielet: Finnish
Leikkaavuduudet:
470302S Multicomponent Separation 5.0 op

ECTS Credits:
5 ECTS / 133 hours of work

Language of instruction:
Finnish, can be completed in English as a book examination

Timing:
Implementation in spring semester during 4th period. It is recommended to complete the course at the fourth (first Master's) spring semester

Learning outcomes:
Upon completing the required course work the student is able to formulate matrix equations describing mass transfer in multicomponent systems using the theory of Maxwell-Stefan and the laws of Fick for laminar and turbulent systems. He/she is also able to define bootstrap relations to bind the general equations to the physical situation of the problem, and is capable of applying the methods to estimate diffusion and mass transfer coefficients. In addition, he/she is able to describe the theories for mass transfer through phase interface, to calculate the multicomponent phase equilibrium formed by mass transfer across fluid interphase with equations of state and activity coefficient correlations, and to explain the experimental methods to measure vapour-liquid equilibrium and the methods to estimate the validity of measured values. After completing the course the student is capable of applying models of mass transfer and phase equilibrium to model and design multicomponent processes (e.g. distillation and condensation) based on diffusion.

Contents:

Mode of delivery:
Face-to-face teaching in Finnish (book examination in English)

Learning activities and teaching methods:
Lectures 30 h, exercises 8 h, simulation exercise 15 h and self-study 80 h. For foreign students: a written examination based on given literature and simulation exercise

Target group:
Master’s degree students of process and environmental engineering

Prerequisites and co-requisites:
Courses 477303A Mass Transfer or 477322A Heat and Mass Transfer, 477304A Separation Processes and 031019P Matrix Algebra are recommended beforehand.

Recommended optional programme components:
This is one of the courses in which physical chemistry is used in the applications of process and environmental engineering. It is part of a stream that aims at skills needed in the phenomenon-based modelling and planning of industrial processes.

Recommended or required reading:

Assessment methods and criteria:
Examination or a learning diary and a simulation exercise. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Laboratory manager Dr Esa Muurinen

Working life cooperation:
No

Other information:

477306S: Non-ideal Reactors, 5 op

Voimassaolo: 01.08.2005 -

Opiskelumuoto: Advanced Studies

Laji: Course

Vastuuysikkö: Field of Process and Environmental Engineering

Arvostelu: 1 - 5, pass, fail

Opettajat: Keiski, Riitta Liisa

Opintokohteen kielet: English

Leikkaavuudet:
470222A Reactor Analysis and Design II 5.0 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
English

Timing:
Implementation in the autumn semester during the 2nd period. It is recommended to complete the course at the fourth (1st Master’s) autumn semester.

Learning outcomes:
After completing the course the student can analyse the effect of non-ideal mixing conditions on the behaviour of a reactor. He/she is capable of explaining the mechanisms of heterogeneous reactions, especially with methods that are used to analyse the effect of mass and heat transfer on the observed kinetics of heterogeneous reactions. The student has rudimentary skills to conduct demanding reactor analysis and to design heterogeneous reactors (i.e. multicomponent and multiphase reactors).

Contents:

Mode of delivery:
Lectures including exercises and computer simulations (CFD), face-to-face teaching.

Learning activities and teaching methods:
Lectures 35 h, exercises 12 h, homework 12 h, self-study 74 h.

Target group:
Master’s degree students of Process and Environmental Engineering study programmes.
Prerequisites and co-requisites:
Courses 477201A Energy and Material Balances and 477202A Reactor Analysis are recommended beforehand.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Intermediate exams (2) or final examination. Homework assignments affect the course grade. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Riitta Keiski

Working life cooperation:
No

Other information:
By means of the residence time distribution theory, students adopt a way of thinking in modeling which is based on the concept of probability.

477625S: Power Plant Automation, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: István Selek
Opintokohteen kielet: Finnish
Leikkaavuudet:
- 477611S Power Plant Automation 2.0 op
- 477612S Power Plant Control 3.0 op

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Period 3 (spring term)

Learning outcomes:
The student has a full understanding of the role of the power plants in energy market and the importance of different energy sources. The student will understand the structure of different power plants, the main components and can explain their behavior and operation. The role and manner of measurements will be clarified. Furthermore, the student will understand the main principles in modelling energy systems. The student will fully understand the static and dynamic behaviour of the power plants and the sub processes. The student will understand the role of control in power plant operation and can describe the main principles and structures of control systems. The student can implement the theoretical knowledge gained in power plant automation courses into practice and has deepened his/her understanding in the subject. The student knows the principles of power plant operation in different situations (start-ups and shut-downs, load changes).

Contents:
Introduction to energy market and consumption. Description of different types of power plants and the main components and their operation. Fundamentals of industrial measurements, sensors, emissions and industrial actuators. Static and dynamic modelling of power plants. The control principles and the main control loops.
Comparison of different control solutions. 3 x 4h simulation exercises in small groups (2-4 persons) with a MetsoDNA power plant simulator.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures, exercises and industrial visit. Final exam.

Target group:
M.Sc. students in process and environmental engineering

Prerequisites and co-requisites:
No

Recommended or required reading:

Assessment methods and criteria:
Exam

Grading:
Numerical grading scale 1-5 or fail

Person responsible:
Docent Jenő Kovács

Working life cooperation:
No

Other information:
-

477203A: Process Design, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Jani Kangas
Opintokohteen kielet: English
Leikkaavuudet:
480310A Fundamentals of Process Design 5.0 op

ECTS Credits:
5 ECTS /133 hours of work

Language of instruction:
English

Timing:
Period 4

Learning outcomes:
By completing the course the student is able to identify the activities of process design and the know-how needed at different design stages. The student can utilise process synthesis and analysis tools for creating a preliminary process concept and point out the techno-economic performance of the process based on holistic criteria.

Contents:
Acting in process design projects, safety and environmentally conscious process design. Design tasks from conceptual process design to plant design, especially the methodology for preliminary process and plant design.

Mode of delivery:
Lectures and design exercises.

Learning activities and teaching methods:
Lectures 30h, group work 50h and self-study 50h

Target group:
Bachelor students

Prerequisites and co-requisites:
Objectives of 477202A Reactor analysis and 477304A Separation processes

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Combination of examination and design exercises.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
Scale 0-5

Person responsible:
Dr Jani Kangas

Working life cooperation:
-

Other information:
-

477623S: Process Information Systems, 10 op

Voimassaolo: 01.08.2015 - 31.07.2021
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuyksikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Hiltunen, Jukka Antero
Opintokohteen kielet: Finnish
Leikkaavuudet:
477610S Process Information Systems 5.0 op
477606S Fault Diagnosis and Process Performance Analysis 2.0 op

ECTS Credits:
10 ECTS / 266 hours of work

Language of instruction:
Finnish (available in English as a book exam: students will receive materials to study and take an final exam based on those materials)

Timing:
Periods 3-4 (spring term)

Learning outcomes:
After completing the course the student can implement performance-enhancing and maintenance systems, and plan, evaluate and develop also other large scale automation and information systems.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Seminars. The course is given every second year during two periods.

Target group:
M.Sc. students of process and environmental engineering

Prerequisites and co-requisites:
The course 477051A Automation Engineering recommended beforehand

Recommended optional programme components:
-

Recommended or required reading:
Will be announced later

Assessment methods and criteria:
Learning diary, seminars and exam

Grading:
Numerical grading scale 1-5 or fail

Person responsible:
Lecturer Jukka Hiltunen
477524S: Process Optimization, 5 op

Voimassaolo: 01.08.2015
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Aki Sorsa, Leiviskä, Kauko Johannes
Opintokohteen kielet: Finnish
Leikkaavuudet:
- ay477524S Process Optimization (OPEN UNI) 5.0 op
- 477504S Process Optimization 4.0 op

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
Spring semester, the 3th period. Recommended for 1st year M.Sc. students.

Learning outcomes:
Student can use and apply standard unconstrained and constrained optimization methods. Student can define and identify optimization problems. Student is able to summarize the role of optimization in process engineering.

Contents:

Mode of delivery:
Face-to-face teaching and exercises as group work

Learning activities and teaching methods:
The amount of guided teaching is 40 hrs. Contact teaching includes, depending on situation, lectures, group work and tutored group work. During self-study time student does independent or group work.

Target group:
M.Sc. students of process and environmental engineering and M.Sc. students interested in process optimization. Exchange and other international students.

Prerequisites and co-requisites:
No prerequisites but basic understanding on numerical methods and process modelling are useful.

Recommended optional programme components:
See prerequisites

Recommended or required reading:

Assessment methods and criteria:
This course uses continuous assessment that includes solved exercises and lecture exams. Final exam is also possible.

Grading:
The course unit uses a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Kauko Leiviskä

Working life cooperation:
No

Other information:
477309S: Process and Environmental Catalysis, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Satu Pitkäaho
Opintokohteen kielet: English

Leikkaavuudet:

ECTS Credits:
5 ECTS / 133 hours of work
Language of instruction: English

Timing:
Implementation in autumn semester, during 1st period. It is recommended to complete the course at the fourth (1st Master's) autumn semester.

Learning outcomes:
After the course the student is able to define the fundamentals and history of catalysis and he/she can explain the economical and environmental meaning of catalysis. Student is capable of specifying the process steps in catalyst design, selection and testing. Student is able to explain the most important industrial catalytic processes, the use of catalysts in environmental technology, catalyst research and the significance of an interdisciplinary approach in the preparation, development and use of catalysts. He/she recognizes the connection between catalysis and green chemistry and the role of catalysis in sustainable processes and energy production.

Contents:

Mode of delivery:
Lectures including design exercises, face-to-face teaching.

Learning activities and teaching methods:
Lectures 40 h, exercises 10 h, homework 20 h, teamwork presentations 10 h, and self-study 53 h.

Target group:
Master's degree students of the Process and Environmental Engineering study programmes.

Prerequisites and co-requisites:
The courses 477011P Introduction to Process and Environmental Engineering I, 488010P Introduction to Process and Environmental Engineering II, and 780109P Basic Principles in Chemistry are recommended beforehand.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Written examination and homework.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Postdoctoral researcher Satu Pitkäaho

Working life cooperation:
No

Other information:
477501A: Process dynamics, 5 op

Voimassaalo: 01.08.2015 -
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Aki Sorsa, Leiviskä, Kauko Johannes
Opintokohteen kielet: Finnish

Leikkaavuudet:
ay477501A Process Control Engineering I 5.0 op
470431A Process Control Engineering I 5.0 op

ECTS Credits:
5 ECTS /133 hours of work
Language of instruction:
Finnish/English. The main lecturing language is Finnish, but the course can also be taken in English with some special arrangements. Contact the responsible person.

Timing:
Negotiable (for the English version)

Learning outcomes:
After the course, the student understands the basic principles of dynamical behaviour of different processes, can write dynamic mass and energy balances for unit processes, and can solve these with the help of the transfer function approach. He knows also the connection between process control and process dynamics.

Contents:
Basics of process models and dynamics. Dynamic models. Lumped and distributed parameter models. Practical examples of different unit processes such as chemical reactors, distillation columns and heat exchangers. Modelling of large-scale processes.

Mode of delivery:
Negotiable (the course can be taken in English with some special arrangements - contact the responsible person)

Learning activities and teaching methods:
Solving exercise problems; textbook

Target group:
Exchange and other international students (for the English version)

Prerequisites and co-requisites:
Courses Material and Energy Balances, Heat Transfer, Mass Transfer and Control System Analysis recommended beforehand

Recommended optional programme components:
The course forms a basis to the advanced courses in the field of control engineering

Recommended or required reading:

Assessment methods and criteria:
Homework and written/oral test

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Read more about assessment criteria at the University of Oulu webpage.

Person responsible:
Professor Kauko Leiviskä

Working life cooperation:
No

Other information:
488202S: Production and Use of Energy, 5 op

Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Huuhtanen, Mika Ensio
Opintokohteen kielet: English

Leikkaavuudet:
488208A Basics of production and use of energy 5.0 op
470057S The Energy Economy of Industrial Establishments 3.5 op

ECTS Credits:
5 ECTS credits / 135 hours of work.

Language of instruction:
English

Timing:
Implementation in autumn semester during 1st period. It is recommended to complete the course at fourth (1st Master's) autumn semester.

Learning outcomes:
The student is able to define different methods and techniques to generate electricity and heat. He/she is able to explain steam power plant operating principles and is able to compare operation of different kinds of steam power plants. The student can describe the environmental impacts of energy production and is able to compare the environmental impacts of different ways of producing energy. The student is able to identify functioning of the fossil based and renewable energy production systems. He/she is able to explain how the electricity markets work. The student is also able to explain the adequacy of energy reserves.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 40h, self-study 95 h.

Target group:
Master's degree students of Process and Environmental Engineering study programmes.

Prerequisites and co-requisites:
The courses 477011P and 488010P Introduction to Process and Environmental Engineering I and II or 477013P Introduction to Process and Environmental Engineering are recommended.

Recommended optional programme components:
-

Recommended or required reading:
Materials delivered via the Optima environment.

Assessment methods and criteria:
Written final exam.
Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University lecturer Mika Huuhtanen

Working life cooperation:
No

Other information:
-

477125S: Recycling of bioproducts, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Maria Salmela-Karhu
Opintokohteen kielet: English
Leikkaavuudet:
- 477128S Circular Bioeconomy 5.0 op
- 477106S Recycled Fiber Processes 3.0 op
- 477105S Mechanical Processing of Biomasses 3.0 op

ECTS Credits:
5 ECTS / 133 h of work

Language of instruction:
English

Timing:
Implementation in the spring period 3

Learning outcomes:
Upon completion of the course, a student should be able to recognize the incentives for the recycling of bioproducts and waste streams from bioproduct industry. Student identifies collection and recovering systems, recovered material properties and their impact on processing, principles unit processes and processing with respect to final product requirement. A student should be able to identify the unit operations of required processing and explain their key operational principles and also the function of the most important chemicals. A student can also perceive the importance of life-cycle assessment and recyclability properties design in both R&D and production stages of bioproducts, including the significance of bioenergy production as a part of bioproduct recycling.

Contents:
Reuse, recycling and energy utilization of bioproduct and side streams of bioproduct industry in accordance with waste hierarchy. Analysis procedures to assess raw material utilization potential. Process concepts and unit processes in recycling and reusing of bioproducts including wood products, paper and board products, biocomposites and side streams. The utilization and final disposal of residuals from bioenergy production.

Mode of delivery:
Blended teaching

Learning activities and teaching methods:
The implementation methods of the course vary. Lectures and exercises 36 h, web learning and self-study 97 h. A part of the teaching can be replaced by group work or home work.

Target group:
Students interested in bioeconomy

Prerequisites and co-requisites:
488052A Introduction to Bioproduct and Bioprocess Engineering is recommended

Recommended optional programme components:

Recommended or required reading:
Book series: Fapet Oy. Papermaking Science and Technology, book 7: Recycled Fiber and Deinking. Lecture materials and other materials that will be announced at the lectures.

Assessment methods and criteria:
This course utilizes continuous assessment including three intermediate exams with potential web learning, lecture diary and/or homework. Alternatively, the course can also be completed by taking the end exam. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Maria Salmela-Karhu

Working life cooperation:
No

Other information:
477321S: Research Ethics, 3 op

Voimassaolo: - 31.07.2019
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Ainassaari, Kaisu Maritta, Keiski, Riitta Liisa
Opintokohteen kielet: English
Leikkaavuudet: 477312S

ECTS Credits:
3 ECTS / 80 hours of work
Language of instruction:
English
Timing:
Implementation in spring semester during 3rd period

Learning outcomes:
After the course the student is capable of explaining the meaning of research integrity and good scientific practice including honesty, conscientiousness and precision in research work. The student is able to plan, carry out and report his/her research work, and is aware of the rights and responsibilities of a researcher and his/her actions and respect towards other researchers. The student is able to recognise misconduct and fraud in scientific practices and has an awareness of how to handle misconduct.

Contents:
Ethically sound research, Scientific community and ethical problems in research work. Professional ethics of a researcher and an engineer. Research integrity, good scientific practices and handling of misconduct and fraud in science. Regulations and rules. Definitions, Characteristic features of science, Research results and responsible persons in scientific work, Ethics and research ethics, Professional ethics of a researcher, Research integrity in Finland and globally, Instructions for preventing, handling and examining misconduct and fraud in scientific research, Good scientific practices and responsibility in performing research, Good practices in selecting the research problem, collecting the material, planning and performing the research, publishing, using and applying the results, Protection of a researcher under the law, Examples and statistics.

Mode of delivery:
Lectures and team work, face-to-face teaching

Learning activities and teaching methods:
Lectures 25 h, practical work 15 h, self-study 40 h

Target group:
Master’s degree students of the Process and Environmental Engineering study programmes.

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Practical work assignments affect the course grade. Examination and a learning diary. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor Riitta Keiski

Other information:
477304A: Separation Processes, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Muurinen, Esa Ilmari, Ainassaari, Kaisu Maritta
Opintokohteen kielet: Finnish
Leikkaavuudet:

ECTS Credits:
5 ECTS / 133 hours of work.
Language of instruction:
Finnish, can be completed in English as a book examination.
Timing:
Implementation in autumn semester during the 2nd period. It is recommended to complete the course on the third (Bachelor's) autumn semester.
Learning outcomes:
After the course the student is able to define the position of separation processes based on mass transfer in process and environmental engineering. He/she is capable of solving phase equilibrium problems in multistage separations for binary mixtures. The student is able to explain the phenomena behind the following separation processes: distillation, absorption, stripping, liquid-liquid extraction, supercritical extraction, crystallisation, adsorption, chromatography separation, membrane separations, and reactive separations. He/she recognises the equipment used for these processes and is able to compare the methods to each other with heuristic rules.
Contents:
Separation processes based on mass transfer in process and environmental engineering. Phase equilibrium problems in multistage separations for binary mixtures. Phenomena behind the following separation processes: distillation, absorption, stripping, liquid-liquid extraction, supercritical extraction, crystallisation, adsorption, chromatography separation, membrane separations, and reactive separations. Equipment used for these processes and is able to compare the methods to each other with heuristic rules, etc.
Mode of delivery:
Face-to-face teaching in Finnish. Book examination possible in English.
Learning activities and teaching methods:
Lectures 40 h, exercises 20 h, homework 15 h and self-study 58 h. For foreign students written examination based on given literature and homework.
Target group:
Bachelor's degree students of process and environmental engineering.
Prerequisites and co-requisites:
Courses 477301A Momentum Transfer, 477302A Heat Transfer and 477303A Mass Transfer or 477052A Fluid Mechanics and 477312A Heat and Mass Transfer are recommended beforehand.
Recommended optional programme components:
This is one of the courses in which physical chemistry is used in the applications of process and environmental engineering. It is part of a stream that aims at skills needed in the phenomenon-based modelling and planning of industrial processes.
Recommended or required reading:
Assessment methods and criteria:
Homework assignments affect the course grade. Examination. The course can be completed with two intermediate exams or one final exam. Homework assignments affect the course grade. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Laboratory manager Dr Esa Muurinen
477523S: Simulation, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Esko Juuso, Aki Sorsa
Opintokohteen kielet: Finnish
Leikkaavuudet: 477503S Simulation 3.0 op

ECTS Credits:
5 ECTS / 135 hours of work
Language of instruction:
Finnish and English
Timing:
Implementation in the 2nd autumn period. Recommended for fourth (1st M.Sc.) year students
Learning outcomes:
Upon completion the student is capable of explaining the concepts and operation principles for both simulators of continuous processes and event-based simulation. The student has skills to construct simulation models in Matlab-Simulink environment and to explain the operation of these models. The student recognizes the key problems of the simulation and is able to choose suitable modeling solutions in process modeling and control. Moreover, the student is able to use key concepts of interactive and distributed simulation. After the course the student is able to search other relevant simulation languages and programming tools
Contents:
Modelling, modular and equation based simulation, dynamic simulation, intelligent methods in simulation, simulation in automation, event handling in continuous simulation, simulation of production processes, distributed simulation, integration with other systems, simulation languages and programming tools
Mode of delivery:
Tuition is implemented mainly as face-to-face teaching
Learning activities and teaching methods:
The amount of guided teaching is 32 h, including lectures (16h), exercises (10h) and seminars (6h). Totally 58 h are allocated for self-study, which consists of three parts: (1) a case study covering several topics applied in a chosen problem, (2) a seminar work concentrating on a single topic, and (3) the final report.
Target group:
M.Sc. students in process and environmental engineering, machine engineering, computer engineering and industrial engineering and management
Prerequisites and co-requisites:
Matlab programming skills are a benefit; see "Recommended optional programme components" below
Recommended optional programme components:
Programming in Matlab course reinforces abilities for the exercises and the case study
Recommended or required reading:
Lecture notes and exercise materials. Material is in Finnish and in English.
Assessment methods and criteria:
The assessment of the course is based on learning diaries, exercises, case study, seminar and the final report. Final exam is an alternative for the final report. Read more about the course assessment and grading systems of the University of Oulu at www.oulu.fi/english/studying/assessment
Grading:
The course unit uses a numerical grading scale 1-5. In the numerical scale zero stands for a fail
Person responsible:
D.Sc. (Tech.) Esko Juuso
Working life cooperation:
No
488402S: Sustainable Development, 5 op

Voimassaolo: 01.08.2015 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Väisänen, Virpi Maria, Eva Pongracz
Opintokohteen kielet: English
Leikkaavuudet:
488402A Sustainable Development 3.0 op

ECTS Credits:
5 cr / 133 hours of work
Language of instruction:
English
Timing:
Period 2
Learning outcomes:
The student is able to explain the principles of sustainable development and its environmental, economic and social dimensions; knows the goals and indicators of sustainability; and is able outline the future perspectives on the prosperity of human, economic and technological systems.

Contents:
Multidisciplinary, intensive and interactive course. After an introductory presentation on the fundamentals of sustainable development; students will select a subject of their interest and prepare their own presentation on it with the help of expert mentors. The key issues to discuss include core concepts and tools such as SD goals and indicators, environmental justice, cultural diversity, international cooperation and action toward sustainable development and some additional subjects that can vary depending on recent advances or emerging trends each year, such as resource scarcity and conflicts, resilience of human and environmental systems; governance; business and globalization; and issues relating to technological change. As an exercise, a court case simulation is organized, in which every year a subject of current interest is "on trial".

Mode of delivery:
Implemented as face-to-face teaching and student seminar. The course largely relies on participatory learning, therefore, there are compulsory participation requirements.

Learning activities and teaching methods:
Lectures 4 h / student presentations (guided group work), discussions, opponency 26 h / court case simulation 5 h / home work 98 h.

Target group:
Master's students of environmental engineering, especially of international master's programmes such as the Master's Degree Programme in Environmental Engineering

Prerequisites and co-requisites:
For Environmental Engineering students, admission to the Master's programme, for which minimally a former bachelor's degree is required. For other students the Bachelor level studies in process or environmental engineering or respective knowledge

Recommended optional programme components:
Communicates with the course of Industrial Ecology, but both courses can be taken independently

Recommended or required reading:
Lecture materials are recommended during the course by course lecturers and mentors. All materials are available through Optima.

Assessment methods and criteria:
Quality of student presentations, activity in discussions, performance as an opponent and in the court case simulation and learning diary. Compulsory requirements are presence on at least 80% of face-to-face lectures, participation in the group works, presenting own presentation and acting as an opponent to another presentation.

Grading:
The course evaluation will be based on participation and activity during the course. The course unit utilizes a numerical grading scale 1-5 (accepted grades) and zero stands for a fail.

Person responsible:
477415S: Thermodynamic and process modelling in metallurgy, 5 op

Voimassaolo: 28.11.2016 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Eetu-Pekka Heikkinen
Opintokohteen kielet: English

ECTS Credits:
5 cr / 135 hours of work.
Language of instruction:
English
Timing:
The course is held in the autumn semester, during periods I and II. It is recommended to complete the course at the 5th autumn semester.
Learning outcomes:
Students passing the course can use computational methods (i.e. HSC Chemistry -software) to investigate the thermodynamic equilibria (e.g. in metallurgy and mineral processing). These thermodynamic considerations include 1) equilibrium calculations, 2) mass and heat balances as well as 3) phase diagrams. Additionally, they can use commercial process simulation software (i.e. HSC Sim -software) to model metallurgical and mineral processes. This means that the student will know how to 1) model flowsheets for various processes, 2) apply simulation in practical problems in mineral processing and 3) run calculation and analyse the results.
Contents:
Course is divided in two parts. Part I focuses on thermodynamic modelling in the contexts of metallurgy and mineral processing: How to use HSC Chemistry as well as its modules (Reaction equations, Equilibrium compositions, Heat & Material balances, H, S, CP, G diagrams, Stability diagrams, Eh-pH diagrams, Measure units, Periodic chart, Species converter) and database? How to define a system? How to interpret results? Part II focuses on general information and exercises in HSC-Sim (Flowsheet simulation -module): HSC-Sim structure and user interface, toolbar, drawing a flowsheets with HSC Sim, data necessary for building up a simulation in mineral processing, structure of HSC Sim Distribution mode, simulation of metallurgical balance. Additionally, it will include general information about HSC Geo and mineral data browser.
Mode of delivery:
Classroom education
Learning activities and teaching methods:
Simulation exercises (work in pairs) supported by the contact-education, which consists of simulation exercises (32 hours of guided work + 16 hours of individual work = total 48 hours). The rest is individual work outside the lectures.
Target group:
Students of process metallurgy and Oulu mining school.
Prerequisites and co-requisites:
Knowledge and skills obtained from the Bachelor-level-studies in engineering or science programme are required as prerequisites. In order to get credits from this course, bachelor thesis must be completed.
Recommended optional programme components:
This course is one of the courses in the module of process metallurgy as well as part of the M.Sc. level studies in Oulu mining school.
Recommended or required reading:
Material will be distributed during the lectures and exercises. Each student is required to search additional material for the exercises when necessary.
Assessment methods and criteria:
Continuous assessment consisting of simulation exercises and reports based on the exercises. Work in pairs. No final exams are organized.
Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail
Person responsible:
university lecturer Eetu-Pekka Heikkinen (part I) and researcher Maria Sinche Gonzalez (part II).
Other information:
Due to continuous assessment used in this course, it is highly recommended that the students are present already in the first lecture.

488130A: Waste management and resources recovery, 5 op

Voimassaolo: 28.11.2016 - 31.07.2018
Opiskelumuoto: Intermediate Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Eva Pongracz, Piippo, Sari Susanna, Elisangela Heiderscheidt
Opintokohteen kielet: English

Leikkaavuudet:
488505A Waste management and recycling 5.0 op

ECTS Credits:
5 ECTS /135 hours of work
Language of instruction:
English
Timing:
The course unit is held in the autumn semester, during period 1
Learning outcomes:
The student will acquire a wilder view of what is waste and how it is generated and managed in communities and industries. Student will be familiar with waste management hierarchy and how waste legislation regulates waste management and resources recovery. She/he will get basic knowledge about waste treatment and resources recovery methods including their sustainability and related environmental impacts. As well as, how a series of factors influence the planning of waste management activities in industries and municipalities. The student will also be able to understand the energy and material recovery potential within the waste sector.
Contents:
Waste management hierarch, waste prevention principle, municipal waste management, waste management in industries, waste legislation, municipal and industrial waste treatment methods, material and energy recovery methods, international treaties related to waste management, waste to energy principle, etc.
Mode of delivery:
Face-to-face teaching and guided assignments.
Learning activities and teaching methods:
Learning methods: A) Active learning method: Lectures (30 h), group work/ exercises (50 h), self-study for examination and completion of exercises (50 h) and field visits (5 h) or alternatively; B) Passive learning method (BOOK examination): 100% self-study mode where the student is provided with 2-3 books as reference material and he/she attends an examination.
Target group:
Students in bachelor program of environmental engineering
Recommended or required reading:
Assessment methods and criteria:
A) Active mode: successful completion of course work which consists of group exercises 1 and 2 and achieving a pass grade (1-5) in the final exam which is based on lectures material and exercises; B) Self-study passive mode: achieving a passing grade (1-5) in the exam which is based on provided reference material. Note that passive mode can only be followed under special circumstances.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Post-doctoral researcher Dr Elisangela Heiderscheidt

488110S: Water and Wastewater Treatment, 5 op

Voimassaolo: 01.08.2005 -
Opiskelumuoto: Advanced Studies
Laji: Course
Vastuuysikkö: Field of Process and Environmental Engineering
Arvostelu: 1 - 5, pass, fail
Opettajat: Elisangela Heiderscheidt
Opintokohteen kielet: English

Leikkaavuudet:
480151S Water and Wastewater Treatment 7.0 op
480208S Industrial Water and Wastewater Treatment 3.5 op

ECTS Credits:
5 ECTS /135 hours of work

Language of instruction:
English

Timing:
The course unit is held in the autumn semester, during period 1

Learning outcomes:
Upon completion of the course, the student will be able to understand the theory and practicalities behind the most used purification processes in water and wastewater treatment. The student will also be capable of performing basic dimensioning calculations and therefore he/she will be able to dimension structures/units of water and wastewater treatment plants and to comprehend the basic requirements of different purification processes.

Contents:
Water quality characteristics of source water; basic principles of purification processes (coagulation /flocculation, sedimentation, biological treatment, filtration, disinfection, etc); process units in water and waste water treatment; selection of process units; dimensioning of treatment structures and unit processes.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
- lectures (30 h), field visits (5 h), exercises and other assignments (60) and self-study (40 h).

Target group:
Students in Master program of Environmental Engineering

Prerequisites and co-requisites:
The required prerequisite is the completion of the following course or to have corresponding knowledge prior to enrolling for the course unit: Introduction to process and environmental engineering (477013P) or I (477011P) and II (488010P)

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course can be completed in two different study modes: A) Active mode: midterm exam based on reading material + completion of 2 group exercises + final exam based on lectures and exercises; B) Passive mode (book exam): 100% self-study mode where the student is provided with 2-3 reference books and attends an exam based on the provided material. (Passive mode can be complete under special circumstances)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Post-doctoral researcher Dr Elisangela Heiderscheidt

Other information:
-