

RES TERRAE

Publications in Geosciences, University of Oulu Oulun yliopiston geotieteiden julkaisuja

> Ser. A, No. 40 2021

Kauko Holappa

Mire type succession, peat properties and mire plant ecology in Northern Ostrobothnia, Kainuu and Koillismaa, Northern Finland

Kauko Holappa

Mire type succession, peat properties and mire plant ecology in Northern Ostrobothnia, Kainuu and Koillismaa, Northern Finland

Res Terrae, Ser. A, No. 40, OULU, 2021

RES TERRAE - Publications in Geosciences, University of Oulu, Oulun yliopiston geotieteiden julkaisuja

Ser. A, Contributions, Ser. B, Raportteja - Reports, Ser. C, Opetusjulkaisuja - Teaching material

ISSN 0358-2477 (print)
ISSN 2489-7957 (online)
ISSN 0358-2485 (print)
ISSN 2736-9552 (online)
ISSN 0358-2493 (print)
ISBN 978-952-62-2905-8 (online)

Editorial board - Toimituskunta: Dr. Kirsi Luolavirta, Päätoimittaja - Editor-in-Chief Dr. Ninna Immonen

Julkaisu ja levitys - Published and distributed by: Oulu Mining School P.O. Box 3000, 90014 University of Oulu, Finland

E-mail: Kirsi.luolavirta@oulu.fi www: http://www.oulu.fi/resterr/

First published as a doctoral thesis in Finnish in Res Terrae, Publications in Geosciences, University of Oulu, Ser. A, No. 30, in 2010.

English translation by Malcolm Hicks, M.A.

Cover Figure: The sloping mire of Vuossoiva in Savukoski, summer 1982. Photo by Kauko Holappa.

Mire type succession, peat properties and mire plant ecology in Northern Ostrobothnia, Kainuu and Koillismaa, Northern Finland

ABSTRACT

A study is made of the mires of the Northern Ostrobothnia, Kainuu and Koillismaa regions of Northern Finland, their typology and peat stratigraphy. These mires are located between 64° and 66°N lat. and 24° and 30°E long., at the transition between the middle and northern boreal vegetation zones.

Almost a half of the thickness of peat in the mires of the region was deposited before the arrival of spruce (*Picea*), although there are places in the western parts where the whole peat deposit was laid down since that time, and the majority of the mires in the coastal strip are of primary origin. The mires began to develop thick layers of *Sphagnum* mosses as the macroclimate became cooler and damper, and the dynamic character of the mire type succession visible in the peat stratigraphy can be attributed very largely to fluctuations in the water content and pH of the peat. No less than seven phases characterized by distinct mire types can be recognized in the history of the mires of this region.

By combining recent mire types with ecologically similar ones observable from subfossil evidence it was possible to reduce the overall number to 15 types that could be distinguished in the various horizons on the grounds of their mean botanical composition, the physical properties of their peat and the element concentrations in the peat ash and certain correlations between these.

As peat becomes more humified the proportions of plant remains in it decrease and the percentage of amorphous biomass of grain size <0.125 mm increases in a manner that correlates linearly ($r^2 = 0.99$) with the degree of humification as defined by von Post (1922). Correspondingly, the proportion of very slowly decomposing plant material that is still recognizable will increase in well humified peat. The accumulation of plant remains observes certain models in relation to the degree of humification that enable the latter to be deduced if one knows the proportions of the various plants. Similarly the peat-forming factors are dependent on the depth of the peat in the mire.

On account of the mire margin and centre effects, and also differences in the nature of the bedrock, the physical properties of peat and the geochemical properties of its ash can vary widely. Greater element concentrations will be found in mire types with a margin effect than in those with a centre effect, for example, while mesotrophic and eutrophic mires with a margin effect will contain peat with higher than average dry densities. Likewise, Fe, Ca, Mg, Al and P concentrations in peat will differ between ombrotrophic and minerotrophic conditions, and present-day surface mire types will possess higher element concentrations than the corresponding types when they occur at the base of a mire.

The effects of soils and bedrock on mires and their ecology are manifested more accurately by plant species than by families or other groupings, most of which are middling or indifferent with respect to nutrients. This work attempts for the first time to define a set of bioindicator values, or ecological niches, for almost 200 mire plant species to describe the ecology of mires and their peat. This uses information on dry density (kg/m³), water content (%), H_{1-10} , amorphous matter (%), organic matter (%), ash content (%), pH, mV, Al, Ca, Mg, K, Na, P, Fe, Mn, Cu, Pb and Zn.

The geochemistry of peat ash and its Cu, Zn and Pb concentrations could be particularly useful for ore prospecting, as high concentrations are clearly restricted to certain areas. The findings point to a number of sites in the region where heavy metal concentrations in the peat are exceptionally high, and could thus lead to ore prospecting as well as to further research in the fields of mire ecology, the evaluation of peatland environments and vegetational history.

Key words: paludification, mire type, succession, humification, trophy, margin/centre effects, peat properties, bioindicator

Pohjois-Pohjanmaan, Kainuun ja Koillismaan suotyyppien sukkessio, turpeiden ominaisuudet ja

suokasvien ekologia

FINNISH ABSTRACT

Tässä työssä tutkittiin Pohjois-Pohjanmaan, Kainuun ja Koillismaan soiden suotyyppejä ja niiden turvekerrostumia. Suot sijaitsevat 64^o - 66^o pohjoisten leveyspiirien ja 24^o - 30^o itäisten pituuspiirien rajaamalla alueella, joka on keski- ja pohjoisboreaalisten kasvillisuusvyöhykkeiden vaihettumisaluetta.

Suurin osa rannikkoalueen soista on primääristä alkuperää. Tutkimusalueella lähes puolet soiden turpeen paksuudesta muodostui ennen kuusen (*Picea*) tuloa seudulle. Sen jälkeen kehittyi länsiosiin paikoin koko turvekerrostuma. Suot alkoivat voimakkaasti rahkoittua suurilmaston viiletessä ja muuttuessa kosteammaksi. Turvestratigrafiasta tunnistettujen eri suotyyppivaiheiden sukkession dynaamisuus on selitettävissä turpeiden vesipitoisuuksien ja pH-arvojen avulla. Suon kehityshistoria rakentuu jopa seitsemästä eri suotyyppivaiheesta.

Tutkimusalueella esiintyy useita kymmeniä suotyyppejä, joista ekologisesti samankaltaiset resentit ja subfossiiliset suotyypit yhdistettiin 15 eri tyyppikerrostumaksi. Niiden keskimääräinen botaaninen koostumus, turpeiden fysikaaliset ominaisuudet sekä turpeen tuhkan alkuainepitoisuudet ja korrelaatiot poikkeavat toisistaan verrattaessa eri kerrostumia.

Turpeen maatuessa kasvijäännöksien suhteelliset osuudet pienenevät, jolloin turpeeseen muodostuu amorfista <0,125 mm kasvimassaa, joka korreloi lineaarisesti v. Postin (1922) maatumisasteiden kanssa (r² 0,99). Vastaavasti erittäin hitaasti maatuvien ja vielä tunnistettavissa olevien suokasvien suhteellinen osuus nousee pitkälle maatuneissa turpeissa. Kasvijäännöksien kertymät turpeeseen ja maatumisaste noudattivat tiettyjä malleja, kun tiedetään turvenäytteestä eri kasvien suhteelliset osuudet (%) ja v. Postin maatumisaste. Myös syvyyden ja eri turvetekijäin välillä on selkeä riippuvuus. Meso- ja eutrofisissa reunavaikutteisissa suotyypeissä on keskimääräistä korkeammat kuivatiheydet.

Reuna- ja keskustavaikutteisuudesta kuin myös suoalueen kallioperän erilaisuudesta johtuen suotyyppien fysikaaliset ominaisuudet ja turvetuhkan geokemialliset pitoisuudet vaihtelevat laajalla vaihteluvälillä. Myös ombrotrofia erottuu minerotrofiasta turpeen geokemiassa Fe-, Ca-, Mg-, Al- ja P-pitoisuuksien osalta. Nykyisten suotyyppien pintaturpeissa on korkeammat alkuainepitoisuudet kuin samaan suotyyppikerrostumaan kuuluvassa pohjaosassa. Reunavaikutteisiin suotyyppeihin konsentroituu selvästi suuremmat alkuainepitoisuudet kuin keskustavaikutteisiin.

Maa- ja kallioperän vaikutusta soihin sekä suotyyppien ekologiaan ilmentävät eri kasvilajit tarkemmin kuin kasviheimo tai -ryhmä, jotka ovat pääasiassa keskiravinteisia ja indifferenttejä. Makrosubfossiilien avulla sekä kasvisolukoista tunnistetuille turvetta muodostaneelle lähes 200 eri kasvilajille on määritelty ensimmäistä kertaa suon ja turpeen ekologiaa kuvaava keskimääräinen bioindikaatioarvo, ns. ekologinen lokero (kuiva-kg/m³, v %, H₁₋₁₀, amorf. %, org. %, T %, pH, mV, Al, Ca, Mg, K, Na, P, Fe, Mn, Cu, Pb, Zn).

Erityisesti turpeiden tuhkien geokemia ja Cu-, Zn-, Pb-pitoisuudet antavat viitteitä myös malminetsintään, koska korkeat pitoisuudet rajoittuvat selkeästi tietyille alueille. Tuloksien perusteella tutkimusalueella on useita kohteita, joissa turpeissa esiintyy poikkeuksellisen korkeita raskasmetallipitoisuuksia.

Tutkimustuloksia voitanee soveltaa erilaisiin suoekologisiin jatkotutkimuksiin, suoympäristön laadun ja tilan arvioimiseen, kasvillisuushistorian tutkimuksiin sekä malminetsintään.

Avainsanat: soistuminen, suotyyppi, sukkessio, maatuminen, trofia, reuna-keskustavaikutus, turpeen ominaisuus,

Mire type succession, peat properties and mire plant ecology in Northern Ostrobothnia, Kainuu and Koillismaa, Northern Finland

TABLE OF CONTENTS	
ABSTRACT	3
FINNISH ABSTRACT	4
1.INTRODUCTION	6
Mire formation	6
Classification of mires	8
Geochemistry of mires	12
Trophic (nutrient) levels in mires	14
2.THE AREA STUDIED	17
3.MATERIALS AND METHODS	22
Field investigations	22
Laboratory methods	24
Mire type stratigraphies and macrosubfossil analyses	24
Physical and geochemical analyses	25
Processing of the results	27
4.RESULTS	27
Mire formation and stratigraphy and the mire type succession	27
Peat deposition	37
Decomposition of mire plants	37
Proporons of amorphous material in peat	41
Influence of the mire base on peat horizons	46
Physical properties	46
Geochemical properties	46
Proper es of mire type horizons and correla ons between them	51
Physical properties	51
Geochemical properties	51
Organic material and dry densities	56
Correlations between mire properties	58
Correlations between physical properties	58
Correlations of physical properties with element concentrations	59
Correlations between element concentrations	60
Mire types and their peat horizons	61
Indicators of the mire ecology of plant remains in peat	75
Water content	75
Dry density	77
Degree of humification, amorphous material and organic content	78
Ash content	79
Geochemistry	79
5.DISCUSSION	81
Mire formation, mire type stratigraphy and the mire succession	81
Decomposition of peats	85
Organic content and dry density of peats	87
Determination of the botanical composition of peats	88 90
Physical properties of the mire types Geochemistry of the mire types	
Ecological niches of mire plants	90 95
Ore-critical sites in the area	95
6.SUMMARY AND CONCLUSIONS	90
7.ACKNOWLEDGEMENTS	102
8.BIBLIOGRAPHY	102
Appendix (1-10)	

1. INTRODUCTION

The general aim of this work was to gather new information on the mires of Northern Ostrobothnia and the Kainuu and Koillismaa regions and the mire types that these represent. Specific answers were thus sought to the following questions: 1) How does the succession between the mire types of this area run? 2) What natural ecological groupings emerge when we combine the present mire vegetation with that deducible from the underlying peat? 3) How do these combinations fit in with the physical and chemical properties of the present and humified vegetation? 4) How can the information obtained in this way be used to define the composition and degree of humification of the peat? 5) What effects do the basal deposits underlying a mire have on the characteristics of its peat? 6) What ecological niches can the mire plants identified in samples be assigned to on the basis of their physical and geochemical properties? 7) What opportunities exist for making use of peat chemistry for ore exploration purposes?

In geological research the present holds the key to the past, i.e. by studying geological processes taking place today we can gain an insight into developments that occurred in nature in past times. As noted by Birks & Birks (1980), past developments and the processes associated with them can be investigated by describing geological deposits and their units or the organisms contained in them and reconstructing the environments in which past populations lived on the basis of the occurrence of key fossil species.

This work will thus employ the current vegetation patterns of the mires and related ecological information as keys to past events and to the peat geology implicated in their development, taking the vegetation of the present-day mire type and the peat deposit generated by it to represent the last stage in the mire type succession in each case.

Mire formation

The aapa mires of Northern Finland with all their characteristic features are a unique legacy of nature, and it is very probable that the most representative and best preserved of these will at some stage be added to the UNESCO World Heritage list as part of the Green Belt of Fennoscandia (www.environment.fi Press Release 22.1.2004. Ministry of the Environment).

Finland belongs to the circumpolar boreal biome, characterized by mires and coniferous forests, a continuous zone of taiga forests that is located south of the Arctic region, and is divided into the Northern Boreal, Middle Boreal and Southern Boreal zones within the area of this country. About

90% of the world's mires are to be found in Fennoscandia, Russia or Canada (Maltby & Proctor 1996, Immirzi et al. 1992), and it is clear that the humidity of the climate and the flatness of the terrain do much to promote the formation of mires in the boreal region. The mires of the taiga zone are chiefly of the aapa type – swampy fens and various spruce mires and pine bogs, while palsas are to be found in many places on the edges of the tundra. Raised bogs exist in the southern parts of the Boreal zone, but not in the more continental areas (Havas 1999), while mire formation is most pronounced in the Middle Arctic and Boreal zones (Eurola 1992).

Mires are initiated through the formation of peat, i.e. the sedimentation of decomposing mire plants *in situ* to form an inhomogeneous humus layer, at least 75% of the dry weight of which will be organic in origin (Virtanen et al. 2003). Other definitions specify that peat is an organic material in which more than 65% (by weight) is partially decomposed plant matter and 20–35% ash. On the other hand, peat is known to comprise 88–97% water, 2–10 dry matter and 1–7% gas (Charman 2002; Clymo 1983; Heathwaite et al.1993a).

When the continental ice sheet retreated about 10000 BP cal, the western half of Finland was covered by water. Subsequently the land uplift brought about by the melting of the glacier exposed a watery mineral soil that gradually began to undergo primary mire formation, as was also the case to some extent in the supra-aquatic area on the shores of the ice lake that had remained unaffected by the preceding marine phase. This land uplift is in fact still going on, amounting to a mean rise of 8 mm per year on the coast of the Bothnian Bay and about 5 mm per year close to the eastern border of Finland (Eronen 1983; Winterhalter et al. 1981).

The proportion of primary mire formation in the supra-aquatic parts of the country was 40% during the period immediately following the melting of the ice sheet, whereas paludification of forest land became more prominent (50%) from 6900–5900 BP cal onwards and some of the water basins (10–20%) became overgrown by vegetation during the period 5900–3200 BP cal (Huikari 1956; Korhola & Tolonen 1998). Following the Ancylus Lake period in the history of the Baltic, low-lying land that was exposed from beneath the water on the coastal plains of Northern Ostrobothnia underwent extensive primary mire formation (about 60%), so that the first peat deposits to be laid down were composed of plants that were adapted to watery conditions but had spread onto the mineral soils. By contrast, the proportion of mires resulting from paludification of forest soils diminished, to 35% in the period 3200–1250 BP cal, and that resulting from the in-filling

of water basins to 5% in the period 5900–3200 BP cal. All in all, fluctuations in the rates of peat have taken place throughout the post-glacial era on account of changes in the macroclimate, shoreline displacement, forest fires, local topographic features, the extent of land uplift and discharge conditions in the waterways (Huikari 1956; Korhola 1995, 1996; Korhola & Tolonen 1998). The oldest mires in the region concerned here are located at altitudes of 150–300 m a.s.l. in Northern Finland and the youngest on the Bothnian Bay coast (Mäkilä & Muurinen 2008). The mean rate of peat accumulation over the whole country is 0.32 mm per year, with separate figures of 0.25 mm for aapa mires and 0.59 mm for raised bogs (Mäkilä & Toivonen 2004).

Classification of mires

Finland is traditionally divided into three regions with respect to the characteristic flora of each mire type and the observed combinations of types: these are known as the aapa mire, raised bog and palsa regions (Ruuhijärvi 1960; Eurola 1962). Likewise, some 80 distinct plant communities have been recognised as mire types (Eurola & Kaakinen 1978; Eurola et al. 1995). Correspondingly, research into forested mires has led to the recognition of 32 types (Laine & Vasander 1990, 2005). Alongside these schemes, Nordic mire classifications have also been proposed (Kaakinen 1980; Vegetationstyper i Norden, 1994; Tuominen et al. 2001), and Laitinen et al. (2007) have set out a Combined Finnish Mire Typology (CFMT) which links the mire complex concept put forward by Cajander (1913) with the notion of a climatic zonation of mire complexes. In addition, a zonational Mire Water Flow Typology (MWFT) has been proposed for boreal mire systems.

In his classic work of 1913, Cajander distinguished the four mire types that have traditionally been taken as the basis for Finnish mire research: spruce mires, pine bogs, flark fens and rich fens. Likewise, Auer (1923, 1924) made a significant contribution by determining the history of mires over a large part of Finland on the basis of pollen data. All in all, mires and both the development and composition of the peat contained in them have been studied extensively in various parts of Finland by numerous authors (Herlin 1896; Andersson 1898; Lindberg 1901, 1910; Kujala 1924; Waren 1924; Metsävainio 1931; Aario 1932; Lukkala 1920, 1920, 1933; Backman 1919, 1935, 1935; Brant 1948; Heikurainen & Huikari 1952; Ruuhijärvi 1960; Havas 1961; Vasari 1962; Aartolahti 1965; Tolonen 1967; Päivänen 1969, 1973; Lappalainen 1970; Korhola 1990, 1995; Tikkanen & Korhola, 1993; Berglund et al. 1996; Laine et al. 1996; Mäkilä 1997; Mäkilä et al. 2001; Mäkilä & Moisanen 2007). Radiocarbon dating has been used to obtain information on mire formation and the history of individual mires (Mäkilä & Muurinen 2008, Mäkilä et al.2009), while the exploitation

of peat reserves for various purposes has generated means of carrying out not only peat inventories but also assessments of peat types, degrees of humification, ash content and various physical and chemical properties of peat (Zailer & Wilk 1907; Salmi 1950, 1955, 1958; Mäkilä 1980, 1984, 1994; Sillanpää 1972, 1975; Tolonen 1974, 1977, 1984; Tolonen & Hosiaisluoma 1978; Pakarinen & Tolonen 1977; Elomaa 1981; Urvas 1980; Westman 1981; Yliruokanen 1980). Geophysical methods have also been used to construct three-dimensional representations of the structure of given mires (see Hänninen & Lappalainen 1987; Hänninen 1992).

The nutrient content of the water in mires is clearly related to their growth through peat accumulation, since the transport of nutrients into the upper layers diminishes as the thickness of the peat increases (Ramann 1895), with the consequence that the nutrient economy of a mire will tend to shift from eutrophic to ombrotrophic with time (Weber 1902; Melin 1917; Kotilainen 1927). Similarly, the oxygen-deficient standing water in mire pools on level terrain will contain less available nitrogen than the surface water on sloping mires (Hesselman 1924; Olsen 1921). The water balance in mires has often been identified as a crucial factor in their growth (Moore & Bellamy 1974; Clymo 1983; Ingram 1983). Malmer (1975), on the other hand, emphasizes the importance of microtopography, the margins and central parts of mires, the series of ombrotrophic and minerotrophic mire types and the distance of each mire from the sea when describing hydrotopographic mire types, whereas Rybnicek (1985) regards the amount and nature of the water in a mire as the principal external factor determining the course of mire formation, while the geological character of the base of the mire exercises a mostly indirect influence. The nature and structure of the peat laid down in a mire will mostly be dependent on the plant community making up the peat, particularly its ability to bind nitrogen and phosphorus prior to the next stage in the development of the mire. This leads in turn to a natural succession in which each mire vegetation community alters and destroys itself.

Extensive geographical links exist between mire vegetation communities, so that there are very few endemic species and many vascular plants occurring on mires are highly adaptable in terms of trophic conditions. Conductivity measurements alone have sufficed to demonstrate variations in electrolyte concentrations both regionally and between different surfaces on the same mire (Havas 1963, Puranen et al. 1999).

Walker (1970), who employed data derived from 159 sampling points to demonstrate a progression in the development of mires in Britain, distinguished 12 plant communities that occurred on the path from a stretch of open water to the establishment of a raised bog. In the course of such a progression the mire types may be exchanged for almost any other mire type after only a short period of deposition. Similarly, the palaeobotanical model of Rybnicek & Rybnickova (1974) involves an 8-phase succession from an aquatic vegetation to a dry thin-peat pine forest, while another study based on stratigraphical analyses points to the existence of 7 genetic deposition types (Lishtvan et al. 1982).

A statistical clustering procedure (alternating groups) applied to data on a swampy sedge fen yielded a total of 11 phases in its development, leading Blytt (1886) to attribute the vegetational succession in a mire to changes in the macroclimate, a model that was later filled out by Sernander (1890) with the help of macrosubfossils. The resulting Blytt-Sernander terminology was subsequently used by Mangerud et al. (1974) to put forward a set of radiocarbon (C¹⁴) chronozones as a Quaternary stratigraphy for Boreal areas, the climatic optimum for which was located in the period 6900–4900 BP cal, after which a cooling took place in accordance with the Blytt-Sernander model up to around 3800 BP cal (Seppä 1995).

A number of approaches to the classification of mires are possible, based on characteristics such as their flora, the structure and physiognomy of their vegetation, their morphology, hydrology or stratigraphy, and the physical or geochemical properties of their peat, and most of these classifications are interrelated in one way or another. All these approaches may be used to describe and classify mires, peats and peat deposition processes, as also can other methods, but most commonly it is the degree of humification and the nature of the plant remains that are used as the basis for the classification of peats (Moore 1984b; Lappalainen et al. 1984), while floristic classifications are based on the Central European "physicochemical" approach (Grosse-Brauckmann 1974b, 1976) which analyses the vegetation in terms of the hydrology of the mire and the nutrient status of the peat, based on physicochemical reactions and cation concentrations, mire margin and centre effects and the micro- and macrotypology of the mire. This dual system can also serve as a basis for the classification of mire vegetation (Huttunen 1984). All the above-mentioned factors affect the botanical composition of a peat, i.e. the occurrence, degree of humification and trophic status of the constituent plant remains.

In the opinion of Wells & Zoltain (1985), the Canadian Wetland Classification System (CWCS) is applicable throughout the Northern Hemisphere, since the range of plant species involved and the ecological and morphological nomenclature for mire types are very much the same as in Finland and Russia. Thus, where Boelter (1969) defines the main body of a coarse peat as the >0.1 mm fraction, Sneddon et al. (1971) require a diameter of >0.15 mm. Similarly, the decomposition of lignin-rich plant matter gives rise to slowly dispersing humic acids that contain aromatic fragments, whereas low-lignin plants yield humic acids containing carbohydrates and proteins which are relatively stable in the face of decomposition and deposition (Lishtvan et al. 1982).

It has been observed in the mires of North-Western and Central Europe, for instance, that boundaries referred to as "recurrence surfaces" (*Grenzhorizont*), between "black peat" and "white peat" (Weber 1911; Granlund 1932; Schneekloth 1965, 1968) tend to form on account of the transport of nutrients or variations in the climate. Frenzelin (1983), on the other hand, points out that differences in mire types cannot be used directly for reconstructing palaeoclimates, and Heathwaite et al. (1990) claim that is it virtually impossible to detect the contribution of climatic effects to autogenic changes taking place in the hydrology, geochemistry and ecology of mires in the course of their development.

Wheeler & Proctor (2000) propose that a cluster of principal gradients of variation involving minerotrophic-ombrotrophic, acid-basic, nutrient level, water level, lithotrophic-oceanic, marginal-central, peat depth and groundwater influence, swampiness and climatic and other factors should be applied to the study of mires in North-Western Europe. Correspondingly, Økland et al. (2001) recognize two universally important gradients in the ecology of mires, nutrient status (poor/rich) and water level, two principal regional gradients, treeless/forested and the availability of phosphorus and nutrients, i.e. productivity, and five locally significant gradients, groundwater influence/flooding/paludification, salinity, peat accumulation capacity, microtopography and stability of the snow cover.

Most mire and peat classifications that have been proposed are genetic in nature, except for that of Troels-Smith (1955), which was the first broad-based descriptive system to be devised for use in the field and allows for the analysis of organic sediments possessing a wide variety of inherent properties. Mire deposits are repeatedly found to be mixtures of different peat characteristics (Birks & Birks 1980). The Finnish system for the classification of peats nevertheless follows in broad

11

outline that laid down by the International Peat Society (IPS; see also Kivinen 1976; Lappalainen et al. 1984).

Geochemistry of mires

Under normal conditions the organic materials in soils usually carry a negative charge, as do the oxides of manganese (Rose et al. 1979, Heikkinen 2000), and ions with a higher charge bind more readily and more efficiently that those with a weaker charge (Alloway 1992). The principal factor in the release of metals under reducing conditions is their dissolution to form oxyhydroxides, whereupon the ions have weaker charges than under oxidative conditions, when their solubility increases and binding decreases (Chuan et al. 1996, Heikkinen 2000). Thus cations are retained under oxidative and neutral or alkaline conditions and anions correspondingly under oxidative and acidic conditions. Consequently a high proportion of the metals in a reducing environment are bound to sulphides or precipitated with them (Rose et al. 1989).

Organometal complexes and chelates are more stable than inorganic compounds or metal-ion complexes (Harmsen 1977; Plant & Raiswell 1983; Yong et al. 1992; Heikkinen 2000). Iron and manganese, for example, are in divalent form at + 400 mV (Sikora & Keeney 1983) and behave in a very similar manner, except that manganese reduces more readily than iron but is more difficult to oxidize (Lindholm 2005; Mackereth 1966), to the extent that the ratio of iron to manganese can be used as a measure of redox potential. In waterways a rise in this ratio is indicative of eutrophication, whereupon the prevailing conditions tend to favour reduction (Lindholm 2005; Myllymaa & Murtoniemi 1986; Heikkilä 1999). Peats with a high iron concentration can also contain a large amount of uranium, the solubility of which is 2–3 times higher at pH 7.5–7.8 than at pH 5.5 (Kochenov et al. 1965). Mineral precipitations in mires frequently contain iron in various forms such as siderite (FeCO₃), goethite (FeO*OH) or vivianite (Fe₃(PO₄)₂*8H₂O) (Virtanen 1994, Bgatov et al. 1986).

The sorption properties of elements are greatly affected by the acidity of the soil (Heikkinen 2000; Bourg 1988; Salomons 1995; Chuan et al. 1996) and the influence of an alkaline bedrock can also be reflected in the pH of the overlying peat (Salmi 1958). Similarly, copper, zinc and lead in soil become soluble under both alkaline and acidic conditions (Kabata-Pendias & Pendias 1992; Alloway 1995a; Wilson & Bell 1996; Heikkinen 2000). Reducing conditions prevail in groundwater zones and the proportion of oxygen will decrease, leading to a lower redox potential (Heikkinen 2000).

Where humic substances such as humin, humic acids, fulvic acids, polysaccharides, proteins, peptides and aminoacids and inorganic chloride, phosphate and carbonate ions contain reactive groups, i.e. -COOH, -OH, -OCH, -NH₂, =N, -SH and -C=O (Yong *et al.* 1992, Heikkinen 2000), organic substances mostly form inner ring complexes with metals. Fulvic acids contain more reactive carbonate groups, however, and are thus extremely efficient at forming complexes (Schnitzer 1978; Hartikainen 1996; Heikkinen 2000). The stability of organic complexes, on the other hand, is partly brought about by the numbers and chemical characteristics of their atoms, the number of rings in a chelate, the chemistry of a metal, pH, oxidation-reduction conditions, ion exchange and microbial activity in the soil (Harmsen 1977; Schulin *et al.* 1995; Heikkinen 2000).

Chelates are the most stable of all organometalic complexes (Rose *et al.* 1979; Yong *et al.* 1992; Heikkinen 2000), the number of compounds present being dependent on the properties of the bedrock and surficial deposits in the area concerned and the composition of the rainwater. Soil waters in coastal areas, for instance, contain large amounts of chloride and sulphate ions (Moore & Bellamy 1974; Lahermo et al. 1990; Heikkinen 2000). The attachment of metals to colloids and their subsequent transport together with these will depend on factors such as the amounts of colloids and water in the soil and the acidity, oxidation-reduction conditions and water permeability of the peat or soil (Heikkinen 2000). The most common sulphide mineral to be found in till is a pyrite that has been partly altered to goethite, and pyrite has also been encountered in places in peat, together with chalcopyrite, covellite and metallic copper (Lett & Fletcher 1980).

There is less inorganic material by volume in peat than in mineral soil (Sillanpää 1975), while most heavy metals are retained best in soils that are neutral or alkaline and are leached out as the pH decreases (Kabata-Pendias & Pendias 1992; Alloway 1995; Wilson & Bell 1996; Heikkinen 2000). By contrast, the presence of calciferous seams in the bedrock will suffice to raise the pH of the overlying peat to levels close to neutral (Salmi 1958, 1967).

Minerals can dissolve to some extent in groundwater and in organic acids derived from humus, which in turn means that elements that have been transported in water will become enriched in the vegetation as a consequence of evaporation, with some plants attracting certain elements to a greater extent than others. Thus zinc tends to accumulate in the violet *Viola calaminaris* and the

moss *Pohlia wahlenbergii*, for instance (Jonasson *et al*. 1983), and gold in the field horsetail, *Equisetum arvense* (Salmi 1955). In the case of peat horizons, however, the high level of the groundwater

and shoreline plants tend to be ones that, by virtue of their aerenchymatous cells, are able to tolerate larger amounts of ferrous iron than is the case with true dry land plants (Eurola 1992). In fields created on drained mires, for example, the change in elemental accumulations in timothy grass, *Phleum pratense*, can still be seen 13 years later (Erviö 1989). Similarly, the concentrations of various elements in the dwarf shrubs *Vaccinium vitis-idaea*, *V. myrtillus*, *V. uliginosum* and *Empetrum nigrum* coll. growing in troughs ploughed in regeneration forests and in unploughed areas vary in an irregular manner, except for iron and aluminium, which accumulate more markedly in dwarf shrubs growing on the bottoms of troughs and on the crests of ridges (Sepponen 1989). It has also been noted that heavy metals deposited by rainfall are capable of causing changes in the geochemistry of soils (Kubin 1989), leading to abnormally high concentrations in plants. Element concentrations in mire plants have also been studied in Jämtland (Malmer & Sjörs 1955), and high copper accumulations have been reported in the mosses *Pohlia nutans* and *Scapania* in Canada (Beschel 1959; Fraser 1961). Likewise crystals of framboidal pyrite formed from iron hydroxides have been observed in *Sphagnum* and *Mnium* mosses (Papunen 1966).

Trophic (nutrient) levels in mires

The terms minerotrophic and ombrotrophic have been used in connection with mire research since the 1950s (Viro 1955; Ruuhijärvi 1960; Eurola 1962) and in Finland, Sweden and Central Europe since the earlier part of the last century (see, for instance, Ruuhijärvi 1960), but the definitions of the given nutrient levels have varied from one country to another (Table 1). If a mire has a Ca/Mg ratio of <1.0, it may alter from a minerotrophic mire affected by flowing water to become ombrotrophic, but it will never be totally influenced by flowing water (Moore & Bellamy 1974). In fact, the ratio is not always as low as this even in ombrotrophic peats, although these may occur in the interior parts of Fennoscandia, possibly on account of human-induced calcium enrichment or a naturally high concentration (Sonesson 1970). In spite of the difference in geochemical composition between ombrotrophic and minerotrophic mires, high concentrations of Ca, Mg, Fe, Al and Si may be found in the surface horizons of mires due to environmental factors or secondary disturbances (Mörnsjö 1968).

The nutrient content of a peat may thus represent the sum of numerous physico-chemical growth factors that can be defined as including climatic factors, acidity, electrical conductivity (electrolyte content), the amounts of certain specific nutrients present, peat depth and, in the case of mires in a natural state, also water mobility (nutrient inputs) and water level. This trophic level indicates the ease with which plants can obtain nutrients, which can be influenced by the acidity of the peat, as plant species growing on an acidic substrate must have a high exchange capacity. Acidity, in turn, will be affected by the water and calcium content of the peat. In practice it is the plants and their communities, i.e. mire types, that are employed as measures of trophic level. The differences between the trophic levels in terms of acidity, the electrical conductivity of the mire water and the calcium content of the peat (according to Eurola & Kaakinen 1978; Tolonen & Hosiaisluoma 1978; Eurola et al. 1995; Tahvanainen 2004; Eurola & Huttunen 2006) are set out in Table 2. Ratcliffe (1964) sets the pH of oligotrophic peats in Scotland at <5 and their Ca content at 30 mg/100g (or pH <5.7 and Ca content <4 mg/l in the mire water), with corresponding figures of pH 5-6 and Ca 30-300 mg/l for mesotrophic peats (or pH 5.7-6.5 and Ca 4-10 mg/l in the mire water) and pH >6 and Ca >300 mg/l for eutrophic peats (or pH >6.5 and Ca >10 mg/l in the mire water).

It is common for analyses based on surface peat horizons to show scarcely any difference between ombrotrophic and oligotrophic conditions, whereas the difference is clearer lower down in the peat. Mesotrophic and eutrophic conditions, on the other hand, show clear differences in the majority of cases, especially where pH values and concentrations of Al, Mg, Ca and Fe are concerned. This being so, the concept of ombrotrophic conditions would seem to apply only to mire water chemistry and be inapplicable to peat chemistry. Since mire plants derive their nutrients from the mire water, ombrotrophic conditions are manifested most clearly in this way, i.e. through the vegetation and its growth record (see Vasander 1981a, b, 1983; Lindholm & Vasander 1979; Eurola & Holappa 1984).

рН	Weber 1907 M-Europe	a Ruuhijärvi 1960 Finland	a 5 Sjörs 1971 Sweden	Jeglum 1971 Canada	Bradis & Andrienko 1972 Ukrainian	D Neuhäusi 1972 M-Europe	2 Pollet 1972 Newfounland	uko Elpatievsky 1972 Russian	a Pakarinen 1975 Finland	Moore & Bellamy 1974 Great Britain	a Tolonen 1974, Tolonen & Hosiaisluoma 1978 Finland
				Oligo				trophic		(bog)	
4			Poor						Weakly		_
			fen	Oligo-				Oligo-	minerotrop	hic	
		Minara	M i mode-	trophic	Meso-			trophic	(oligo)		Oligo- trophic
			n rately		trophic			Meso-			tropfic
		cropine	e rich		cropine			Oligotroph	ic	Minero-	
			r fen							trophic	
			0				Weakly			(fen)	
	Mesotro	ohic		Meso-		Solige-	minero-			reotrophi	c
				trophic		nous	trophic				
									Moderately		
								Meso-	minerotrop	hic	
								trophic	(Meso)		
			Rich		Eutroph	nic					
			fen								
5				Eutrophic				Meso-			
								eutrophic			
	Eutrophic								Strongly		
	cotropin	-		Extremely	Alkali-		Eu-	Eu-	minerotrop	hic	
			Extremely	rich	trophic		minero-	trophic	(Eutrophic)		
			rich	fen			trophic		(
			fen								

Table 1. Trophic levels as defined in various countries. Om = ombrotrophic, OI = oligotrophic, Me = mesotrophic, Eu = eutrophic, Min = minerotrophic

	pH /peat	mS/m/peat	Ca mg / I dry peat	Ca mg/l mire water
Eutrophic	> 6	> 40	> 5000	> 5000
Mesotrophic	< 5	< 40	< 5000	> 2000
Oligotrophic	< 4	< 26	< 4000	< 2000
Ombrotrophic	< 4	< 10	< 2000	< 1000

Table 2. Trophic levels defined in terms of peat acidity (pH) and electrical conductivity (mS/m) and calcium concentration (mg/l of dry peat and mg/l in the mire water) (Eurola & Kaakinen 1978; Tolonen & Hosiaisluoma 1978; Eurola et al. 1995; Tahvanainen 2004; Eurola & Huttunen 2006).

While mire margin ecosystems are constantly under the influence of nutrient inputs from other systems, mire centres have a vegetation that lives entirely off the nutrients in the peat itself or received in the form of rain, the only exception being the influx of nutrients in meltwater from the snow of the surrounding areas in spring. This means that an ombrotrophic vegetation will always be lacking in minerotrophic species and subject to a mire centre effect. A minerotrophic vegetation, on the other hand, can be influenced by either a mire centre or a marginal location, with the latter tending to exercise a spruce mire, swamp, groundwater or meltwater effect. The potential for draining a mire is also clearly connected with the presence of a margin or mire centre effect, with spruce mire-related types responding best to drainage, along with only one mire centre vegetation type, the tall-sedge pine fen, which is said by Westmann (1981) to have a slightly swampy or groundwater-influenced character. Mire types with margin effects tend to have higher element concentrations, but acidity behaves in an irregular manner in this respect (Eurola & Holappa 1984).

Ombrotrophic conditions can be detected best by calculating the annual intake of nutrients per unit area and correspondingly, the assumed annual intake of nutrients per living vegetation horizon (15 cm). This layer thickness is insufficient, however, for the estimation of nutrients entering minerotrophic mires in larger amounts than the potassium and ammonia nitrogen derived from rainwater. Further factors that affect the quantities of nutrients present are runoff and possible evaporation (Eurola & Holappa 1984).

2. THE AREA STUDIED

The mires investigated for the present purposes are located in an area of the Finnish provinces of Northern Ostrobothnia, Kainuu and Koillismaa bounded by latitudes 64–66°N and longitudes 24–30°E (Fig. 1). The topography of the area varies more in an east-west direction than from north to south, the coastal belt being flat or gently undulating, while the central parts are dominated by a ridge running north-south, followed in the east by the hill country of Southern Lapland and Kainuu with its many erosional valleys (Fogelberg & Seppälä 1986). Mires began to develop rapidly in the central part of the western sector of the area between approx. 9800 and 5800 BP cal (Mäkilä & Muurinen 2008).

The rate of land uplift in this area is about 8 mm per year on the coast and 5 mm per year close to Finland's eastern boundary, and the highest ancient shorelines left by the Ancylus Lake stage in the history of the Baltic basin (10800–9000 BP cal) are to be found just above 200 m a.s.l. Following the brief Mastogloia period, the salinity of the water rose and the Baltic basin entered the Litorina Sea phase (approx. 9000–5000 BP cal), the highest shorelines from which extend nowadays to almost 100 m a.s.l. (Eronen 1983, Eronen *et al.* 2001; Winterhalter *et al.* 1981).

The <u>bedrock</u> of the area consists mostly of Late Archaean acidic granites crossed by the north-south-oriented Puolanka Schist Belt and the narrower Kainuu Schist Belt running parallel to it. Smaller occurrences of alkaline rocks are also to be found in the north-western parts of the area, around Ranua and in the Kemi-Tornio district, and also in the surroundings of Kuusamo in the north-east. The northern part of the area is occupied by the Archaean Pudasjärvi granite gneiss complex. To the west of this is a continuous gneiss belt with alkaline plutonic rocks in places which then extends further south in a NW-SE direction. Also belonging to the Proterozoic Svecokarelian bedrock of Finland are the Peräpohjola Schist Belt and the Northern Ostrobothnian Schist Belt that surrounds the Jotnian sediments of the Muhos Formation (Laajoki 1983, Simonen 1990).

The thickest <u>surficial deposits</u> are located in the coastal areas. Tills overlie the majority of the area studied here (Johansson & Kujansuu 2005) and a number of till beds of varying ages can be distinguished (Aario & Forström 1979; Kujansuu & Niemelä 1984). The highest points on the coast of the Bothnian Bay possess a drumlin and cover till topography and the valleys feature Rogen and other types of hummocky moraines and glaciofluvial formations, often smoothed over by littoral processes. In places there are curved hill formations, which are generally partly glaciofluvial in origin. In Koillismaa and Kainuu, which are predominantly supra-aquatic areas, there are cover tills and drumlin fields, products of glacial action, with dead ice hummocky moraines and seam formations located between the glacial lobes (Aario 1984; Kujansuu & Niemelä 1984). Some interglacial and interstadial peat and gyttja horizons from times preceding the last glaciation have also been identified in the area (Korpela 1969). The surface landforms of the western half of the area are mostly composed of glacial and glaciofluvial sediments, so that bedrock outcrops are of minor importance in this respect. One consequence of the pronounced rate of land uplift, however, is that there are shore ramparts situated nowadays a considerable distance away from the coastline. On the coast itself, the local eskers and other sand-based landforms have been

smoothed over by shoreline processes, while the topography of the depressions between these has been filled in by mires.

In terms of the climate classification of Köppen (1931), the area concerned here has a <u>moist birch</u> <u>climate</u>. Since the extent of the area from north to south is about 250 km, the spring and summer part of the year is some 3 weeks longer in the south and the thermal growing season comes to an end 2–3 weeks earlier in the north. Considering the climatically determined division into vegetation zones, the western half of the area is generally speaking Middle Boreal in character, the Kuusamo district is slightly oceanic and Northern Boreal and the intervening zone is a neutral Northern Boreal area (Hämet-Ahti & Jalas 1968). According to Eurola and Vorren (1980), the Kuusamo area belongs to the southern part of the North Boreal zone, although the northern half of the region considered here belongs for the main part to the Middle Boreal zone and is bounded in the west by a corridor of the southerly Middle Boreal zone in the valley of the Oulu River, after which there is only a narrow strip of the Bothnian Bay coast that represents the Southern Boreal zone.

The development of the mires in the region to form raised bogs and aapa fens, as determined by the macroclimate, is also reflected in spatial variations in the distribution of strings, intermediate surfaces and flarks, with the proportion of strings increasing on the raised bogs and that of flarks on the aapa fens, while the extensive expanses of intermediate surfaces represent the most common level on the poor fens. Variations in evapotranspiration and temperature sums are closely reflected in the surface topography of the mire complex types (Eurola *et al.* 1984). Long-term statistics show mean annual precipitation in the region to be of the order of 500–600 mm, and even close to 700 mm in places (www.fmi.fi/saa/tilastot_146.html). It should be noted, however, that Bailey (2003) claims that the best correlation with the areas belonging to particular ecosystems is achieved by an "ecological classification" that is not based exclusively on mean temperatures and mean precipitation figures.

<u>Phytogeographically</u>, the region studied here is located at the western end of the extensive boreal taiga forest belt and close to the transition between its middle and northern zones, in an area where pine-dominated heath forest types are predominant. Spruce is most abundant as a forest species in the east and north-east and around Lake Oulujärvi, while birch is most common on the low-lying coastal fringe. In the division of Finland into phytogeographical regions the southern

parts of the Middle Boreal zone are regarded as belonging to Ostrobothnia and Kainuu, where both southerly and northerly plant species and vegetation types thrive (Kalliola 1973). According to Eurola (1962) and Ruuhijärvi (1960), the mires of the area studied here fall into the Ostrobothnia and Peräpohjola aapa fen zones, while the aapas of Ostrobothnia can be further divided on the basis of their plant cover into the aapa mires of Northern Ostrobothnia, the eutrophic aapa mires of Northern Ostrobothnia and the aapa mires of Kainuu. The sloping fens of Kuusamo can in turn be regarded as forming one subset of the aapa mires of Ostrobothnia. A rather similar areal division was arrived at in the Third National Forest Transect Estimate, which was based on the frequencies of occurrence of forest and mire plants (Kujala 1964), in relation to which the area studied here is located in the regions of Northern Ostrobothnia, Central Ostrobothnia, Kainuu, Peräpohjola and Kuusamo, and also partially in the Suomenselkä watershed area. Interpretations of the history of the vegetation and tree cover based on pollen and macrosubfossil evidence are available both on a regional scale (see Vasari 1962, 1963b, 1964b, 1966, 1974) and for the whole of Northern Finland (Siren 1961; Donner 1965; Mangerud et al. 1974; Vasari 1974; Eronen 1979, 1983, 1996; Eronen & Zetterberg 1996; SILMU 1996, Hicks et al. 1996; Seppä & Hammarlund 2000). Studies of the early phases in the vegetation succession of the shores of the Bothnian Bay have been published by Havas (1961) and Vartiainen (1980).

<u>Mires</u> are in relative terms more abundant in this area than anywhere else in Finland (Virtanen *et al.* 2003; Raunio *et al.* 2008). The richest of these in vegetational terms are to be found beside streams, rivers and lakes and in areas with an alkaline bedrock. Considerable variations in temperature conditions, runoff, humidity, oceanity-continentality, topography, bedrock and surficial deposits nevertheless occur within the area, providing suitable conditions for the occurrence of an abundance of aapa fens and a wide variety of mire types. There are places on the low-lying plains on the Gulf of Bothnia coast where mires account for over 60% of the land area, and the fens in the centres of many of these may be interspersed with flarks. Similarly there are large numbers of poor *Sphagnum papillosum* fens with small flarks, *Eriophorum vaginatum* pine bogs, *Carex globularis* spruce-pine mires and poor pine fens. Spruce mires, on the other hand, are relatively rare, and rich fens are mainly to be found in the valley of the Oulu River. The "Lapland Triangle" between the Tornio River and the Kivalo range of hills is another area where more than 60% of the land area is occupied by aapa fens, although rich birch fens are also common here, as are rich pine fens and sloping fens, while flark fens tend to develop on level ground. Some rich fens

can be found where the bedrock of the ancient Karelidic mountain chain crosses the Kainuu area, although they cannot compare in terms of species richness with those of the Tornio district and certainly not with those of Kuusamo. It has been estimated that about 10% of the rich fens over the whole area studied here have been preserved in an unditched state (Kaakinen & Kukko-oja 1981). The most commonly occurring mire types in the area are *Eriophorum vaginatum* and dwarf shrub pine bogs and poor pine fens, together with thin-peat spruce forests and true spruce mires, while groundwater-influenced sloping fens are common on the hills of the Kuusamo district and oligotrophic flark fens are typical of the valleys, but there are few *Eriophorum vaginatum* pine bogs or *Carex globularis* spruce-pine mires. One common feature of the hill terrain of Kuusamo, however, is the occurrence of *Sphagnum fuscum* spruce-pine mires (Paasovaara 1986).

According to Heikurainen (1960), the percentages of the land area of the region considered here occupied by the main mire types and their principal locations in the period prior to the extensive draining of peatlands were the following: *Eriophorum vaginatum* pine bogs (6.1–15%, Kainuu); thin-peat pine forests (3.1–15%, western half of the area); sedge fens (6.1–12%, west to north-east); dwarf-shrub pine bogs (4.1–12%, east); flark fens (5.1–10%, west to north-east); thin-peat spruce forests (0.1–10%, throughout); true *Carex* pine mires (5–9%, throughout); short-sedge fens (7.4%, throughout); spruce-pine mires (0.1–6%, throughout); true spruce mires (<5%, Kainuu); rich pine fens (0.1–5%, Tornio, Kuusamo); poor birch fens (4.1%, Tornio, west); grassy birch-spruce mires (1.1–4%, west); true rich fens (0.1–>4%, Tornio, Kuusamo); *Sphagnum fuscum* spruce mires (0.1–>2.6 %, Tornio, Kuusamo) and birch-spruce mires with rich fen features (0.1–2%, Tornio, Kuusamo).

The extent of draining operations directed at the various mire types in the aapa mire area was examined by Eurola *et al.* (1991) with respect to the ten most common types: *Eriophorum vaginatum* pine bogs 11.8%, *Carex globularis* pine mires 7.9%, thin-peat pine forests 6.6%, mesotrophic flark fens 5.6%, *Carex globularis* spruce-pine mires 5.5%, true Carex pine mires 4.2%, true short-sedge pine fens 4.2%, true dwarf-shrub pine bogs 3.7%, *Vaccinium myrtillus* spruce mires 3.3% and true spruce-pine mires 3.3% (total 56.1%). To generalize, pine bogs accounted for the majority of the mires in Ostrobothnia, 60%, poor fens for 34%, spruce mires for only 6% and rich fens for less than 0.5% (Parikka *et al.* 1999).

3. MATERIALS AND METHODS

Field investigations

Practically all the mire sites studied for the present purposes (Fig. 1) are situated in the Ostrobothnian aapa mire region (Ruuhijärvi 1960; Eurola 1962). A total of 11 peat profiles were obtained from the Pilpasuo mire in Oulu (no. 2 in Fig. 1; see Rehell 1985) and series of 5 samples each were taken from the mires of Takasuo in Ylikiiminki (no. 1) and Ruostesuo in Kiiminki (no. 3). Further profiles were obtained from mires of various types located all over the area, yielding a total of 71 cores representing 45 mires in a natural state. Data on macrosubfossils from Pilpasuo were taken from the work of Rehell (1985), data on Kiimisuo on the island of Hailuoto (no. 15) from that of Rönkä (1985), data on Järvenpäänsuo in Utajärvi (no. 12) from that of Holappa (1976) and data on Purkuputaansuo in Kuusamo (no. 13) from that of Miettinen (1983, 1985).

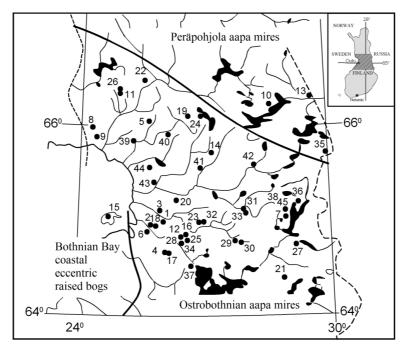


Fig. 1. The area studied here, the mire sites and their locations and the numbers of samples taken (in brackets after the name): 1. Takasuo (143); 2. Pilpasuo (261, Rehell 1985); 3. Ruostesuo (47); 4. Päijännesuo (19); 5. Rautuojanaapa (24); 6. Länsisuo (10); 7. Säkkisuo (14); 8. Vaarajänkkä (18); 9. Karsilonmaa (19); 10. Riissuo (49); 11. Ristivuoma (11); 12. Järvenpäänsuo (30, Holappa 1976); 13. Purkuputaansuo (12, Miettinen 1985); 14. Posonpalo (10); 15. Kiimisuo (27) (Rönkä 1985); 16. Väliahonsuo (17); 17. Reikäsuo (12); 18. Kehäsuo (29); 19. Paloaapa (8); 20. Arosuo (9); 21. Mustinsuo (40); 22. Ternuvuoma (8); 23. Olvassuo (20); 24. Hiisisuo (15); 25. Kivisuo (17); 26. Kilsiaapa (9); 27. Säynäjäsuo (25); 28. Heinäsuo (3); 29. Rytisuo, Parola (18); 30. Pihlajavaara (4); 31. Lomasuo (4);. 32. Kärkäs (2); 33. Rytisuo, Sikavaara (5); 34. Käkiperä (5); 35. Matosuo (66); 36. Ulkupuro (27); 37. Siirasoja (7); 38. Siikavaara (2); 39. Simoskanaapa (4); 40. Näätäaapa (5); 41. Saarisuo (5); 42. Siekkisensuo (8); 43. Sarvisuo (5); 44. Iso-Hirvineva (4); 45. Lahnaletto (15). A total of 1095 samples were taken. The division into regions (black lines) is after Ruuhijärvi (1960) and Eurola (1962).

The peat samples were taken with a Russian corer and surface peat samples were cut with a knife or a thin-walled steel cylinder approximately 11 cm in diameter. The cores were sampled at 10 cm intervals, and some also at 5 and 15 cm intervals if the core displayed clear boundaries between the horizons. The redox potential and pH were measured directly from the fresh samples in the field or immediately on arrival in the laboratory (Table 3).

All the cores extended from the mire surface to the basal sediment, except for that from the mesotrophic sedge fen of Riissuo in Posio, where some of the deepest horizons were missing (Fig. 1. site no. 10). The profiles with depths of less than 30 cm represent "biological mires" with a vegetation cover of >75%. Some of the rich fen sites, for instance, have a highly abundant vegetation (Kaakinen & Kukko-oja 1981).

	Analyses
No. of samples	1095
Gyttja samples	7
Moisture, coarseness, sedges, Eriophorum vaginatum, plasticity, staining, lignin,	
colour (1-5)	1079
Fibre content %	812
mV	767
w %, kg/m ³	1077
H ₁₋₁₀	1090
Amorphous material (< 0.125 mm)	535
Organic material %	1076
Ash content %	1078
рН	1088
Р	767
Na	1031
K, Zn	1043
Са	1037
Al, Mg, Fe	1042
Mn	1036
Cu	1044
Pb	1040

Table 3. Numbers of peat samples taken from the sites studied and numbers of the various analyses performed. Total number of mires studied 45; total number of mire types represented in the peat horizons 213.

The <u>moisture content of the peat</u> was estimated by hand in the field on the scale: 1 air-dry, 2 relatively dry, 3 normally moist, 4 wet, and 5 mostly water. The <u>coarseness</u> of the peat was determined on the scale: 1 extremely coarse, 2 coarse, 3 fairly coarse, 4 moderately smooth, and 5 very smooth. Correspondingly, the proportions of <u>sedge roots</u>, *Eriophorum vaginatum* fibres and <u>wood</u> were determined as: 1 absent, 2 sparse, 3 moderate, 4 abundant, and 5 dominant. The

<u>plasticity</u> of the peat was divided into: 1 not pliable, 2 slightly pliable, 3 fairly pliable, 4 easily pliable, and 5 extremely easily pliable; and its <u>staining capacity</u> (on the hands) as: 1 does not stain, 2 stains slightly, 3 stains, 4 stains fairly well, and 5 stains extremely well.

Laboratory methods

Mire type stratigraphies and macrosubfossil analyses

Since it is not really known what is the best means of subdividing a core stratigraphically (Gordon & Birks 1972), the approach adopted here was to identify the peat horizons on the basis of their plant species composition (see Eurola & Kaakinen 1978; Eurola *et al.* 1995) with additional reference to the physical properties of the peat, the concentrations of the elements Al, Mg, Fe, Ca, K, Na, Fe, Mn, Cu, Pb and P and the ratios Ca/Mg, Fe/Mn, Ca/K, Na/K, Fe/P and Cu/Zn. The laboratory analyses and their various stages were performed in accordance with the diagram in Fig. 2.

Mire types that were close to each other ecologically and in terms of their species composition were then combined to form a single type, as seen in Table 4. The species themselves were identified from plant remains and seeds by comparing preparations of tissue samples with modern reference specimens and by referring to the relevant literature (Arnell 1981; Beijerinck 1947; Berggren 1969; Eurola & Kaakinen 1978; Katz *et al.* 1977; Nyholm 1975, 1979, 1981; Paasio 1963). For better identification of the mire plant remains in the best-humified peat samples, the fine-grained humus was removed using nitric acid, HNO3:H2O 1:2 (Paajala *et al.* 1981), and the material was washed in 1 mm and 0.25 mm sieves consecutively until the water passing through was clear. The fractions remaining in the sieves and the original sample were examined by eye and under a microscope to determine the percentages of the plant species.

The species compositions of the mire types, i.e. the proportions of the various peat constituents, were determined as follows:

1. The peat composition of the acrotelm was calculated from the data of Ruuhijärvi (1960) concerning the cover percentages of given species and families relative to the total flora of the mire type in question (Table 10).

2. Estimates were obtained by means of both macroscopic and microscopic observations for the percentages of given plant remains in the combined material of recent and subfossil mire types.

The three most commonly occurring plant species or species groups in percentage terms were then taken to represent the peat type in question, with the principal factor named last in this formula.

3. The botanical compositions of peats representing different tropic levels were defined according to the system of Eurola and Kaakinen (1978).

4. As a peat becomes more humified a completely decomposed plant mass with a grain size of less than 0.125 mm, referred to as amorphous material (A), is formed. In the present work this amorphous material was taken together with the plant remains to form a single element in the formation of the peat and was then defined in one of the following manners: a) when the amorphous material accounted for <25% of the peat, the latter was said to be fibrous (not amorphous), so that no A was appended to the peat formula, b) when there was 25–50% amorphous material present in the peat the symbol A was appended to its formula, *e.g.* AC (amorphous *Carex* peat), c) if there was >50% amorphous material, so that this became the major component of the peat, it qualified to be mentioned last in the formula, e.g. CA (*Carex* amorphous peat).

The influence of the macroclimate on the isolation of the mire basins and the spread of spruce to the area was assessed from a study of the literature, involving a total of 60 works (Appendix 1). In addition, pollen analyses were available for 19 mires (Appendices 2 and 3). Spruce can be assumed to have been present at the time of deposition of a given horizon if it accounts for about 10% of the pollen sum (Hicks 1977, Hicks *et al.* 1996).

Physical and geochemical analyses

Determination of the proportions of amorphous material was based on a preliminary experiment in which 93 peat samples representing different mire types were sieved using mesh sizes of 4, 2, 1, 0.5, 0.25, 0.125 and 0.074 mm. This demonstrated that the <0.125 mm peat fraction represented extremely well decomposed plant material among which it was possible to distinguish only diatoms, pollen grains and spores. Thus the dry weight percentage of the <0.125 mm fraction (washing loss, see Fig. 2) in a homogenized parallel sample of precisely the same weight could be taken to correspond to the amount of amorphous material in the peat.

The samples were analysed in the laboratory for water content, wet and dry densities and ash content. A figure was obtained for the accumulation of organic matter by deducting the proportion

of ash from the dry density. For the element determinations approx. 100 mg of peat ash was dissolved in 5 ml of concentrated HCl, after which 5 ml of 2N HNO_3 was added and the residue mixed and infiltrated with hot distilled water to a volume of 100 ml. The solution was then analysed using an atomic absorption spectrophotometer (AAS) for the following elements (accuracies in ppm in parentheses): Al (30), Ca (1), Cu (3), Fe (6), K (3), Mg (0,3), Mn (2), Na (0,2), Pb (10) and Zn (1). Phosphorus (P) was determined by dissolving peat ash in HCl, drying the product and dissolving this in HNO₃ before adding distilled water to obtained the desired volume. The phosphorus was then complexed with ammonium molybdate (NH_4)₂MoO₂ and colorimetric determination performed at a wavelength of 700 nm half an hour after 0.75 ml of a 10% solution of citric acid, 2 ml of sodium hydrogen sulphite solution, 4 ml of ammonium molybdate solution and 5 ml of metol solution had been mixed into the sample. The instrument was calibrated with distilled water and a KH₂PO₄ solution.

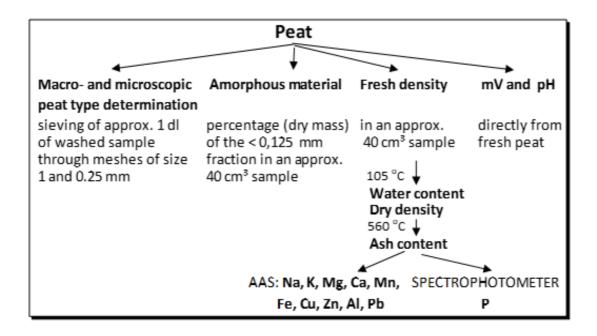


Fig. 2. Scheme for the determination of peat properties.

Processing of the results

The results of the analyses were handled using the Excel program and examined with respect to their means and standard deviation and by correlation analysis. According to Lokki (1980), 25–30 observations are required to normalize the mean and standard deviation of a statistical dataset, provided that the distribution of the original measurements is more or less symmetrical. The figures and diagrams used to display the results were mostly produced using the Excel program. The pollen diagrams were printed out using the Tilia program.

Since the atmospheric ¹⁴C content varies, radiocarbon years calculated in the traditional way can deviate from calendar years quite considerably, sometimes by more than 1000 years. All the radiocarbon dates quoted here have been calibrated using the Cal Online program.

4. RESULTS

Mire formation and stratigraphy and the mire type succession

Spruce first spread to the area (Appendix 1, see text for calibrated dates) around 5500–5750 BP cal in the case of Kuusamo (Hicks 1975, 1985; Seppälä & Koutaniemi 1985) and Kainuu (Reynaud & Hjelmroos 1976; Keskitalo 1982) and soon after 5120 BP cal in the central parts of the region (Holappa 1976; Hicks 1977; Reynaud & Hjelmroos 1980) (kuva 3) and the south-eastern and southern parts (Keskitalo 1982; Vuorela 1990; Vuorela & Kankainen 1991) and somewhat later still on the coast and in the hill country of the Tornio district of Lapland (Hicks 1988 a, b). In the low-lying coastal strip and the central part of the area the mires mainly formed some time after the arrival of spruce. The youngest of the poor ombro-oligotrophic mires in the coastal area were almost entirely covered by *Sphagnum* mosses, giving them a high proportion of mosses and other cryptogams relative to herbaceous plants and dwarf shrubs. On the more eutrophic mires, however, it was the herbaceous plants that were dominant, while dwarf shrubs were most prominent in the surface peat around the time of the spread of spruce (Appendices 2 and 3).

At the time when the mire basins were becoming isolated from the sea it was the sedges (*Carex*) that contributed most to the growth of peat (>20%, Fig. 4), followed by woody material and *Sphagnum* mosses (10–20%) and some brown mosses (Bryidae) and horsetails (*Equisetum*). The proportion of herbaceous plants in these horizons was less than 5%. The basal peat of forested mires frequently featured remains of the mycorrhizal fungus *Cenococcum graniforme*.

The proportion of the rusty peat moss, *Sphagnum fuscum*, in the surface peat of the young ombrotrophic and oligotrophic mires increased from a depth of about 120 cm upwards (Fig. 5), and the data also suggest that *Sphagnum* mosses accumulated to an extent of almost 20% in the basal horizons representing the early stages in the development of the older mires (Fig. 6).

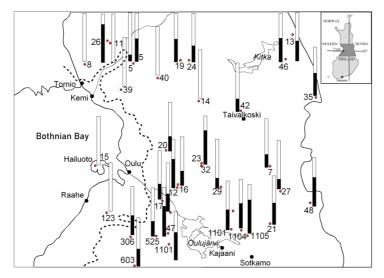


Fig. 3. Mire formation in Northern Finland before and after the spread of spruce (*Picea*) to the area. The black lower part of each column denotes the proportion of the whole peat depth that was deposited while spruce was absent from the forest and the blank upper part the proportion deposited after the appearance of spruce. For mire sites 5–42, see Fig. 1 and Appendix 2/1-10; for site 50, see Seppälä & Koutaniemi (1985); for sites 306–1105, see Keskitalo (1982); for site 47, see Okko (1955); and for site 48, see Virkkala & Valovirta (1957). The dashed line shows the position of the shoreline at the time when spruce reached it (Lukkala 1933).

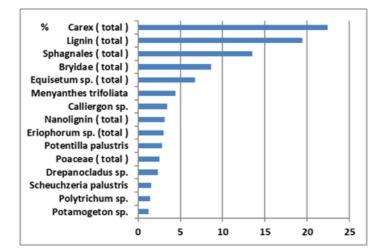


Fig 4. Average botanical composition (%) of the bottom 5-10 cm of the peat at the time when mire formation began.

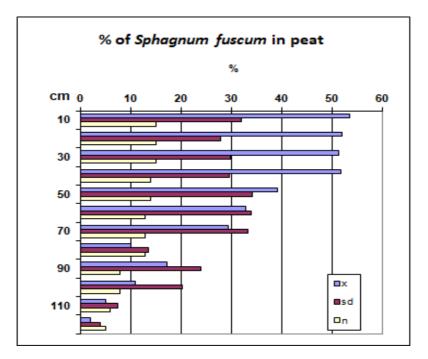


Fig. 5. Mean percentages (with standard deviation and number of samples) of *Sphagnum fuscum* in the surface peat layers of the ombro-oligotrophic mires as a function of depth.

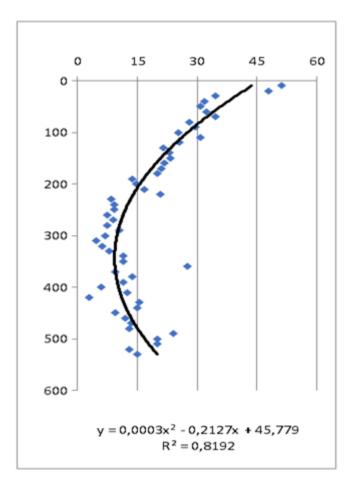


Fig. 6. Mean percentages of *Sphagnum* mosses at various depths in the whole series of mires. The polynomial function and its explanatory power (r^2) indicate the strength of the association of the percentage of *Sphagnum* moss with depth.

The dependence of the percentage of each category of plant remains (y) on the depth of the mire (x cm) and its coefficient of determination (r^2) were calculated for all the instances in which the plant remains in question accounted for at least 1% of the amount of peat (number of samples n = 1086):

Potentilla sp.	n =	117	y = 0.03521x + 1.6423	r ² =	19.1
Lignin		314	y = 0.06528x + 16.360		9.3
Bryidae		545	y = 0.03185x + 13.439		5.7
Scheuchzeria palustris		301	y = 0.01344x + 14.795		2
Equisetum sp.		513	y = 0.00689x + 10.772		0.6
Menyanthes trifoliata		454	y = 0.00450x + 13.863		0.3
Eutrophic Sphagnales		357	y = - 0.000197x + 10.370		0
Carex		907	y = - 0.01586x + 31.272		0.9
Eriophorum vaginatum		327	y = - 0.02451x + 24.521		1
Nanolignin		722	y = - 0.02276x + 17.050		3.5
Sphagnum acutifolia section	on	311	y = - 0.13065x + 35.282		10.6
S. cuspidatum section		271	y = - 0.06057x + 20.346		13.9
Sphagnales		867	y = - 0.08396x + 38.393		14.2
S. papillosum		139	y = - 0.08752x + 25.819		17.4
S. fuscum		133	y = - 0.25055x + 56.579		18.6

The distribution of the peat cores in terms of the mire types of their surface peat and the horizons representing earlier phases in mire development is set out in Table 4. Altogether there were 217 peat or gyttja-peat horizons which could be assigned to mire types on the basis of their plant species and physicochemical properties, including 146 that were subfossil mire types and 6 that had been deposited in water, representing a limnic peat type. By combining types that were ecologically close to one another, a set of 14 eventual mire types was obtained in addition to the limnic type (L). Of these, only the following groups were represented by less than 30 samples: true spruce mires (TSprM), dwarf-shrub pine bogs (DsPiB), swamps (S), oligotrophic mire type complexes (OIMC) and limnic peats (L).

Classification according to the system of Cajander (1913) shows that it is the poor fen and rich fen types that possess the thickest peat horizons, with the rich fens having a greater than average fluctuation in this respect (Table 5) on account of the unusually great depth of one *Calliergon richardsonii* flark fen in the Kuusamo area (Matosuo, RiL, 6.55 m + 1.75 m gyttja). If this site is excluded the mean depth of the rich fens is 1.25 m. The mean thicknesses of the mire type complexes and gyttja horizons for the whole area studied, together with the maximum and minimum values, are presented in Figure 7.

Mire types	Sites	Surf	Subf	Hori-	Sam	ples	Mire type group
		mt	mt	zons	n	%	
Sphagnum fuscum bog (SphfB)	8	9		9	62	100	S. fuscum bogs, SphfB
Dwarf shrub pine bog (DsPiB)	4	5		5	19	100	Dwarf shrub pine bogs, DsPiB
Eriophorum vaginatum pine bog (ErPiB)	6	3	4	7	46	100	Er. vag. pine bog, ErPiB
Ombtrotrophic short-sedge bog (OmSsdgB)	2		2	2	9	6,4	
Oligotrophic short-sedge bog OlSsdgB)	3	2	1	3	13	9.3	
Minerotrophic short-sedge fen (MinSsdgB)	3		3	3	13	9.3	
Sphagnum papillosum short-sedge fen (SphpSsdgF)	1	1		1	2	1.4	
Oligotrophic Sphagnum papillosum fen (OlSphpF)	3	1	2	3	16	11.4	Ombro-oligotrophic
Sphagnum papillosum poor fen (SphpPF)	4	2	2	4	30	21.4	poor fens, OmOIPF
Oligotrophic Sphagnum flark fen (OlSphFlkF)	2	1	1	2	6	4.3	
Sphagnum papillosum tall sedge fen (SphpTsdgF)	2	1	1	2	5	3.6	
True tall sedge fen (TTsdgF)	6	1	8	9	46	32.9	
Mesotrophic tall sedge fen (MeTSdgF)	7	4	9	13	103	66.9	
Drepanocladus flark fen (MeDrFlkF)	2		2	2	17	11.0	
Mesotrophic mud bottom flark fen (MeMudFlkF)	4	3	1	4	20	13.0	Mesotrophic poor
Mesotrophic flark fen (MeFlkF)	2	1	1	2	10	6.5	fens, MePF
Mesotrophic Sphagnum flark fen (MeSphFlkF)	1	-	1	1	4	2.6	
Meso-eutrophic fen (MeEuF)	1	1		1	5	2.7	
Campylium stellatum/Drepanocladus					22	47.0	
intermedius fen (DrintRF)	5	5	2	5	33	17.9	
Drepanocladus flark fen (DrFlkF)	2	2	2	2	8	4.3	
Scorpidoium flark fen (ScFlkF)	4	2	2	4	28	15.2	Dish form DE
Spring fen (SngF)	1		1	1	5	2.7	Rich fens, RF
Flark fen (FIKF)	5	1	4	5	74	40.2	
Swampy rich fen (SRF)	1		1	1	5	2.7	
Rich spring fen (SngRF)	2		2	2 1	22 4	12.0	
Sphagnum warnstorfii fen (SphwRF) Oligotrophic pine fen with flarks (OIFIkPiF)	3		3	3	6	<u>2.2</u> 25.0	
Oligotrophic Drepanocladus pine fen	5		5	5	0	25.0	
with flarks (OlDrFlkPiF)	1		1	1	2	8.3	Oligotrophic mire
Oligotrophic tall sedge pine fen ((OITsdgPiF)	1		î	1	3	12.5	complexs, OIMC
Short sedge pine fen (SSdgPiF)	2	1	î	2	7	29.2	complexity entite
True tall sedge pine fen (TTSdgPiF)	2	-	2	2	6	25.0	
Mesotrophic tall sedge birch fen (MeTSdgBirF)	1	1		1	5	3.3	
Mesotrophic tall sedge pine fen (MeTSdgPiF)6	-	-	7	7	28	18.7	
Mesotrophic pine fen with flarks (MeFlkPiF)	2		2	2	14	9.3	
Eriophorum vaginatum birch fen (ErBirF)	1		1	1	2	1.3	Mesotrophic mire
Swampy tall sedge birch fen (STSdgBirF)	1		1	1	11	7.3	complexes, MeMC
Poor birch fen (BirPF)	9	1	13	14	61	40.7	
Swampy poor birch fen (SBirPF)	6	1	7	8	28	19.3	
Rich pine fen (PiRF)	6	2	4	6	25	22.3	Eutrophic mire
Birch-spruce mire with rich fen features (BirRFSprM)	8	6	3	9	34	30.4	complexes, EuMC
Rich birch fen (BirRF)	3		4	4	53	47.3	
Thin-peat pine forest (ThPiFor)	3		3	3	3	8.6	Spruce-pine mires,
Carex globularis pine mire (CagPIM)	5	4	1	5	19	54.3	SprPiM
Carex globularis spruce-pine mire (CagSprPiM)	5	1	4	5	13	37.1	
Vaccinium myrtillus spruce mire (MyrSprM)	1	1		1	1	6.3	True spruce mires,
Equisetum sylvaticum pruce mire (EqSprM)	3	1	2	3	6	37.5	TSprM
Rubus chamaemorus spruce mire (RchSprM)2	2	2		2	9	56.3	
Thin-peat herb -rich forest (ThHFor)	1	1	_	1	2	2.6	
Swampy herb and grass birch-spruce mire (SHBirSprM)	6	1	9	10	35	46.1	Herb-rich spruce
Groundwater-influenced herb and grass						5.0	
birch-spruce mire (SngHBirSprM)	1	-	1	1	4	5.3	mires, HSprM
Herb and grass birch-spruce mire (HBirSprM)	7	5	2	7	35	46.1	6
Swampy sedge fen (SSdgF)	7		10	10	56	100	Swampy sedge fens, SF
Swamp (S)	3		7	7	13	100	Swamps, S
Limnic peat (L) Total	3	71	<u>6</u> 146	6 217	<u>10</u> 1099	100	Limnic peats, L
Iotai		/1	140	21/	1099		

Table 4. Surface mire types and subfossil mire types identified from plant remains, numbers of samples (n) and division of the mire types into ecologically consistent groups. Surf mt = surface mire type, Subf mt = subfossil mire type

Mire type		Mean peat dep	oth cm	Mean depth of recent s mire types cm	surface
	n	х	sd	x	Sd
Spruce mires	11	56	40	41	32
Pine mires	22	151	128	54	29
Poor fens	18	215	127	61	50
Rich fens	8	191 (125)	198	133 (64)	196
Mire complexes	12	97	95	43	14
Total	71	148		61	

Table 5. Mean peat depths in the total material and in the recent surface peat (x, cm) and standard deviation (sd) by mire types. Values in parentheses are with the Matosuo data excluded.

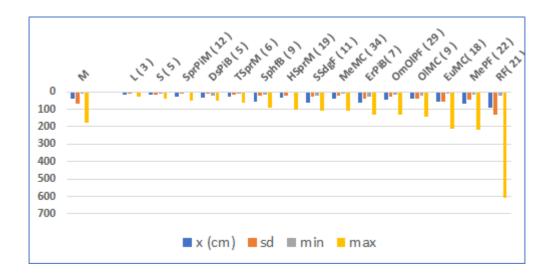
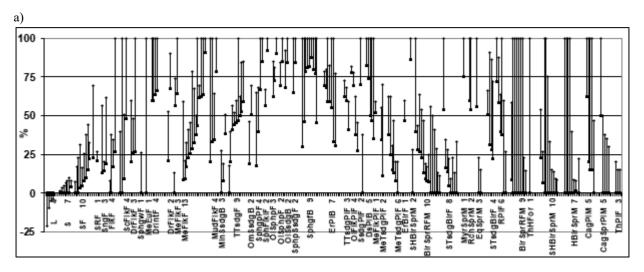



Fig. 7. Mean thicknesses (x, cm) of gyttja horizons (M) and peat horizons by mire types, with standard deviations (sd) and maximum and minimum values. Figures after the mire types are the numbers of observations.

b)

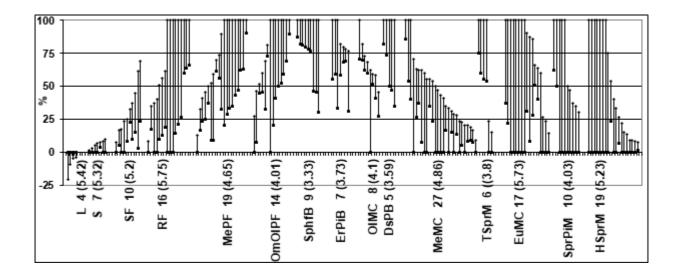
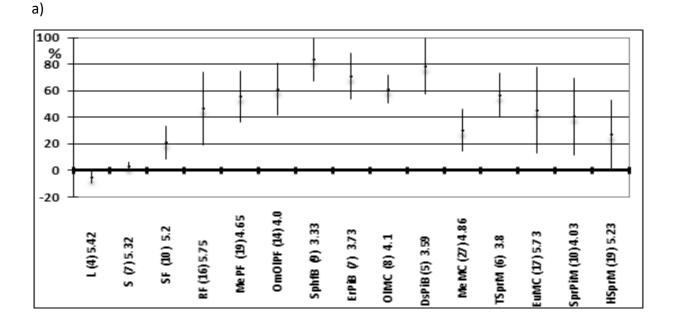



Fig. 8. Above (a): Mire type horizons defined by reference to plant species composition and geochemistry in the total material of 71 peat cores and their percentages and locations within the cores. Below (b): stratigraphy of the mire complex types. Key: a) L = Limnic peat, S = Swamp, SSdgF = Swampy sedge fen, SRF = Swampy rich fen, SngF = Spring fen, FlkF = Flark fen, ScFlkF = Scorpidium flark fen, DrFlkF = Drepanocladus revolvens flark fen, DrFlkPiF = Drepanocladus pine fen with flarks, SphwF = Sphagnum warnstorfii fen, MeEuF = Meso-eutrophic fen, DrintF = Drepanocladus intermedius fen, DrFlkF = Drepanocladus flark fen, MeFlkF = Mesotrophic flark fen, MudFlkF = Mesotrophic mud bottom flark fen, MinSsdgB = Minerotrophic short sedge bog, TTsdgF = True tall sedge fen, OmSsdgB = Ombrotrophic short sedge bog, SphpPF = Sphagnum papillosum poor fen, SphFlkF = Oligotrophic Sphagnum flark fen, OlSphpF= Sphagnum papillosum fen, SphpTsdgF = Sphagnum papillosum tall sedge fen, OlSsdgB = Oligotrophic short sedge bog, SphpSsdgF = Sphagnum papillosum short sedge fen, SphfB = Sphagnum fuscum bog, DsPiB = Dwarf shrub pine bog, ErPiB = Eriophorum vaginatum pine bog, TTsdgPiF = True tall sedge pine fen, OIFIkPiF = Oligotrophic pine fen with flarks, SsdgPiF = Short sedge pine fen, MeFlkPiF = Mesotrophic pine fen with flarks, MeTsdgPiF = Mesotrophic tall sedge pine fen, ErBirF = Eriophorum vaginatum birch fen, STsdgBirF = Swampy tall sedge birch fen, RPiF= Rich pine fen, BirSprRFM = Birch-spruce mire with rich fen features, MyrSprM = Vaccinium myrtillus spruce mire, RBirF = Rich birch fen, RPiF = Rich pine fen, BirSprRFM = Birch-spruce mire with rich fen features, SHBirSprM = Swampy herb and grass birch-spruce mire, HBirSprM = Herb and grass birch-spruce mire, RchSprM = Rubus chamaemorus spruce mire, EqSprM = Equisetum sylvaticum spruce mire, SngHBirSprM = Groundwater-influenced herb and grass birch-spruce mire, CagPiM = Carex globularis pine mire, CagSprPiM = Carex globularis spruce-pine mire, ThPiFor= Thin-peat pine forest; b) L = Limnic peat, S = Swamp, SSdgF = Swampy sedge fen, RF = Rich fen, MePF = Mesotrophic poor fen, OmOIPF = Ombro-oligotrophic poor fen, SphfB = Sphagnum fuscum bog, ErPiB = Eriophorum vaginatum pine bog, OIMC = Oligotrophic mire complex, DsPiB = Dwarf shrub pine bog, MeMC = Mesotrophic mire complex, TSprM = True spruce mire, EuMC = Eutrophic mire complex, SprPiM = Spruce-pine mire, HBirSprM = Herb and grass birch-spruce mire.

With the exception of the "limnic peats" laid down under shoreline conditions (see Sauramo, 1940; Nilsson 1952; Donner 1978), the environments in which the mire types occur can vary. Similarly, the same mire type will not necessarily have altered in the course of history in all cases but may even have remained consistent throughout in some cases, so that the line indicating that mire type phase in Figure 8a will extend from the bottom of the mire (0%) to the surface (100%). Figures 8a and 8b show a progression from swampy minerotrophic conditions to an ombrotrophic vegetation,

with the types influenced by location on mire margins and featuring thin peat horizons placed on the edges of the diagrams while the influence of a mire centre location increases towards the inner parts of the diagrams. The same mire type can occur at different depths in different mires, of couse, e.g. in the middle of the profile or at the surface, but it is usual for the swampy mire types influenced by a mire margin location to predominate in the basal parts of the profile while the poorer oligo-ombrotrophic types are concentrated in the surface horizons. From the beginning of peat deposition it is the herb-rich spruce mires and eutrophic mire type complexes (thin-peat herb-rich forests and rich pine fens) that prove to be the most permanent mire types, i.e. they persist all the way up to the surface. At the other extreme, the last mire types in the succession, such as the Sphagnum fuscum bogs, dwarf-shrub pine bogs and Eriophorum vaginatum pine bogs (Figs. 8a, b), are not directly influenced by the mineral soil or bedrock beneath the mire, and this is seen in the mire type succession in that the thin peat types are found at developmental stages 1 and 2 and the thicker peat types generally at stages 3 and 4, while Sphagnum fuscum bogs reach their peak at stage 7 (Figs. 9a, b). The phases in the succession vary, as also do the mire types, depending on the thickness of the peat, the manner of mire formation and the age of the mire, with limnic peat deposited in water regarded as stage 0 in the succession. Variations attributable to the macroclimate, local surface water movements and fluctuations in the availability of nutrients will also be seen in the composition and stratigraphy of the peat.

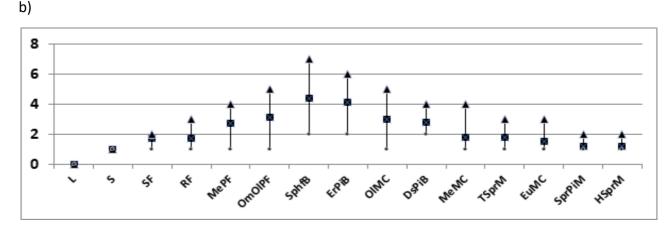


Fig. 9. Above (a): mean depths of peat horizons representing the various mire types as percentages of the mire depth, with minimum and maximum values also shown. The base of the mire is marked as 0% and the surface as 100%. The abbreviation for the mire type is followed by the number of sites at which it occurs (in parentheses) and the mean pH of the peat. Below (b): a stratigraphy-based summary of the phases in the succession that are typical of the mire types in terms of mean phase (solid line), highest phase (\blacktriangle) and lowest phase (\frown).

The mire types can be categorized in terms of acidity (pH) and water content as shown in Figure 10), where ombrotrophic *Sphagnum fuscum* bogs (OmSphfB), which gain their nutrients primarily from precipitation, are shown to have a pH of <3.5 while the ombro-oligotrophic types such as dwarf-shrub pine bogs (DsPiB), ombro-oligotrophic poor fens (OmOIPF), *Eriophorum vaginatum* pine bogs (ErPiB), true spruce mires (TSprM), spruce-pine mires (SprPiM) and oligotrophic complexes (OIMC) have a pH in the range 3.5–4.5. Correspondingly, mesotrophic poor fens (MePF) and mesotrophic complexes (MeMC) fall into the range pH 4.5–5. Peat formed from eutrophic swampy mire vegetation will tend to be only mildly acidic, so that pH values of 5–6 are recorded for swamps (S) and swampy sedge fens (SSdgF), rich fens (RF), eutrophic complexes (EuMC), limnic peats (L) and herb-rich spruce mires (HSprM). The mean water content figures for all the mire types, including limnic peats (L), are in the range 85–92%.

The mainstream of the vegetation succession in peat mires progresses from a spruce mire character to other manifestations of the mesotrophic complexes and flark fens and on to poor fens and bogs, although on account of variations in hydrology and trophic levels successions from rich fens and swamps towards mesotrophic conditions and vice versa can also occur. Spruce mires represent drier conditions, while flark fens, rich fens and swamps imply wetter conditions. In the case of limnic peats the high mineral content reduces the proportion of water and the result depends greatly on how carefully the sample is taken in the field and prepared in the laboratory.

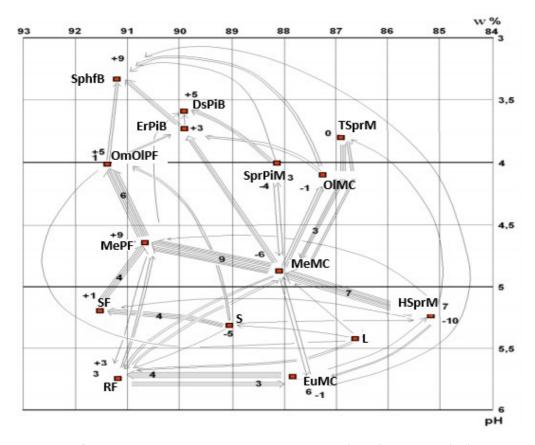


Fig. 10. Development of mire stratigraphy with respect to water content (vol %) and acidity (pH), with the succession of mire types. + development to a given phase, - progression to the next phase. The numbers of recent deposits of the given types are indicated beside their abbreviations; e.g. HSprM 7, -10 indicates that 7 deposits of this kind were observed and the balance of the succession was -10 (2 deposits had developed to this point while 12 had progressed to a new phase).

The succession and its phases as observed in aapa mires may be seen in Figure 10. Here the trend at the majority of the sites is from a rich nutrient supply towards a scarcity of nutrients, and the role of water content is less conspicuous. The dynamic nature of each mire type is reflected well in the balance between those that reach this stage (+) and those that pass on to the next stage (-). This balance is negative (the ratio of mires reaching this stage to those passing on is < 1) in peat laid down in water, swamps, mire complexes, spruce-pine mires and herb-rich spruce mires, i.e. these mire types would appear to be dynamic, readily open to change and to mire margin effects. In contrast, for flark fens of various trophic levels the ratio is positive, i.e. the deposits reaching this respect being found with oligo-ombrotrophic pine bogs and mesotrophic poor fens. In these cases the ratio is <10.

Peat deposition

Decomposition of mire plants

As the humification of peat progresses the structure of the plant remains is gradually destroyed and the amount of recognizable material is reduced both in absolute terms and as a proportion of the dry mass of the peat. Mire plants decompose at different rates, however, causing *Sphagnum* and *Carex* peats, for example, to differ in the manner of their deposition, so that when they have both reached a certain degree of humification this will be the result of different mechanisms (Laine & Vasander 1986; Mäkilä 1994). The progress of decomposition in certain mire plants, i.e. the percentages of their mass that can be recognized under a microscope as a function of the degree of humification determined according to von Post (1922), is presented in Appendix 4 and Figures 11 and 12, from which the equations describing the species-specific rates of decomposition quoted

in Table 6 have been derived.

Lignin (L)	y = 3.6803 x ^{1.1269}	r ² =	0.9444
Nanolignin (N)	y = 1.3879 x ² - 6.0482 x + 11.958		0.9505
Cyperaceae (C) (total)	$y = 14.855 x^{0.319}$		0.7688
Carex spp.	$y = 18.447x^{0.2666}$		0.6765
Eriophorum spp. (total)	$y = 9.4743 e^{0.1687x}$		0.9403
E. vaginatum	y = 0.6467 x ² + 0.3618 x + 11.657		0.8951
Trichophorum spp. (total)	y = - 0.3514 x ² + 0.8551 x + 12.694		0.7502
Poaceae (total)	y = - 0.1678 x ² - 0.1821 x + 20.187		0.1969
Herbs (total)	$y = 6.4414x^{0.5093}$		0.9364
<i>Equisetum</i> sp. (total)	y = - 0.2238 x ² + 4.1363 x + 1.741		0.9753
E. fluviatile	y = 1.726 x ² - 3.3262 x + 14.878		0.9709
Menyanthes trifoliata	y = - 0.7513 x ² + 5.916 x + 4.5615		0.4238
Potentilla palustris	y = - 1.3837 x ² + 6.2502 x + 6.0488		0.2306
Scheuchzeria palustris	$y = 13.468 e^{-0.0297x}$		0.0134
Sphagnum spp. (total)	$y = 42.194 e^{-0.3468x}$		0.9437
S. angustifolium	$y = 43.408 e^{-0.4044x}$		0.9342
S. fallax	y = 37.568 e ^{-0.478x}		0.9244
S. fuscum	y = - 5.1799 x ² + 17.411 x + 39.449		0.8798
S. magellanicum	y = - 0.5618 x ² + 1.8952 x + 12.683		0.9293
S. papillosum	$y = 66.925 e^{-0.4576x}$		0.8502
S. riparium	$y = 85.807 e^{-0.6505x}$		0.9614
S. teres	y = - 0.7116 x ² + 2.1423 x + 8.893		0.8973
S. warnstorfii	y = 6.7914 x ² + 42.371 x + 69.999		0.9152
Bryidae	y = - 0.6926 x ² - 4.6641 x + 3.5315		0.48
Calliergon spp. (total)	y = - 0.0689 x ² - 0.3029 x + 11.37		0.8233
C. cordifolium	y = - 0.6948 x ² + 3.9928 x + 1.1891		0.6518
Drepanocladus spp. (total)	y = 0.4541 x ² - 6.21 x + 24.249		0.9623
Polytrichum spp. (total)	y = - 0.098 x ² - 0.6368 x + 11.002		0.8751
Pleurozium schreberi	y = - 0.6786 x ² - 9.0357 x + 25.857		1
Straminergon stramineum	y = - 1.4908 x ² + 10.938 x - 6.9947		0.6651

Table 6. Functions depicting the rate of decomposition of mire plants. y = proportion (%) in peat, x = degree of humification (von Post 1922), $r^2 =$ coefficient of correlation.

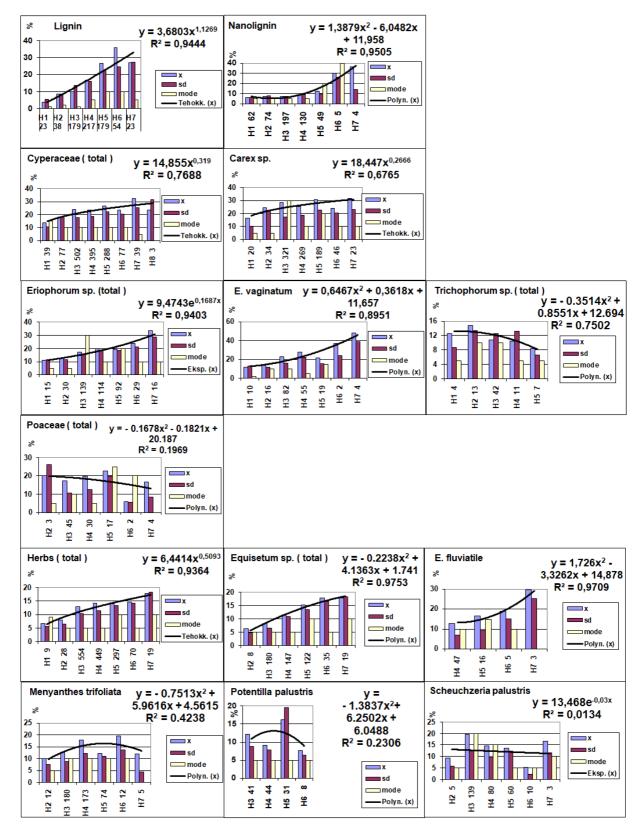


Fig. 11. Amounts of woody material from trees and dwarf shrubs (lignin and nanolignin) and remains of sedges (Cyperaceae), grasses (Poaceae) and herbs as a function of the degrees of humification as distinguished by von Post (1922) (means with sd and mode), and coefficients of correlation between mean values and the degrees of humification expressed as polynomial functions with the explanatory power (r^2) indicated.

As can be seen in Figure 11, the proportions of material derived from trees (lignin) and dwarf shrubs (nanolignin) increase markedly as the degree of humification of the peat advances on the von Post (1922) scale, while the mean proportion of sedges (*Carex* spp.) reaches a maximum of about 30% at phase H_5 and decreases to around 20% in more humified peats. Remains of the cotton-grass *Eriophorum vaginatum*, on the other hand, increase in amount relatively steadily by about 15% over the interval H_3 – H_7 , whereas the proportion of horsetails (*Equisetum* spp.) rises consistently as the degree of humification increases.

By contrast, the proportions of grasses (Poaceae), deer grasses (*Trichophorum* spp.), and the bogbean, *Menyanthes trifoliata*, marsh cinquefoil, *Potentilla palustris*, and Rannoch rush, *Scheuchzeria palustris*, diminish as further humification takes place. Of the herbs, only the amunt of *Menyanthes trifoliata* increases slightly along with humification, to about 10% from H_1 to H_4 , from which point its proportion decreases to 4% by H_6 , while *Potentilla palustris* achieves a frequency of no more than a couple of percent between humification grades H_3 and H_6 . Remnants of the Rannochrush (*Scheuchzeria*) vary in amount from 10% to 20%, but decline in relative terms as humification progresses. Only very small amounts of the lesser clubmoss, *Selaginella selaginoides*, are to be found in eutrophic peats, and only at the H_3 phase, and lichens also show a incidence.

Similarly, it is shown in Figure 12 that the estimated proportion of *Sphagnum* mosses was over 60% in the least humified peats but had decreased to below 7% by H_5 . *Sphagnum fuscum* and the mosses of the *Acutifolia* section reached a maximum of 22–32% in the least humified peats, phases H_{1-3} , and declined rapidly with further humification, as also did the eutrophic *Sphagnum* species, those of the *Cuspidata* section and *Sphagnum papillosum* among the *Palustria* section, all of which had a maximum occurrence of less than 10% and were difficult to detect at all beyond the H_{5-6} phases. According to Heikurainen and Huikari (1952), *Sphagnum* mosses and dwarf shrubs remain undecomposed, and therefore recognizable, even in H_{10} peats, but the present results suggest that Sphagnum mosses disintegrate almost entirely at an H_8 level of humification.

The mean proportion of Bryidae is highest at peat humification degrees H_{2-3} , where it reaches 10–12%, from which point it decreases to less than 5% in well humified peats (Fig. 12). The *Calliergon* mosses, on the other hand, gain in prominence up to the H_4 stage, reaching 7–12%, although remaining below 2% in well humified peats, while the maximum figures for *Polytrichum* and *Dicranum* mosses are less than 2% even in poorly humified peats. The proportions of *Pseudobryum*, *Hylocomium* and *Rhizomnium* mosses are very small throughout (< 0.5%).

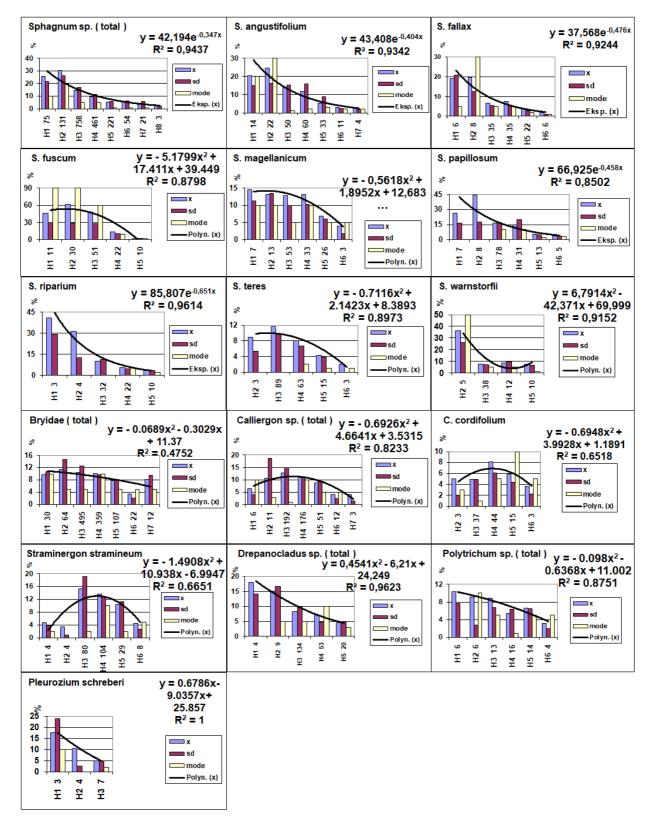


Fig. 12. Amounts of *Sphagnum* mosses and brown mosses (Bryidae) as a function of the degrees of humification distinguished by von Post (1922) (means with sd and mode), and coefficients of correlation between mean values and the degrees of humification expressed as polynomial functions with their explanatory power (r^2) indicated.

After normalization of the data to account for differences in the numbers of samples it was possible to calculate the degree of humification of a peat (x) given the proportions (%) of plant

remains in it, or conversely, to predict the proportion of a given peat-forming factor (plant species, y) if the degree of humification of the peat horizon is known (Table 7).

			H1-10	Peat factor %	Regression equations	
	n	r ²	x sd	y sd		
Lignin	314	22,1	4 1,28	24,25 23,51	x = 0,02568y + 3,3805	y = 8,6283x - 10,293
Nanolignin	722	10,5	3,59 1,2	14,03 14,78	x = 0,02628y + 3,2227	y = 3,9939x -0,031479
Carex	907	0,1	3,83 1,17	28,95 20,32	x = 0,00196y + 3,7712	y = 0,5957x + 26,672
Eriophorum	327	5	3,8 1,21	22,07 19,49	x = 0,01389y +3,4915	y = 3,5946x +8,4176
Equisetum	513	11	4,08 1,11	12,01 11,78	x = 0,03128y +3,7003	y = 3,5278x -2,369
Menyanthes	454	0,6	3,79 0,97	14,67 11,25	x = 0,00656y + 3,6945	y = 0,88404x +11,321
Potentilla	117	1,7	3,98 0,97	10,52 8,06	x = - 0,0158y +4,1492	y = - 1,0818x +14,83
Scheuchzeria	301	0,8	3,84 1,04	17,2 13,06	x = - 0,00728y + 3,9624	y = - 1,1382x +21,567
Sphagnum	867	25,5	3,56 1,16	27,41 27,03	x = - 0,02172y +4,1569	y = - 11,728x +69,18
S. fuscum	133	28	2,9 1,12	42,02 31,89	x = - 0,01861y +3,6843	y = - 15,071x +85,762
S. papillosum	139	9,5	3,38 1,11	16,4 17,73	x = - 0,01937y +3,699	y = - 4,9203x +33,04
S. acutifolia sec.	311	24,1	3,29 1,28	26,45 27,72	x = - 0,02261y +3,8873	y = - 10,642x +61,457
S. cuspidata sec.	271	19,1	3,5 1,14	13,2 15,01	x = - 0,0333y +3,9415	y = - 5,7289x +33,265
Eutr. Sphagnum	357	10,6	3,55 0,97	10,34 10,38	x = - 0,03035y + 3,8655	y = - 3,4827x +22,706
Bryidae	545	1,4	3,57 1,05	18,68 18,13	x = - 0,00683y +3,6965	y = - 2,0243x + 25,905

Table 7. Polynomial functions for the decomposition of plant remains in the present material after normalization with respect to the numbers of samples. x = degree of humfication on the scale of von Post (1922), y = the given peat-forming factor as a percentage by volume of peat at the given degree of humfication, sd = standard deviation, n = number of samples, $r^2 =$ explanatory power.

The above results also enable the calculation of correlations between the proportions of certain commonly occurring peat-forming plants and the degree of humification of the peat. The highest negative correlation is obtained for the *Sphagnum* mosses, with an explanatory power of $r^2 = 25.5\%$, while the r^2 value for *S. fuscum* alone reaches 28%. Lower values are recorded for the eutrophic *Sphagnum* mosses and the *Cuspidata* section, however. As humification proceeds the explanatory power of the function for the accumulation of slowly decomposing ligneous material rises to exceed 22%.

Proportions of amorphous material in peat

The distribution of degrees of humification in the total material of peat samples discussed here (n=1085) is skewed in a positive direction, with its peak at H_3-H_4 on von Post's scale (1922). The main body of fibrous peat has a grain size >0.125 mm, with the finer fraction representing amorphous material, the proportion of which increases by about 10% per degree of humification up to H_7 . The results for the washed and sieved peat samples (n=531) show that the proportion of the amorphous fraction increases linearly with respect to the degree of humification (Fig. 13).

The ratio of amorphous to fibrous plant material in the structure of peat will naturally vary from one mire type to another, as the mire types differ in oxygenation (which affects humification and the activity of decomposing organisms), in nutrient levels, in acidification, and also in moisture content and temperature. This means that the mean proportion of amorphous material will serve as a direct indicator of the degree of humification of the peat. A poorly humified *Sphagnum fuscum* peat, H₁₋₃ (von Post 1922), will contain only 13% amorphous material, for example, whereas well humified peat from a meso-eutrophic fen may have as much as 73%. The mean proportion of amorphous matter in the basal peat of the various surface mire types studied here was 40% (Fig. 14).

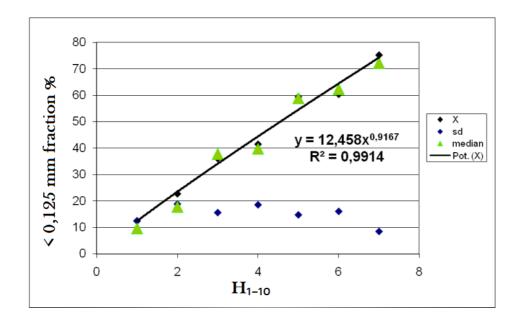


Fig. 13. A linear dependence with high explanatory power was observed between the (dry weight) percentage of the amorphous fraction (<0.125 mm) and the degree of humification (H_{1-10}) according to von Post (1922). The total number of samples was 531.

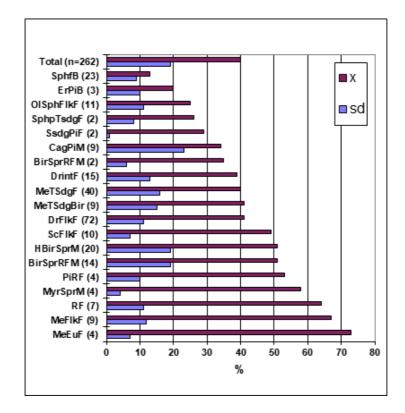


Fig. 14. Mean amorphous content (x, with sd) of the peat horizons of the mires studied, grouped according to their surface mire type (for abbreviations, see caption to Fig. 8). Numbers of samples taken are shown in parentheses.

When examined in terms of depth, the proportions of amorphous material in the spruce mires, poor fens and mire complexes are very similar, and figures of over 40% can be found even at depths of only 20–30 cm in all the major mire types. In the case of the pine bogs the mean proportion is 20%, with the maxima occurring at depths of about 40 cm. A clear correlation is seen between the lignin content of the peat and the degree of humification (H_{1-10}), with fairly high r^2 values (Table 8).

Swamps	n = 5	y = 12,038x-29,769	r ² =	65.3
Oligotrophic complexes	11	y = 16,721x-37,897		51
Herb-rich spruce mires	62	y = 13,114x-14,371		41.4
Mesotrophic complexes	55	y = 11,63x-18,573		23.5
Mesotrophic poor fens	27	y = 5,4612x-3,2895		11.8
Spruce-pine mires	13	y = -5,6568x-2,7638		36.9

Table 8. Correlation between lignin content and degree of humification of the peat (H₁₋₁₀) in the various mire types.

If peat were to be classified entirely on the basis of the proportion of amorphous material (A) and the occurrence of *Sphagnum* (S), brown mosses (B) and sedges (C), the formula for defining the various mire types on the basis of the mean compositions would be a brief and concise one, although still retaining an indication of the recognizability of the plant remains, i.e. the degree of humification of the peat, by virtue of the proportion of amorphous matter, and an indication of nutrient status through the plant species present (Fig. 15). Highly acidic peats (pH <4) that are poor in nutrients will have been deposited in mires of an ombro-oligotrophic type, and will be either non-amorphous (<25% A) or amorphous (25–50% A) *Sphagnum* peats. *Sphagnum fuscum* bogs and dwarf-shrub pine bogs would not be capable of forming *Sphagnum* amorphous peat (SA). Mesotrophic and eutrophic mire types, on the other hand, would be capable of producing amorphous brown moss and sedge peats or well humified brown moss and/or sedge amorphous peats (BA, CA). The largest amounts of brown mosses are to be found on rich fens and swampy mesotrophic fens.

The definitions of peat types in terms of composition can also be filled out with additional factors (L, ER, MN, EQ etc.). In the case of extremely well humified peats the principal component may be an amorphous mass and the remainder various plant remains, recognizable or unrecognizable, and in this way peats of differing nutrient status may vary in composition according to other growing site factors, including hydrology, soils and the bedrock. Woody material is found to the greatest extent in the peats of mire complexes and spruce mires, while vascular plants and brown mosses are markedly more prevalent in rich eutrophic peats than in ombrotrophic ones, where *Sphagnum* mosses predominate. Remains of vascular plants and brown mosses are somewhat less common in mesotrophic peats than in eutrophic ones, while the incidence of Sphagnum mosses shows a clear negative correlation with depth. Conversely, it is the *Potentilla* species present in the early, watery stages of mire formation that show the closest positive correlation with depth. There are small amounts of the remains of aquatic plants in the most humified of the limnic peats, while the mesotrophic and eutrophic peats contain less than 10% Menyanthes trifoliata and only a very small proportion of *Potentilla palustris*. Scheuchzeria remains below 6%, and there is very little Selaginella selaginoides present, mainly confined to eutrophic peats. Lichens and both Polytrichum and Dicranum mosses are deposited in poor ombrotrophic peats to some extent.

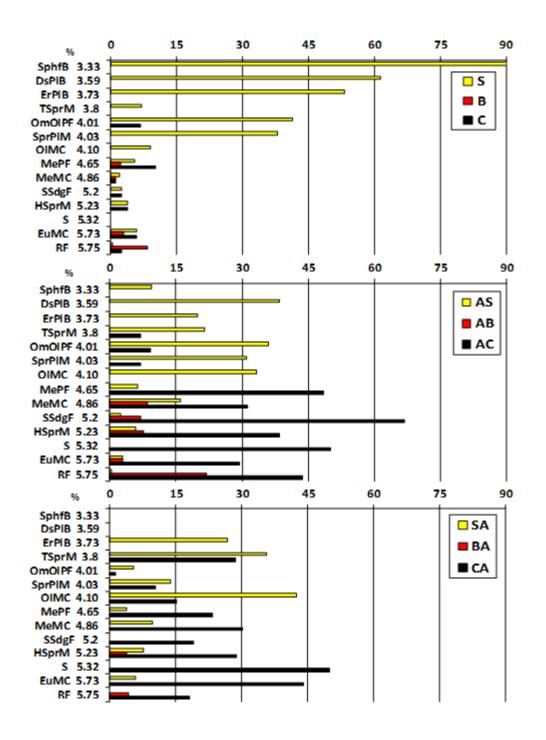
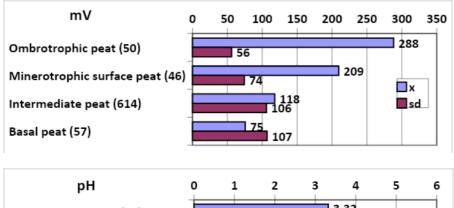
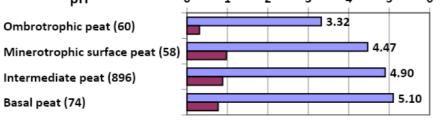
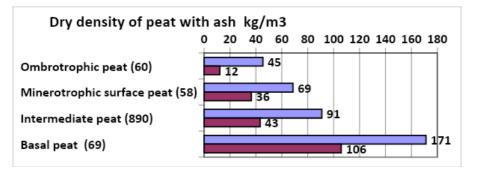


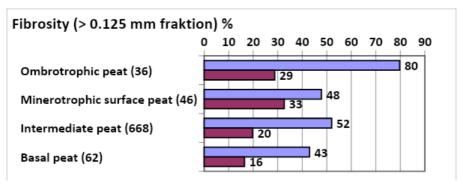
Fig. 15. Peats to be found in the mire complex types, taking into account the percentage of amorphous material (A <0.125 mm) in addition to the principal factors (S, B and C). Key to peat types: S = *Sphagnum* peat with <25% (vol.) amorphous matter; AS = amorphous *Sphagnum* peat with 25–50% amorphous matter; SA = *Sphagnum* amorphous peat with over 50% amorphous matter. The mire types are arranged in order of their mean pH.

Influence of the mire base on peat horizons


Physical properties


The plant remains recoverable from both ombrotrophic and minerotrophic acrotelm peats are only slightly humified, are coarse to the touch, do not stain and contain little lignin or remains of sedges or *Eriophorum*, while the minerotrophic intermediate and basal peats are fairly or moderately humified and thus capable of being moulded and the plant remains contained in them are partially or totally decomposed (Appendices 5 and 6).


Measurements of the redox potential of the ombrotrophic surface peats (mV, see Fig. 16) show these to be on average better oxygenated than the minerotrophic surface peats. Peat profiles tend to become more anaerobic towards the bottom of the mire, whereas acidity tends to decline towards the bottom, the pH in the ombrotrophic surface peats often being <3.5. The smaller the proportion of amorphous matter in the peat is, the lower its degree of humification will be. The mean dry density of the ash from an ombrotrophic peat is below 50 kg/m³ of mire volume, but mineral material transported in the water draining down hills and slopes into a mire can increase this dry density of ash, as seen here in the Riissuo herb-rich spruce mire, for example (no. 10 in Fig. 1).


Geochemical properties

The Ca content of peat ash is considerably higher in areas with alkaline rocks (SiO₂ 52–66%) than in those with more acidic rocks (SiO₂>66%) or sandy-based mires. K, Al and Mg concentrations vary very little between acidic and alkaline rocks, but they are markedly lower in the peats of ombro-oligotrophic or sandy-bottomed mires. Sandy-bottomed mires and those in areas with an acidic bedrock will show higher concentrations of Mn in their peat than those in areas with an alkaline bedrock (Fig. 17, Appendices 5 and 6).

Fig, 16. Redox potential (mV), acidity (pH), fibrosity (material of size >0.125 mm) and dry density of peat ash (kg/m³) in ombrotrophic peat, minerotrophic surface peat, intermediate peat and basal peat. Numbers of samples are show in parentheses, x = mean, sd = standard deviation.

The ombro-minerotrophic character of a mire will stand out clearly in terms of the element concentrations in its peat ash (Fig. 18), especially as far as Fe, Ca, Mg, Al and P are concerned, since these will differ markedly between ombrotrophic and minerotrophic peats, whereas the differences in Mg and K will be smaller in the intermediate and basal horizons. By contrast, the

Fe:Mn and Ca:Mg ratios are both twice as high in the intermediate and basal peats than in the surface peats, and the difference is many times greater for the Ca:K, Cu:Zn and Na:K ratios.

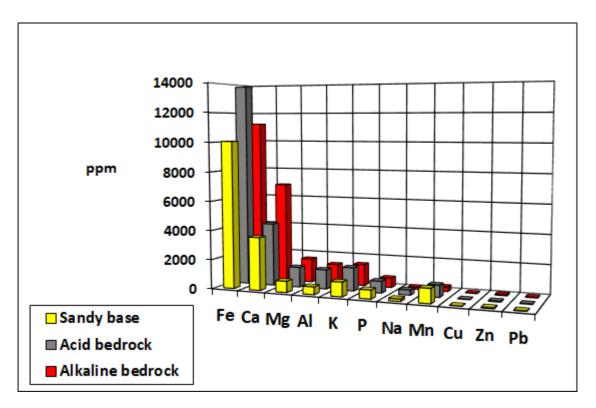


Fig. 17. Element concentrations (ppm) in mires that have developed in various alkaline or acid bedrock areas or on a sandy base.

In a previous paper based on the same material (Eurola & Holappa 1984) the surface peat was defined as the horizon in which the element concentrations undergo enrichment from the living plants (cf. also Aulio 1980, 1982). The mean thickness of this horizon in the present material was 13.7 cm, being 13.3 cm in the spruce mires, 19 cm in the pine bogs, 12.3 cm in the poor fens, 10 cm in the rich fens and 13.7 cm in the mire complexes. The ratio of this element enrichment horizon to the total thickness of all the peat horizons representing the same mire type was 1:3 in cases where the surface mire type showed a margin effect and 1:5.2 where it showed a centre effect. There were some variations in the element concentrations in the peats, however, on account of differences in acidity between the growing surfaces on the mires, the highest concentrations being found under acidic and eutrophic alkaline conditions.

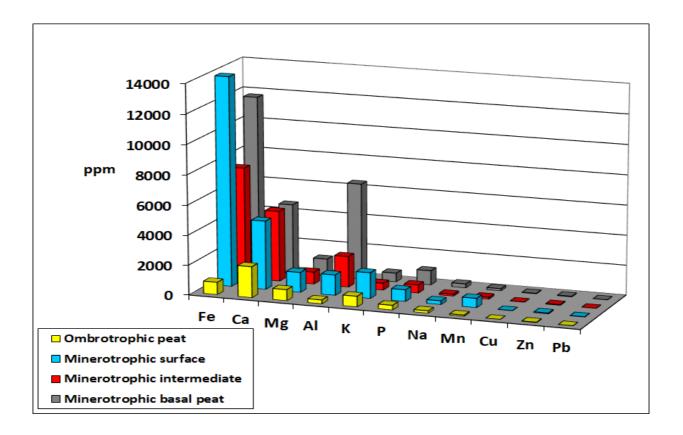


Fig. 18. Element concentrations (ppm) in ombrotrophic surface peats and the surface, intermediate and basal peats of minerogenic mires.

In particular, the concentrations of Ca, Mg and K in the peats tended to increase from ombro-oligotrophic to eutrophic conditions, and the difference was still greater where concentrations in acidic and alkaline bedrock areas were concerned. In minerotrophic surface peats it was iron, potassium and manganese that were enriched most, and in basal peats it was aluminium, but it was always the case that enrichment with additional nutrients from living plants or from environmental sources was more efficient in the surface peats of recent mires at various trophic levels than it was in the basal peat horizons of mires of the same type (Figs. 19 and 20). On the other hand, the ash from the ombro-oligotrophic surface peats contained very much lower concentrations of Fe, Al, Ca and Mg than that did that from the meso-eutrophic peats, while the eutrophic surface peats also contained large amounts of manganese. Basal peats conforming to the same recent mire types did not show the same differences between trophic levels as were evident in the surface horizons.

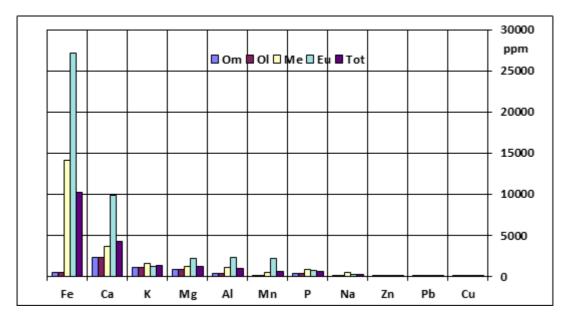


Fig. 19. Mean element concentrations (ppm) in recent mire surface peat types of different trophic levels.

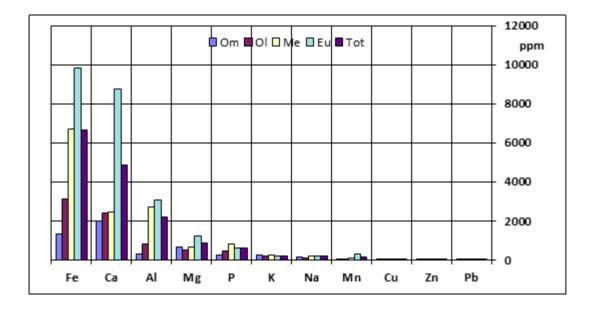
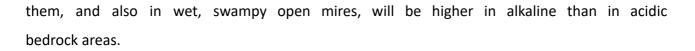


Fig. 20. Mean element concentrations (ppm) in basal peat horizons corrersponding to recent mire types of different trophic levels.


Properties of mire type horizons and correlations between them

Physical properties

Mean values for the various physical properties of the mire types are presented in Figures 21 and 22 and Appendix 7 in the order of their occurrence in the mire type succession (see Fig. 9). The mire types that are poor in nutrients and are influenced by a mire centre effect are the ones that are least well humified on the scale H_{1-10} (Fig. 21), while the greater the amorphous fraction in the peat Amorf.%), the higher its degree of humification. In alkaline bedrock areas the dry bulk densities of the peats (kg/m^3) and the amounts of organic material that have accumulated in them (Org. %) are both slightly higher. Organic material becomes enriched in the peat to the greatest extent in those mire types than involve a tree cover, especially when there is a field layer of dwarf shrubs to produce a further supply of slowly decomposing ligneous biomass. Under swampy conditions or in the presence of high runoff volumes the ash content (Ash %) of the pine bog and spruce mire types influenced by a mire margin effect is very much higher than that found in the types having a mire centre effect. The least ash is obtained from ombrotrophic peats. The wettest mire types in areas with an acidic bedrock are the rich fens and swampy sedge fens, while the mire margins that support a tree cover feature mire types that are somewhat drier than average. The poor fens and rich fens are the types in which the peat has the highest water content (H_2O_3), leading to a decline in oxygen levels and a consequent lowering of the redox potential (mV). The hummocky mire types with poor nutrient levels have a low water surface, so that their redox potentials are high and their pH correspondingly very low.

Geochemical properties

Element concentrations in the mire types involving a mire margin effect are much higher than in the thick peat horizons of the types with a mire centre effect (Figs. 23 and 24, Appendix 7). In particular, more calcium (Ca), magnesium (Mg), potassium (K) and phosphorus (P) from the environment accumulates in thin-peat pine bogs with a slight mire margin effect than in pine bogs with a mire centre effect, and in addition, large amounts of iron (Fe) accumulate in peat under swampy conditions whereas very little will be found in ombro-oligotrophic peats. On the other hand, ombro-oligotrophic and mesotrophic peats will contain smaller amounts of manganese (Mn), aluminium (Al), calcium (Ca) and magnesium (Mg) than the peats that constitute rich fens and swampy fens. Element concentrations in mires with a margin effect and trees growing on

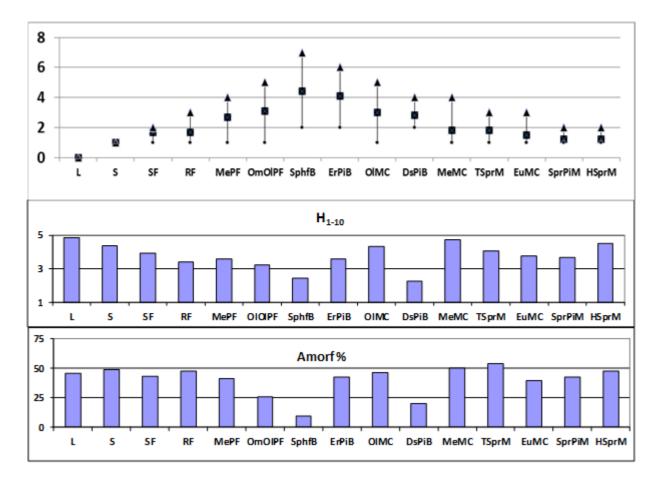


Fig. 21. Comparisons of phases in the mire succession, degrees of humification and proportions of amorphous material between the mire types.

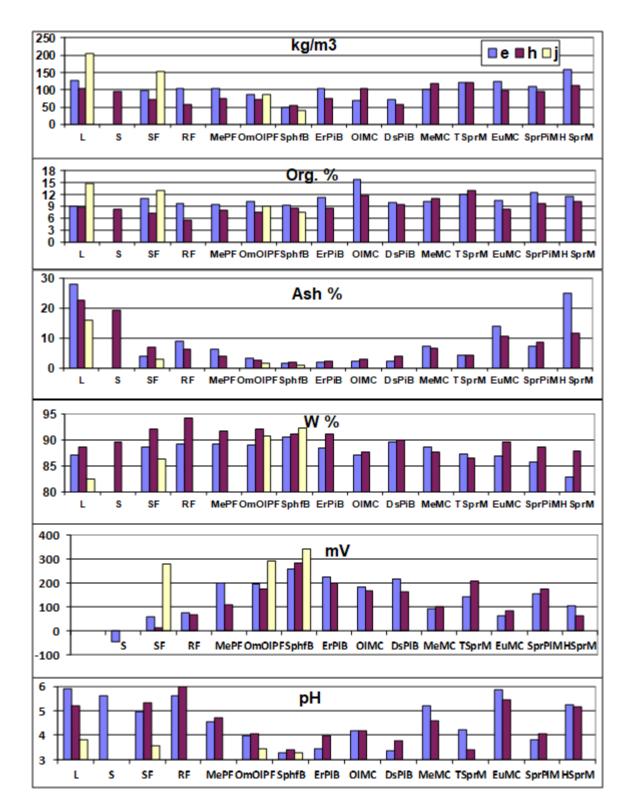


Fig. 22. Comparisons of mean dry bulk densities of the peats as a function of wet volume (kg/m³), proportions of organic material (Org. %), ash content as a function of dry mass (Ash %), water content as a function of wet weight (H₂O %), redox potential (mV) and acidity (pH) between the mire types (e = alkaline bedrock, h = acidic bedrock, j = Jotnian sediments).



Fig. 23. Comparisons of mean Na, K, Ca, Mg and P content (ppm) between the mire types (e = alkaline bedrock, h = acidic bedrock, j = Jotnian sediments).

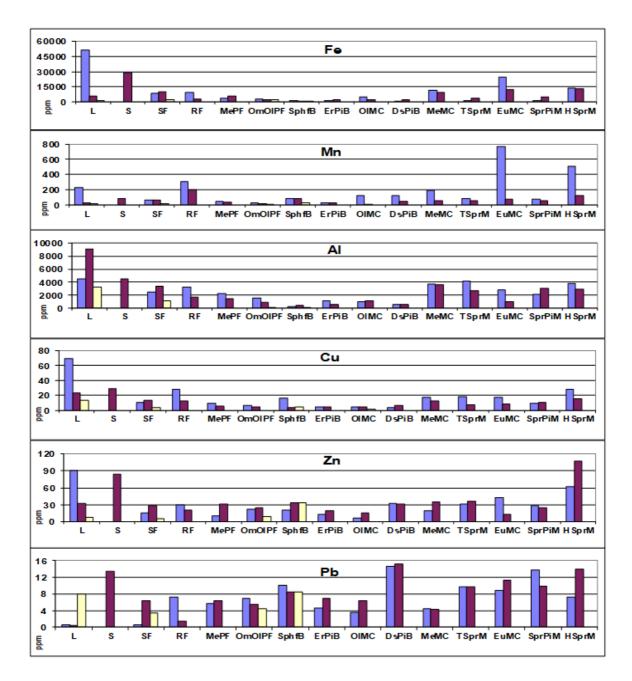


Fig. 24. Comparisons of mean Fe, Mn, Al, Cu, Zn and Pb content (ppm) between the mire types.

High element concentrations in the peat ash (Table 9) are to be found at varying depths in the mires: in the basal horizons or in thin-peat mires with a margin effect, but also in some surface horizons. The highest copper concentration of all, 257 ppm, was found in the basal peat of the Loiraskangas thin-peat meso-eutrophic fen in Utajärvi, and correspondingly, the highest lead content, 74 ppm, was detected in the Purkuputaansuo mire inv Kuusamo and the highest zinc content, 436 ppm, in the Rautuojaaapa mire in Simo. High concentrations of heavy metals were seen in samples from these same areas.

No. and name of mire		<u>Cu</u>	<u>Pb</u>	<u>Zn</u>	<u>District</u>
39	Ternuvuoma	44	40	75	Rovaniemi
26	Kilsiaapa	63	34	38	Tornio
44	Vaarajänkkä	211	53	109	Tornio
45	Karsilonmaa	54	55	75	Tornio
61	Rautuojanaapa	43		436	Simo
69	Näätäaapa	49		41	Ranua
18	Pilpasuo	50	63	347	Oulu
9	Takasuo	115	48	335	Oulu (Ylikiiminki)
2	Ruostesuo	103	59	105	Kiiminki
36	Päijännesuo		45	208	Muhos
20	Reikäsuo	46			Muhos
29	Loiraskangas	257	34	46	Utajärvi
27	Kivisuo	46			Utajärvi
70	Saarisuo			61	Pudasjärvi
58	Posonpalo			80	Pudasjärvi
50	Rytisuo/Siikavaara		41	167	Pudasjärvi
52	Lomasuo/Siikavaara	108	37	81	Pudasjärvi
51	Rytisuo/Parolanranta	44	39	98	Puolanka
47	Pihlajavaara	49		51	Puolanka
63	Mustinsuo			309	Kuhmo
64	Säynäjäsuo			162	Suomussalmi
59	Säkkisuo			53	Suomussalmi
56	Lahnaletto	48		85	Suomussalmi
66	Ulkupuro	184		109	Suomussalmi
7	Riisisuo			357	Posio
19	Purkuputaansuo	40	74		Kuusamo

Table 9. Maximum copper (Cu), lead (Pb) and zinc concentrations in peat ash, with locations of the mires concerned.

Organic material and dry densities

Organic material accounted for an average of 7–12% of the wet weight of the peat (see Fig. 25) in the main categories of Finland's aapa mires according to the definitions of Cajander(1913), the figures being higher in the nutrient-rich mire types with a mire margin effect than in the poor fens and rich fens.

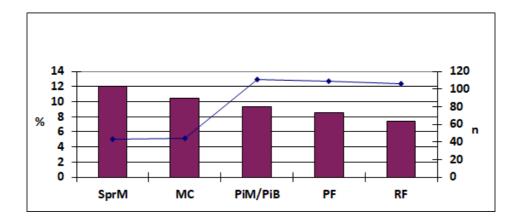


Fig. 25. The mean accumulation of organic material in mires as a percentage of the fresh weight of their peat varied in the range 7.4–12% between the mire types (classified here according to Cajander, 1913). n = number of samples in the present material.

The mean ash-free dry density of slightly humified peats from the poor ombrotrophic and oligotrophic mires was the lowest of all, while the densities recorded for the forested mire types were somewhat higher than those for the poor fens and the highest figures of all were mostly achieved in extremely well humified peats (Fig. 26). The mean ash-free dry density for all the peat types was 82 kg/m³ of mire.

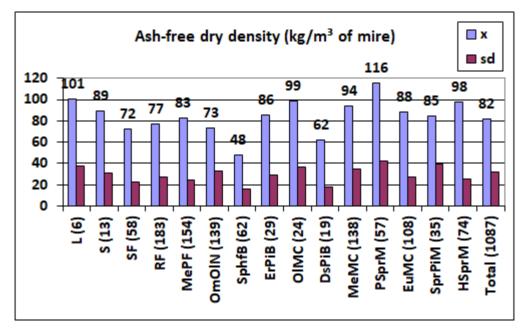


Fig. 26. Ash-free dry densities (kg/m³ of mire) of peat samples representing the various mire types and in the total material. Numbers of samples are shown in parentheses.

Correlations between mire properties

The correlation matrix calculated for the total material points to some form of (highly significant) positive or negative correlation for every parameter with at least some other parameter, although the explanatory power (r²) remains modest in the majority of cases.

Correlations between physical properties

<u>Water content</u> had its highest negative correlations, with the highest explanatory power (r²), with the dry density of the sample and the proportion of organic matter contained in it. This negative dependence was most pronounced in the meso-eutrophic mire types. Organic matter showed a positive correlation with water content in the ombro-oligotrophic peats, while the degree of humification, the proportion of amorphous matter and ash content all showed a negative correlation with water content in peats from the majority of mire types. pH (i.e. acidity) had a highly significant dependence on the moisture content of the peat in the case of rich fens and the mesotrophic mire complexes and was correspondingly dependent on redox potential (mV) in the peats of the herb-rich spruce mires.

<u>Dry density</u> was highly significantly correlated with the proportion of amorphous matter in most mire types, and also with the degree of humification in the ombro-oligotrophic poor fens and most especially in the forested mires (TSprM, SprPiM, EuMC). Another highly significant positive correlation was with organic matter in the limnic peats, rich fens and poor fens at various trophic levels, true spruce mire types and spruce-pine mires. Positive correlations can also be seen with ash content in the herb-rich spruce mires, eutrophicand mesotrophic mire complexes, spruce-pine mires and poor fens. Acidity (pH) had its most significant positive correlation of all with dry density in the spruce-pine mires, but a negative correlation in the peats from rich fens, while redox potential (mV) had a positive correlation with dry density in the peats from herb-rich spruce mires.

The <u>degree of humification</u> of the peat had a highly significant positive dependence on the proportion of amorphous material in the case of almost all the mire types, although its most marked dependence of all was upon the proportion of organic matter in the oligotrophic mire complex types. The degree of peat humification had a highly significant maximum negative dependence on the redox potential in the *Eriophorum vaginatum* and *Sphagnum fuscum* pine bogs, and correspondingly a positive correlation with pH in the herb-rich spruce mires and with the

ash content of the peat in the total material. Mäkilä (1984) also noted a clear correlation between peat humification and pH. <u>Amorphous</u> and organic material were positively correlated to the greatest extent in the mesotrophic and eutrophic peats, and their closest highly significant negative dependence on pH was found in the eutrophic mire complexes. The proportions of <u>organic</u> material in the peat showed a positive correlation with ash content in the total material and in the ombro-oligotrophic poor fens and the rich fens, but the correlation with redox potential was positive only in the peat horizons of swamps. <u>Ash content</u> was correlated with mV in the peat of the spruce mires and with pH in that of the pine bogs.

Correlations of physical properties with element concentrations

<u>Water content</u> had a (highly significant) negative correlation with phosphorus content in the poor fens and pine bogs, and copper and aluminium also correlated negatively with water content. The highest highly significant positive correlations with water content were achieved by magnesium in the spruce-pine mires and by sodium and lead in the oligotrophic mire complexes.

Aluminium in particular was highly significantly dependent on the <u>dry density</u> of the peat in most mire types, whereas copper correlated better with dry density in the spruce mires than in the poor fens and phosphorus did so (highly significantly) in the rich fens, ombro-oligotrophic and mesotrophic poor fens and spruce-pine mires. Meanwhile, potassium and manganese were (highly significantly) correlated negatively with dry density in the true spruce mires, copper and magnesium in the spruce-pine mires and sodium and lead in the oligotrophic mire complexes.

The <u>degree of humification</u> showed highly significant negative correlations with potassium, sodium, zinc and copper, whereas its correlation with aluminium was a (highly significant) positive one everywhere except in the swampy mire types. <u>Amorphous</u> matter was (highly significantly) positively correlated with aluminium in peat from a wide range of mire types, while <u>organic</u> matter was correlated (highly significantly) positively to its greatest extent with aluminium but negatively with sodium. <u>Ash content</u> was correlated (highly significantly) positively correlated with all the elements studied here in all the mire types.

<u>Redox potential</u> (mV) had a (highly significant) positive dependence on potassium, calcium and magnesium in the eutrophic mire complex types, although it admittedly had its closest positive correlations with magnesium in the *Eriophorum vaginatum* pine bogs and with lead in the

ombro-oligotrophic poor fens, while its relation to manganese in mesotrophic tall-sedge fens was a negative one, as were its correlations with iron in the *Eriophorum vaginatum* pine bogs and with calcium in the dwarf-shrub pine bogs. <u>Acidity</u> (pH) correlated (highly significantly) positively with calcium in practically all the mire types.

Correlations between element concentrations

Phosphorus (P) had a highly significant positive correlation with numerous elements, notably Na, K, Fe, Cu, Zn and Pb, in the poor fens and rich fens covering a wide spectrum of trophic levels, and with aluminium (Al) in the peats of many mire types, especially the pine bogs. <u>Sodium (Na)</u> was positively correlated with numerous elements (K, Ca, Mg, Fe, Mn, Cu, Zn, Pb) in the mesotrophic mire types, but only with Ca, Mg, Fe and Cu in those that were poorer in nutrients. Potassium (K) showed a (highly significant) positive dependence on magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn) and lead (Pb) in mires representing various trophic levels, and calcium (Ca) also exhibited its highest positive correlations with Mg, Al, Fe, Mn, Cu, Zn and Pb in peats of most mire types with the exception of pine bogs. <u>Magnesium</u> (Mg) had (highly significant) positive correlations with Al, Fe, Mn, Cu, Zn and Pb in peats of the oligo-mesotrophic poor fens and meso-eutrophic spruce mires, while <u>aluminium</u> (Al) correlated positively with Fe, Cu and Zn concentrations in the swamps and rich fens having a mire margin effect and also in the spruce mires. The positive dependence of iron (Fe) on the concentrations of Mn, Zn and Pb was most prominent in the peat horizons of the swamps, rich fens and meso-eutrophic mire complexes, and it was also (highly significantly) dependent on Cu in the dwarf-shrub pine bogs. Manganese (Mn) had a (highly significant) correlation with Zn in the peat of the true spruce mires, and to a lesser extent in the rich fens, but its positive association with Pb was seen in both rich and poor fens. Copper (Cu) correlated positively with Pb in the mesotrophic poor fens and eutrophic mire complexes, while zinc (Zn) was significantly correlated with Pb in the peat of the swampy sedge fens and to a lesser extent the rich fens and herb-rich spruce mires. Lead (Pb) showed a (highly significant) negative correlation with phosphorus (P) in the oligotrophic mire complexes and with magnesium (Mg) in the limnic peats. Pb nevertheless had positive correlations with the concentrations of more elements in the peats of rich and poor fens than it did in the spruce mires and mire complexes.

Mire types and their peat horizons

It is possible to deduce the compositions of the surface peats developing in the acrotelm of present-day aapa mires representing the various mire types from the cover percentages of the relevant plant species as set out by Ruuhijärvi (1960) and Eurola (1962). One interesting observation that arises from the findings of Ruuhijärvi (1960) is that, generally speaking, between 70% and 93% of the surface peat is made up of remains of three or four plant species or groups of species (see Table 10). Thus, although only one species, the moss Scorpidium scorpioides, had a coverage in excess of 10% in the Scorpidium flark fens (ScFlkF), for instance, the brown mosses as a whole (Bryidae) achieved a combined coverage of 67%, and the same group accounted for 60% of the vegetation cover on the Campylium stellatum/Drepanocladus intermedius rich fens. In the same way, four species together accounted for almost 80% of the plant cover on the short-sedge bogs (SSdgB), while Sphagnum mosses made up more than 60% of the vegetation on nutrient-poor bogs and fens (OISSdgB, SphpTSdgF, FlkF, SSdgB, ErPiB, CagPiM, PiF) and more than 50% on the mesotrophic fens (MeTSdgF). In the case of the Sphaqnum fuscum bogs (SphfB) and spruce mires (SprM), however, the proportion of Sphagnum mosses was no more than 30–50%, and elsewhere it was still lower. The proportion of sedges (Carex spp.) varied in the range 20–30% in the various mire types, except for the poorer fens and bogs. Woody material, i.e. lignin (L), and dwarf shrubs, nanolignin (N), was characteristic of the pine bogs or mires, while horsetails (Equisetum sylvaticum) and grasses or herbs (Hb) denoted spruce mires, and cotton-grass heads (Eriophorum vaginatum) short-sedge bogs or rich fens. A single species may achieve a cover of 20–70% if the mire type in question supports only a limited range of plants or is dominated by a single plant, as in Scorpidium flark fens.

It is clear from examinations of the macrosubfossils that the poor fen and bog mire types give rise to predominantly *Sphagnum* peat. Brown mosses are present to some extent in all the mire types, but are most conspicuous in the swamps and rich fens, while sedges are typical of wet flark fen peats. Analyses of percentage cover in the acrotelm suggest that peats with a *Carex* content greater than 10% are extremely rare or non-existent. Table 11, which is based on the incidence of plant macrofossils in peat samples, highlights the peat types in which material from the various mire complex types is to be found. It should be noted that, as previously, the additional peat-forming factors are listed first and the principal factor is the last-mentioned one. The mean distribution of macrosubfossils in all of the peat samples considered here is set out in Appendix 8. A concise account of the compositions and properties of the peats arising from the mire types described here will be given below.

Mire type	Plant species	COV	er >10%	Sp	ecies/gro	oups ma	king up 1	•	horizon , tor ment		•	of the p	eat type (principal
	n	n	Σ%	S	В	с	L	N	ER	EQ	TR	Hb	Tot.%	Peat type
SphfB	23	3	70	37			20	30					87	(L)NS
SphfB	34	2	62	34			34	16					83	(N)LS
ErPiB	30	2	63	56				10	24				91	NERS
SSdgB	24	4	79	64					12		15		90	ERTRS
OISSdgB	19	3	69	67		25							90	CS
SphpTSdgF	18	3	72	66		28							93	CS
FlkF	19	3	76	64					14				92	ERS
MeTSdgF	36	1	23	52		24							76	CS
PiF	61	3	37	50		21		11					82	NCS
RPiF	62	1	20	20	14	10							45	CBS
BirSprRFM	27	3	70	52		25		12					89	NCS
RchSprM	6	3	56	39								34	73	HbS
EqSprM	44	2	42	38						20		14	72	HbEQS
RBirF	47	3	34	12	48	25							85	SCB
ScFlkF	22	1	64		67	19							86	СВ
DrintF	36	2	60		62	19					10		91	TRCB

Table 10. The percentage cover analysis of mire vegetations performed by Ruuhijärvi (1960) provided data on the composition of the potentially aereated upper layer of the peat, the acrotelm. The table shows the number of species of mire plants (n), the number with a coverage >10% and the combined coverage of these species (%). S = Sphagnum, B= Bryidae, C= Carex, L= Lignin, N= Nanolignin, ER= Eriophorum, EQ= Equisetum, TR= Trichophorum, Hb= Herbs (+ grasses), Tot.= total (in the whole material). For key to the mire type symbols, see caption to Fig. 8.

Peat-forming factors %

Mire	S	С	В	L	N	ER	TR	SH	MN	I EQ	PR	Ρ	PO	PT	Peat composition
SphfB DsPiB OmOIPF SprPiM ErPiM TSprM MePF OIMC EuMC EuMC HBirSprM RF SSdgF S L	75 53 49 35 34 15 14 10 9 4 3 3 3 3 3 4 3 3 3 3 4 3 5 3 4 3 5 3 5 3 4 3 5 3 4 3 5 3 5 3 5 3 5 3 5 3 5 3 4 3 5 3 5 3 4 3 5 3 3 3 5 3 3 4 3 3 5 3 3 3 3 3 3 3 3 3 3 3 3 3	1 4 14 17 4 8 40 26 27 24 16 30 35 23 22	5 8 9 6 4 9 3 14 6 25 10 2 15	8 3 3 4 5 12 17 26 4 4 4 2 6 5	8 16 4 24 7 3 6 4 5 3 2 3 2 3	7 4 16 11 41 4 33 8 1 6 3	1	8 39 31 4 82	2 4 7 2 3 8 7 6 14 22 1	2 9 5 3 4 11 8 6 15 25 29	1 3 2 2 21	2 3 13 18	3 2 5	2 3 2 2	(ER,N)S NS CERS (ER)CNS SER,ERS LC,SL SC,CS (L)SCER, ERC (MN,S,B)LC (S,EQ)CL,LC CL BC (B,P)MNEQC (B,P)MNEQC (P)MNCEQ,MNEQC (B)PRCEQ

Table 11. Mean botanical compositions (in %) of peats representing the mire types. Determinations are based on macrosubfossils: *Sphagnum* (S), *Carex* (C), Bryidae (B), Lignin (L), Nanolignin (N), *Eriophorum* (ER), *Trichophorum* (TR), *Scheuchzeria* (SH), *Menyanthes* (MN), *Equisetum* (EQ), *Phragmites* (PR), *Potentilla* (P), Poaceae (PO), *Polytrichum* (PT).

In the total material the two peat-forming plant species that competed for precedence were the Carex sedges (24.5%) and the Sphagnum mosses (21.8%), followed by another pair, the dwarf shrubs (nanolignin) and brown mosses (Bryidae), both with 9.4%. Finally, the horsetails (Equisetum) and bogbean (Menyanthes) occurred somewhat more often than the Rannoch rush (Scheuchzeria). The degree of humification of the peat varied in the range H₁₋₈, with a mean value of H_{37} (sd 1.2; n 1089) and a median value of H_4 , at which point the mean proportion of amorphous matter in the peat was 40.2% (sd 20.4; min-max 0.1-91.2; n=535). The peat had a normal moisture content and was slippery and full of *Carex* roots, accompanied by a certain amount of Eriophorum fibres and some lignin. It was fairly easy to shape by hand, and it left an obvious stain after handling. The mean water content of the peat was 89.6% (4.7; 45.7-96.5; 1077) and its dry density (with ash) 92.3 kg/m³ of mire volume (53.7; 8-717; 1077). It contained a mean of 9.3% organic matter (3.0; 3.5–26.2; 1076) and its dry matter had an ash content of 7.1% (10.0; 0.4-88.7; 1078). Its mean pH was 4.8 (0.9; 2.9-6.8; 1088) and its mean redox potential 131 mV (113; -195- +425; 767). The mean element concentrations in ash from the peat samples (ppm, rounded to the nearest integer) were: P 596 (472; 28-8540; 767), Na 142 (236; 4-5217; 1031), K 280 (511; 5-4733; 1043), Ca 4560 (5011; 89-40258; 1037), Mg 860 (745; 11-6145; 1042), Al 2204 (2783; 29-28862; 1042), Fe 7991 (17469; 32-228961; 1042), Mn 160 (908; 1-18666; 1034), Cu 13 (18; 1-257; 1040), Zn 44 (59; 0,0-1036; 995), Pb 2 (33; 0,01-1038; 997) and the principal element ratios Ca/Mg 5.6 (n 1036) and Fe/Mn 158.8 (1033), Ca/K 41.4 (1036), Na/K 22.8 (1033), Fe/P 17.1 (765) and Cu/Zn 0.9 (1038).

The peats generated by the *Sphagnum fuscum* bogs (SphfB) contained about three-quarters *Sphagnum* moss, the main component of which was *Sphagnum fuscum*, a brown *Sphagnum* of the *acutifolia* section, the others (*S. angustifolium, S. balticum, S. magellanicum, S. papillosum, S. recurvum* coll., *S. rubellum, S. russowii*) being of minor importance. There was also a few per cent of typical mosses forming ombrotrophic peat such as *Dicranum polysetum, Polytrichum strictum* and the Hepaticae. Lichens were present to a greater extent than in any other peat. Apart from the above, the only plant remains that occurred to such an extent that they could be included in the designation of the peat type were dwarf shrubs (nanolignin) and cotton-grass (*Eriophorum*), even though their mean incidence was over 8%. The proportion of amorphous plant remains was 9.7% (7.7; 0.1-29.8; 32), corresponding to a range of H₁₋₄ on the scale of von Post (1922), with a mean of 2.4 and a median of H₂ (sd = 0.7; n = 62). On the grounds of the mean proportions of the various

macrosubfossils, the typical peat types would be *Sphagnum* peat (S), nanoligneous *Sphagnum* peat (NS) and nanoligneous *Eriophorum-Sphagnum* peat (NERS). The peat had a normal moisture content, did not stain and could not be moulded, because the plant remains were very coarse, with long fibres. There were some *Eriophorum* fibres present, but little or no *Carex* roots or ligneous material. The water content was 91.2% (2.0; 87-94.8; 62) and the mean dry density 48.7 kg/m³ (16.5; 24-100.8; 62), of which 8.7% (2.0; 5.2-12.7; 62) was organic matter, and the ash content was 1.7% (0.7; 0.4-3.6; 62) of the dry matter. This peat was highly acidic (pH 3.3; 0.3; 2.9-4.0; 62) and had a mean redox potential of 292 mV (54; 180-400; 50). The mean element concentrations (ppm) in the peat ash were: P 285 (133; 77-747; 50), Na 151 (78; 31-398; 57), K 576 (684; 43-3534; 57), Ca 2111 (1575; 419-7576; 57), Mg 723 (230; 256-1146; 57), Al 293 (303; 48-1739; 57), Fe 918 (966; 52-5625; 57), Mn 71 (158;2-921; 57), Cu 4 (2; 1-10; 57), Zn 29 (17; 3-80; 57), Pb 10 (6; 2-31; 51) and their ratios Ca/Mg 3.1 (57) and Fe/Mn 126.9 (57), Ca/K 9.0 (57), Na/K 0.63 (57), Fe/P 4.7 (50) and Cu/Zn 0.20 (57).

The contribution of *Sphagnum* mosses (S) as a peat formation factor in the case of the **dwarf shrub** pine bogs (DsPiB) was in excess of 50%, about a third of this being accounted for by the brown Sphagnum fuscum, in addition to which there were remains of Sphagnum angustifolium, S. magellanicum and S. russowii. The proportion of Polytrichum was slightly greater than in the Sphaqnum fuscum bogs, while that of Dicranum was correspondingly smaller. Pleurozium schreberi accounted for about 5% and there was a small input of Pohlia nutans. The principal additional factors in this mire type were dwarf shrubs (Nanolignin) and cotton-grass, Eriophorum vaginatum, but there was little *Carex globularis*. The main peat types to emerge were dwarf-shrub/Sphagnum (NS) and Sphagnum (S) peats with a degree of humification in the range H_{1-3} (mean 2.3, median H_2) (sd0.8; n 19). Since the mean proportion of amorphous matter was 20.6% (14; 1-41; 9), the peat felt slightly dry and coarse to the touch, and contained little in the way of sedge roots, *Eriophorum* fibres or woody material, nor did it stain or allow moulding. The water content of the peat was 89.9% (2,7; 82.4-92.9; 19) and its mean dry density 63.7 kg/m³ (19.2; 34.6-115.8; 19), organic content 9.8 % of fresh weight (2.7; 6.9-17.1; 19) and the ash content of the dry matter 3.3% (1.8; 1.2-9.2; 19). The pH of the peat was 3.6 (0.5; 3-4.8; 19) and its mean redox potential 197 mV (88; 15-315; 18). The mean element concentrations in the peat ash (ppm) were: P 614 (235; 308-1060; 19), Na 94 (44; 48-227; 19), K 882 (737; 254-2644; 19), Ca 3747 (2664; 1441-11262; 19) Mg 828 (244; 140-1255; 19), Al 534 (344; 164-1339; 19), Fe 1609 (2140; 122-9173; 19), Mn 81 (101; 3-388;

19), Cu 5 (3; 2-12; 19), Zn 32 (16; 8-60; 19) and Pb 15 (5; 8-27; 19), and their ratios Ca/Mg 4.7 (19) and Fe/Mn 115.7 (19), Ca/K 7.7 (19), Na/K 0.19 (19), Fe/P 2.3 (19) and Cu/Zn 0.23 (19).

The **Ombro-oligotrophic poor fens (OmOIPF)** were more obviously dominated by Sphagnum mosses (S. angustifolium, S. balticum, S. cuspidatum, S. fallax, S. jensenii, S. lindbergii, S. magellanicum, S. majus, S. papillosum, S. recurvum coll., S. rubellum) than the other poor fens. About helf of their peat consisted of intermediate or flark-level Sphagnum mosses, of which the cuspidata section accounted for about 15% and the Palustria section roughly the same, while the proportion of acutifolia remained below 5%. The aapa mires of this region were found to be relatively rich in intermediate-level surfaces, with a vegetation comprising *Eriophorum vaginatum*, the sedges Carex canescens, C. chordorrhiza, C. lasiocarpa, C. limosa, C. magellanica, C. pauciflora, C. rostrata and C. vesicaria and Scheuchzeria palustris in addition to Sphagnum mosses. The Bryopsida Calliergon cordifolium, Straminergon stramineum, Dicranum undulatum, Loeskypnum badium and Warnstorfia fluitans contributed to peat formation mostly on flark surfaces and in groundwater areas. Dwarf shrubs and brown mosses were present in the peat to equal extents on average. The most common peat types formed were Sphagnum (S), Carex/Eriophorum (CERS), Carex/Sphaqnum (CS) and Eriophorum/Carex/Sphaqnum (ERCS) peats. The degree of humification varied in the range H_{1-8} , with a mean of 3.2 and a median of H_3 (1.1; 140), at which point the proportion of amorphous matter was 25.6% (15; 3-64; 60). The peat seemed to the touch to have a normal moisture content and slipperiness, but was difficult to mould. It contained a certain amount of Eriophorum fibres and Carex roots but no ligneous material. Its mean water content was 91.4% (3.7; 74.8-96.5; 139), its dry density 75.4 kg/m³ (34.6; 22-195.7; 139), its mean organic content 8.3% (3.3; 3.5-20.6; 139) and the ash content of its dry material 2.7% (1.7; 0.9-9.9; 140). The pH of the peat was 4.0 (0.45; 3.2-5.0; 135) and its mean redox potential 191 mV (60; 20-310; 96). The mean element concentrations (ppm) in the peat ash were: P 355 (180; 28-1086; 101), Na 111 (68; 28-495; 136), K 193 (466; 7-3517; 136), Ca 2193 (1352; 386-7696; 136), Mg 502 (243; 90-1305; 136), Al 1020 (1648; 29-13563; 136), Fe 2424 (1393; 32-10991; 136), Mn 18 (24; 2-183; 135), Cu 5 (4; 1-27; 135), Zn 23 (28,5; 2-162; 136) and Pb 7 (8; 1-56; 117) and their ratios Ca/Mg 4.8 (135) and Fe/Mn 220.4 (134), Ca/K 31.5 (135), Na/K 1.4 (136), Fe/P 8.4 (100) and Cu/Zn 0.47 (134).

Spruce-pine mires (SprPiM) constitute a transitional mire type formed by plants typical of either spruce mires or pine bogs. The principal factor involved in their formation consisted of the

Sphagnum mosses (S. angustifolium, S. fallax, S. fuscum, S. girgensohnii, S. magellanicum, S. russowii), amounting to some 35%, about half of which belonged to the acutifolia section, while remains of dwarf shrubs, or nanolignin (chiefly Andromeda polifolia, Betula nana, Calluna vulgaris, Empetrum nigrum and Vaccinium oxycoccos) accounted for one fourth of the peat, and sedges (Carex globularis) almost a fifth. Bryopsida (Aulacomnium palustre, Straminergon stramineum, Pleurozium schreberi and Pohlia nutans) also occurred to some extent, as did Polytrichum commune, P. strictum and Pseudobryum. Eriophorum vaginatum, together with the sedges, was dominant on the intermediate surfaces, where there were less herbaceous plants. The main peat types were Sphagnum peat (S), Eriophorum/Carex/dwarf-shrub/Sphagnum peat (ERCNS) and *Carex/Sphagnum* peat (CS). The degree of humification varied in the range H₁₋₇, with a mean of 3.7 and a median of H₄ (1.7; 35), and the amount of amorphous material reached 42.6% on average (17.3; 16.3-72; 11). The peat had a normal moisture content, stained and was slippery but pliable. It contained some sedge roots and Eriophorum fibres, and also ligneous material. Its mean water content was 88.1% (5.6; 67.9-93.6; 35) and its dry density 98.4 kg/m³ (62.1; 29.1-311.4; 35), and had a mean organic content of 10.4% (3.2; 6-19.1; 35). The ash content of its dry matter was 8.3% (11.9; 1.8-58.8; 35). The pH of the peat was 4.0 (0.43; 3.3-5.3; 35) and its mean redox potential 170 mV (76; 0-285; 30). The mean element concentrations (ppm) in the peat ash were: P 927 (706; 324-2503; 12), Na 96 (62; 33-365; 35), K 652 (760; 58-3042; 35), Ca 2526 (1905; 535-9707; 35), Mg 580 (290; 42-1614; 35), Al 2837 (2980; 206-12913; 35), Fe 4335 (6879; 589-35639; 34), Mn 67 (99; 2-467; 34), Cu 10 (11; 2-49; 35), Zn 26 (16; 5-67; 35) and Pb 13 (8; 1-33; 28) and their ratios Ca/Mg 4.8 (35) and Fe/Mn 152.9 (34), Ca/K 11.5 (35), Na/K 0.36 (35), Fe/P 5.1 (11) and Cu/Zn 0.62 (35).

The *Eriophorum vaginatum* pine bogs (ErPiB) were typically to be found winding around the centres of aapa mires. Cotton-grass, *Eriophorum vaginatum*, was the major factor in the peat, with a mean proportion of around 40%, but there was almost as much *Sphagnum* moss present, >36% (chiefly comprising *Sphagnum angustifolium, S. balticum, S. centrale, S. cuspidatum* coll., *S. fuscum, S. magellanicum, S. papillosum, S. recurvum* coll., *S. riparium, S. rubellum, S. russowii* and *S. tenellum*). The dwarf shrub vegetation (*Andromeda polifolia, Betula nana, Chamaedaphne calyculata, Empetrum nigrum, Vaccinium microcarpum* and *V. oxycoccos*), woody material, sedges (*Carex* spp., *C. canescens, C. globularis, C. laxa* and *C. rostrata*), bryophytes (*Aulacomnium palustre, Straminergon stramineum, Dicranum polysetum, Pleurozium schreberi, Pohlia nutans* and *Polytrichum strictum*) and *Scheuchzeria palustris* accounted for a further 5-10% each. The most

common peat types were *Eriophorum* (ER), *Sphagnum* (S), *Sphagnum/Eriophorum* (SER) and *Eriophorum/Sphagnum* (ERS) peats with humification in the range H_{1-6} , mean 3.6 and median H_4 (1.1; 45) and an amorphous content of 42.6% (24.7; 2.8-69.5; 14). The peat was of a normal moisture content and rich in *Eriophorum* fibres, pliable, capable of staining and somewhat coarse and slippery, but it contained little in the way of *Carex* roots or ligneous material. Its mean water content was 89.9% (2.6; 82.9-94.8; 46) and its dry density 87.7 kg/m³ of mire volume (29.2; 29.9-144.4; 46), of which an average of 9.8% (2.5; 5.1-16.6; 46) was organic matter. The dry matter had an ash content of 2.2% (0.9; 0.9-4.6; 46). The mean pH of the peat was 3.7 (0.5; 2.9-4.7; 45) and the mean redox potential 213 mV (32; 140-280; 40). The mean element concentrations in the peat ash (ppm) were: P 441 (204; 133-802; 41), Na 76 (42; 9-175; 46), K 301 (759; 5-4733; 46), Ca 2184 (2457; 641-11460; 46), Mg 512 (161; 229-979; 46), Al 845 (948; 107-4266; 46), Fe 2045 (1264; 535-4900; 46), Mn 33 (50; 2-244; 46), Cu 5 (4; 1-20; 46), Zn 16 (16; 3-78; 46) and Pb 8 (4; 1-17; 34) and their ratios Ca/Mg 4.6 (46) and Fe/Mn 206.4 (46), Ca/K 31.0 (46), Na/K 1.3 (46), Fe/P 6.6 (41) and Cu/Zn 0.49 (46).

Almost a third of the peat in the true spruce mires (TSprM) was ligneous material, and the mean proportion with dwarf shrubs included was 37%. The second most important peat-forming factor was the Sphagnum mosses, of which there were 12, including S. angustifolium, S. balticum, S. centrale, S. fallax, S. girgensohnii and S. capillifolium. The sedges (Carex aquatilis, C. canescens, C. chordorrhiza, C. globularis, C. lasiacarpa and C. nigra) then made up about one tenth of the peat, and horsetails, Equisetum, and cotton-grass, Eriophorum, <10% on average. Menyanthes trifoliata, grasses (Poaceae), Scheuchzeria palustris and Polytrichum each accounted for <5%. In general, spruce mire peats entail more peat formation factors than do poor fen peats, and in the present cases the Bryopsida (Aulacomnium palustre, Straminergon stramineum, Warnstorfia fluitans and Polytrichum commune) accounted for less than 5%. The most common peat types in the present mires were Equisetum/lignin/Sphagnum ((EQ)LS) and Equisetum/Sphagnum/lignin ((EQ)SL) peats, with degrees of humification in the range H_{1-77} mean 4.1 and median H_4 (1.8; 16). The mean amorphous material content of the well humified peat was as high as 53.8% (22.7; 22.5-72.7; 6). The peats were of normal moisture content to the touch, slippery and stained normally, and they contained some sedge roots and ligneous material but little Eriophorum fibre. On the other hand, they were fairly pliable. The mean water content of the peat was 86.9% (3.2; 79.2-90.7; 16) and its dry density approx. 121.1 kg/m³ (43.7; 59.1-201.9; 16). The mean organic content was 12.6% (3.2;

9-20.4; 16) and the proportion of ash in the dry matter was 4.3% (2.1; 1.7-10.5; 16). The pH of the peat was 3.8 (0.5; 3.2-4.7; 16) and its mean redox potential 161 mV (71; 50-305; 10). The mean element concentrations in the peat ash (ppm) were: P 1064 (446; 551-1854; 9), Na 97 (50; 40-224; 16), K 815 (1002; 40-2973; 16), Ca 2254 (1277; 572-4129; 16), Mg 675 (368; 121-1405; 16), Al 3363 (2653; 333-7973; 16), Fe 3122 (3662; 588-13990; 16), Mn 70 (79; 2-281; 16), Cu 13 (9; 3-38; 16), Zn 34 (32; 4-105; 16) and Pb 10 (8; 1-21; 15) and their ratios Ca/Mg 3.6 (16) and Fe/Mn 128.7 (16), Ca/K 17.2 (16), Na/K 0.74 (16), Fe/P 3.0 (9) and Cu/Zn 1.4 (16).

The peats in the mesotrophc poor fens (MePF) were some of the purest forms of Carex peat, in which the proportion of Carex remnants (C. aquatilis, C. canescens, C. chordorrhiza, C. diandra, C. lasiocarpa, C. limosa, C. magellanica, C. nigra and C. rostrata) exceeded 40% on average, or reached close to 50% if other sedge-like species were to be included in the Carex factor in accordance with the Finnish Geological Survey classification (Lappalainen, Sten & Häikiö, 1984). Sphagnum mosses (S. angustifolium, S. cuspidatum coll., S. fallax, S. fuscum, S. jensenii, S. magellanicum, S. majus, S. obtusum, S. papillosum, S. recurvum coll., S. riparium, S. rubellum, S. russowii, S. squarrosum, S. subsecundum and S. teres) accounted for another 14%, and the Bryopsida (Bryum spp., Calliergon cordifolium, Helodium blandowii, Paludella squarrosa, Polytrichum strictum, Pseudobryum cinclidioides, Dicranum spp., Scorpidium spp., S. revolvens, Warnstorfia exannulata and W. fluitans) for less than 10%, among which Straminergon stramineum was dominant. The proportions of Potentilla palustris, Equisetum and Eriophorum were no more than a few percent, and both dwarf shrubs and trees accounted for under 10%. The most commonly occurring peat types were Carex (C) and Sphagnum/Carex (SC) peats, the degree of humification of which varied in the range H_{1-6} , mean 3.6 and median H_3 (0.9; 154), while the mean proportion of amorphous matter was 41.6 % (19.3; 0.3-84.1; 87). The normally moist peat was slippery to the touch and contained some *Eriophorum* fibres in addition to *Carex* roots, but no ligneous material. The peat also tended to stain and was easy to mould. Its mean water content was 90.7% (3.3; 66.7-95.4; 154) and its dry density 89.1 kg/m³ (38.2; 34.6-389.4; 154). The mean organic content was 8.7% (2.3; 4.4-16.7; 154) and the mean ash content of the dry matter 4.9% (6.8; 0.8-68; 154). The pH of the peat was 4.7 (0.43; 3.4-5.6; 154) and the mean redox potential 153 mV (108; -90 – +425; 128). The mean element concentrations in the peat ash (ppm) were: P 541 (232; 174-1485; 131), Na 104 (78; 20-488; 153), K 158 (355; 12-3166; 154), Ca 2659 (1794; 421-9876; 154), Mg 596 (395; 25-1893; 154), Al 1740 (1529; 88-9364; 154), Fe 5255 (4194;

124-26216; 154), Mn 44 (47; 1-240; 154), Cu 7 (6; 1-39; 154), Zn 23 (37; 1-309; 154) and Pb 9 (10; 1-63; 110) and their ratios Ca/Mg 5.4 (154) and Fe/Mn 232.3 (154), Ca/K 34.4 (154), Na/K 1.1 (153), Fe/P 12.6 (131) and Cu/Zn 0.94 (154).

The peats of the **oligotrophic mire complexes (OIMC)** were characterized by higher proportions of intermediate-level plants. Eriophorum predominated on the flarks and accounted for an average of a third of the peat, while Carex spp. (most commonly C. lasiocarpa, C. rostrata and C. chordorrhiza) made up about a quarter and Sphagnum mosses (S. angustifolium, S. balticum, S. cuspidatum coll., S. fallax, S. fuscum, S. magellanicum and S. papillosum) correspondingly 14%. Ligneous matter from trees and dwarf shrubs provided about a sixth of the peat by volume, while there was just a few percent of herbaceous plants (Equisetum, Menyanthes and Potentilla) and Bryopsida (Straminergon stramineum, Warnstorfia fluitans and Polytrichum strictum). The most common peat types were Sphagnum/Carex (SC), Eriophorum/Carex (ERC) and Sphagnum/Carex/Eriophorum (SCER) peats, of humification in the range H₁₋₇, mean 4.3 and median H₄ (1.3; 24), so that their mean amorphous content was 46.4% (19.7; 18.7-71.6; 7). This relatively dry, staining peat with an admixture of *Carex* roots but little ligneous matter seemed to be of normal slipperiness to the touch, pliable and contained a reasonable proportion of *Eriophorum* fibres. The mean water content of the peat was 87.2% (3.2; 80.1-93; 24) and the dry density 102.2 kg/m³ (38.1; 38.7-174.4; 24). The mean accumulation of organic matter was 12.4% (3; 6.9-18.9; 24) and the ash content of the dry matter 3.2% (1.9; 1.3-11; 24). The mean pH was 4.1 (0.5; 3.1-5.0; 24) and the redox potential 176 mV (36; 110-250; 17). The mean element concentrations in the peat ash (ppm) were: P 419 (169; 152-765; 12), Na 69 (49; 16-250; 21), K 232 (657; 7-3076; 21), Ca 2327 (2004; 481-6974; 21), Mg 409 (244; 82-1079; 21), Al 1102 (1124; 106-3834; 21), Fe 3359 (2570; 1347-12255; 21), Mn 63 (120; 3-476; 21), Cu 4 (2; 2-8; 21), Zn 12 (10; 3-35; 21) and Pb 6 (5; 1-21; 18) and their ratios Ca/Mg 6.8 (21) and Fe/Mn 257.1 (21), Ca/K 36.3 (21), Na/K 1.1 (21), Fe/P 12.5 (12) ja Cu/Zn 0.59 (21).

About one fourth of the content of the peats in the <u>mesotrophic mire complexes (MeMC)</u> was ligneous material (L) and one fourth sedges (*Care xaquatilis, C. canescens, C. chordorrhiza, C. diandra, C. globularis, C. lasiocarpa, C. limosa, C. magellanica, C. nigra, C. rhynchophysa, C. rostrata* and *C. vesicaria*), while the proportions of herbaceous plants (*Menyanthes, Potentilla palustris* and *Scheuchzeria*), *Sphagnum* mosses (*S. angustifolium, S. centrale, S. cuspidatum* coll., *S. fallax, S. fuscum, S. girgensohnii, S. lindbergii, S. magellanicum, S. majus, S. nemoreum, S.*

papillosum, S. recurvum coll., S. riparium, S. rubellum, S. russowii, S. squarrosum, S. subsecundum and S. teres), grasses (Poaceae) and rushes (Trichophorum) remained at around 10% each. The number of species present was more or less as large as in the peats of the eutrophic mire complexes, but the ecological differences in habitat were such that the various peat-forming factors gained quite different degrees of emphasis. Ligneous material, mainly from trees, made up more than a fourth of the peat and there was almost as much sedge material. There was somewhat more Equisetum present than Menyanthes or Eriophorum. The Bryopsida (Aulacomnium palustre, Calliergon cordifolium, Straminergon stramineum, Warnstorfia exannulata, W. fluitans, Limprichtia revolvens, Hylocomium splendens, Paludella squarrosa, Pohlia nutans, Polytrichum commune, P. strictum, P. swartzii, Pseudobryum cinclidioides and Tomentyphnum nitens) amounted to a few percent. The most common peat types were Lignin/Carex (LC), Carex/Lignin (CL), Sphagnum or Equisetum/Carex/Lignin (S,EQCL) or Lignin/Sphagnum/Carex (LSC) peats with degrees of humification in the range H₁₋₈, mean 4.7 and median H_z (1.0; 147). Amorphous material made up 50.1% (21; 9.1-89.8; 66). The peat was moist to the normal extent, slippery, pliable and staining, and contained a certain amount of *Eriophorum* fibres and some ligneous material. Its mean water content was 88.1% (4.5; 56-93.8; 138) and its dry density 105.1 kg/m³ (57.4; 29-544.8; 138). The mean organic content was 11.4% (7.3; 5.8-89.7; 138) and the ash content of the dry matter 6.6% (9.4; 1-72.8; 138). The pH of the peat was 4.9 (0.7; 3.5-6.4; 148) and the redox potential 96 mV (87; -80 - +315; 81). The mean element concentrations in the peat ash (ppm) were: P 877 (1067; 204-8540; 78), Na 120 (115; 9-658; 119), K 195 (354; 18-2632; 122), Ca 3243 (2004; 89-8332; 122), Mg 728 (544; 11-2446; 122), Al 3768 (2964; 124-17717; 121), Fe 10420 (20638; 104-217411; 122), Mn 121 (174; 2-813; 122), Cu 15 (14; 3-115; 122), Zn 28 (24; 2-131; 122) and Pb 8 (10; 1-56; 70) and their ratios Ca/Mg 5.1 (122) and Fe/Mn 146.9 (122), Ca/K 39.5 (122), Na/K 1.1 (120), Fe/P 21.9 (78) and Cu/Zn 1.0 (122).

Mires of the <u>eutrophic mire complex (EuMC)</u> type were found to form peat in which the *Carex* factor (*Carex aquatilis, C. canescens, C. cespitosum, C. chordorrhiza, C. diandra, C. dioica, C. echinata, C. flava, C. lasiocarpa, C. limosa, C. magellanica, C. nigra, C. rostrata, C. vaginatum* and *C. vesicaria*) accounted for over a fourth of the biomass and ligneous material (L) for a fifth, whereas dwarf shrubs (N) remained at around 5%. A sixth of the material consisted of *Sphagnum* mosses (S), about half of which represented eutrophic species. The main additional factor was *Equisetum* (EQ) and there were also small amounts of other herbs (*Menyanthes, Potentilla, Scheuczeria*) and

grasses (Poaceae, *Molinia caerulea*). The most common peat types were dwarf-shrub/*Carex* (NC), *Sphagnum/Carex* (SC) and lignin/*Sphagnum/Carex* (LSC) peats. The degree of humification varied in the range H_{1-7} , mean 3.8 and median H_4 (1.0; 112), with an amorphous matter content of 39.4% (17.1; 2.5-72.8; 82). The peat was generally wet, slippery to a normal degree and fairly pliable, and contained *Carex* roots, small amounts of *Eriophorum* fibres and some ligneous material. Its mean water content was 87.8% (6.7; 45.7-93.8; 110), its dry density 114.3 kg/m³ (88.3; 40.5-717; 109), its organic content 9.7% (2.5; 5.8-18.9; 109) and the ash content of its dry matter 12.9% (14.8; 1.1-88.7; 109). At the same time the pH of the peat was 5.7 (0.5; 4.1-6.8; 112) and its redox potential 69 mV (92; -85 - +310; 87). The mean element concentrations in the peat ash (ppm) were: P 706 (298; 89-1387; 97), Na 135 (93; 29-606; 101), K 326 (560; 44-3750; 106), Ca 10550 (9759; 1027-40258; 107), Mg 1706 (1368; 74-6145; 106), Al 2200 (3383; 84-18849; 106), Fe 20563 (40314; 271-228961; 106), Mn 518 (2303; 1-18666; 102), Cu 14 (14; 2-108; 104), Zn 33 (71; 4-436; 106) and Pb 13 (10; 1-53; 79) and their ratios Ca/Mg 6.9 (106) and Fe/Mn 133.8 (102), Ca/K 61.0 (106), Na/K 0.84 (106), Fe/P 28.0 (97) and Cu/Zn 1.0 (104).

Almost a half of the peat horizons in the **herb-rich spruce mires (HBirSprM)** consisted of ligneous material, while another prominent contributor to peat formation (>15%) was the Carex vegetation (C. aquatilis, C. canescens, C. chordorrhiza, C. diandra, C. globularis, C. lasiocarpa, C. limosa, C. rostrata and C. vesicaria). There were nevertheless more Sphagnum mosses present (Sphagnum angustifolium, S. centrale, S. cuspidatum coll., S. fallax, S. fuscum, S. girgensohnii, S. papillosum, S. riparium, S. squarrosum and S. teres) than either Menyanthes or Equisetum. Correspondingly, the proportion of Bryopsida (Calliergon cordifolium, Helodium blandowii, Paludella squarrosa, Pleurozium schreberi, Polytrichum commune, Pseudobryum ciclidioides, Rhizomnium pseudopunctatum, Rhytidiadelphus triquedrus, Scorpidium trifarium, Straminergon stramineum, Warnstorfia exannulata) was fairly low, just over 5%. The most common peat types were ligneous (L), Carex/lignin (CL) and Equisetum/lignin/Carex(EQLC) peats, with degrees of humification varying in the range $H_{1,7}$, mean 4.5 and median H_{5} (1.3; 75). The mean proportion of amorphous material in the peat was 48.1% (17.4; 8.7-87.6; 48) and the moisture content, slipperiness, ligneous content, pliability and staining capacity of the peat were normal. There was a certain amount of Carex root material present, but little or no Eriophorum. The mean water content of the peat was 85.2% (6.9; 61.1-94.1; 74), its dry density 136.5 kg/m³ (78; 31.4-489.4; 74), its mean organic content 11.0% (3.2; 5.7-26.2; 74) and the ash content of its dry matter 18.9% (18.4; 4-78.6; 74).

The mean pH was 5.2 (0.7; 3.7-6.6; 75) and the redox potential 75 mV (136; -195 – +315; 60). The mean element concentrations in the peat ash (ppm) were: P 770 (443; 4-2112; 67), Na 352 (796; 4-5217; 73), K 1527 (3455; 78-15306; 74), Ca 4684 (4381; 692-35839; 73), Mg 1211 (808; 106-5116; 74), Al 3415 (2454; 278-13074; 74), Fe 13457 (11274; 63-47467; 74), Mn 331 (934; 6-6843; 71), Cu 22 (16; 2-99; 74), Zn 90 (162; 1-669; 73) and Pb 16 (13; 1-74; 53) and their ratios Ca/Mg 4.3 (74) and Fe/Mn 129.2 (71), Ca/K 20.9 (74), Na/K 0.75 (74), Fe/P 23.7 (67) ja Cu/Zn 1.1 (73).

The <u>rich fens (RF)</u> were found to give rise to *Carex* (C) or Bryopsida-dominated (B) peats. Sedges (Carex aquatilis, C. canescens, C. cespitosa, C. chordorrhiza, C. diandra, C. echinata, C. elongata, C. flava, C. lasiocarpa, C. limosa, C. magellanica, C. nigra, C. rostrata, C. vaginata and C. vesicaria) normally accounted for about a third of the peat mass, while correspondingly, Bryopsida (Aulacomnium palustre, Bryum weigelii, Calliergon cordifolium, C. megalophyllum, C. sarmentosum, Campylium stellatum, Cinclidium stygium, Limbrichtia intermedia, L. revolvens coll., Loeskypnum badium, Meesia trifaria, Paludella squarrosa, Pleurozium schreberi, Polytrichum spp., Pseudo-calliergon trifarium, Scorpidium revolvens, S. scorpioides, S. trifarium, S. vernicosum, Straminergon stramineum, Tomentyphnum nitens, Warnstorfia exannulata, W. fluitans, W. sarmentosa and W. trichophylla) amounted to about a fourth. Menyanthes (MN), Scheuchzeria palustris (SH) and Equisetum (EQ) were the most common additional factors. The eutrophic species Sphagnum subsecundum, S. teres and S. warnstorfii were in the majority among the Sphagnum mosses, accounting for just under 7% out of the total of 9% for Sphaanum (S. angustifolium, S. balticum, S. contortum, S. cuspidatumcoll., S. fallax, S. fuscum, S. girgensohnii, S. jensenii, S. magellanicum, S. majus, S. papillosum, S. platyphyllum, S. rubellum, S. squarrosum, S. subfulvum, S. subsecundum, S. teres and S. warnstorfii). Lignin was below 5% on average, while the grasses were represented chiefly by reeds (Phragmites australis) and purple moor-grass, Molinia caerulea, and the rushes by Trichophorum alpinum. The most common peat types were Carex (C), brown moss (B), brown-moss/Carex (BC) and Carex/brown-moss (CB) peats, varying in humification in the range H₁₋₈, mean 3.4 and median H₃ (0.9; 182), and containing an average of 47.5% amorphous matter (17.2; 13.4-91.2; 63). The wet, fairly pliable peat was of normal slipperiness, stained to some extent and contained some Carex roots but little or no wood or Eriophorum fibres. Its mean water content was 91.2% (3.4; 78.8-96; 183), its dry density 84,6 kg/m³ (33.8; 38.3-224; 183), the ash content of its dry matter 7.7% (6,0; 0.8-34.5; 183), its mean organic content 8.0% (2.7;

3.6-16.3; 183), its pH 5.8 (0.6; 3.4-6.8; 184) and its redox potential 76 mV (90; -150 - + 320; 93). The mean element concentrations in the peat ash (ppm) were: P 566 (362; 63-1794; 92), Na 163 (104; 4-552; 183), K 164 (182; 29-1636; 183), Ca 7783 (4642; 625-23516; 183), Mg 1098 (732; 47-4039; 183), Al 2608 (3824; 109-28862; 183), Fe 6829 (11046; 195-92579; 183), Mn 259 (1109; 6-14983; 183), Cu 22 (34; 1-257; 183), Zn 26 (36; 4-371; 183) and Pb 8 (12; 1-59; 104) and their ratios Ca/Mg 7.9 (183) and Fe/Mn 45.1 (183), Ca/K 78.5 (183), Na/K 1.4 (183), Fe/P 29.3 (92) and Cu/Zn 1.5 (183).

The swampy sedge fens (SSdgF) had horizons of predominantly Carex peat containing remains of a mesotrophic herb vegetation. About a third of the peat mass was made up of sedges (Carex aquatilis, C. buxbaumii, C. canescens, C. chordorrhiza, C. diandra, C. lasiocarpa, C. limosa, C. pseudocyperus, C. rostrata and C. vesicaria), with Equisetum and Menyanthes as the next most frequent peat-forming factors. The predominant brown mosses were Calliergon cordifolium, Pseudobryum cinclidioides, Straminergon stramineum and Warnstorfia exannulata, and these were somewhat more prolific than the Sphagnum mosses (S. angustifolium, S. cuspidatum coll., S. fallax, S. jensenii, S. lindbergii, S. magellanicum, S. majus, S. obtusum, S. papillosum, S. recurvum coll., S. riparium, S. rubellum, S. russowii, S. squarrosum and S. teres). Approximately the same amount as the above was also contributed by *Potentilla palustris*. By contrast, there was very little ligneous material or dwarf shrubs. The most common peat types were Carex peat (C), Menyanthes/Equisetum/Carex peat (MNEQC) in which the Menyanthes could be replaced by brown mosses (B) or Potentilla palustris (P), Menyanthes/Carex peat (MNC) and Equisetum/Carex peat (EQC). The degree of humification was in the range $H_{2.6}$, mean 3.9 and median H_4 (1.0; 58) and the mean amorphous content was 43.6% (13.9; 24.2-87.7; 35). Upon handling the peat was slippery to a normal extent, pliable and with a normal staining capacity. It contained large amounts of Carex roots, relatively little Equisetum fibre but some ligneous matter. The mean water content of the peat was about 91.6% (2.3; 86.1-94.7; 58) and the dry density 76.3 kg/m³ (24; 36-142.9; 58). The mean organic content was 8.0% (2.3; 5.1-13.7; 58), the ash content of the dry matter 5.7% (4; 1.7-29.2; 58), the pH 5.2 (0.4; 4.5-5.9; 58) and the redox potential 20 mV (64; -90 - +115; 42). The mean element concentrations in the peat ash (ppm) were: P 571 (242; 236-1610; 45), Na 131 (67; 28-377; 55), K 115 (58; 27-307; 56), Ca 3545 (1205; 1386-6756; 50), Mg 680 (357; 212-1772; 55), Al 2611 (2009; 496-12022; 56), Fe 9128 (13373; 2696-13373; 56), Mn 66 (48; 8-167; 56), Cu 13 (7;

4-46; 56), Zn 20 (33; 3-201; 56) and Pb 7 (6; 1-33; 39) and their ratios Ca/Mg 5.4 (55) and Fe/Mn 172.2 (55), Ca/K 33.3 (55), Na/K 1.2 (56), Fe/P 17.1 (45) ja Cu/Zn 1.2 (56).

The swamps (S) had a greater proportion of herbaceous vegetation than did the mesotrophic swampy sedge fens, so that Equisetum made up about a fourth of the peat while the sedges (Carex aquatilis, C. canescens, C. diandra and C. rostrata) and Menyanthes (MN) each contributed about a fifth and Potentilla palustris about a sixth. There was very little in the way of ligneous material, other peat-forming factors (Calla, Cicuta, Eleocharis, Hippuris, Juncus, Phragmites, Potamogeton and Scirpus) or the brown mosses (Calliergon cordifolium, Straminergon stramineum and Warnstorfia fluitans). The most common peat types were Carex (C), Equisetum/Carex (EQC), Potentilla palustris/Carex (PC) and Equisetum, Menyanthes or Potentilla palustris/Carex ((EQ,MN,P)C) peats with degrees of humification in the range H_{3-6} , mean 4.5, median H_4 (0.9; 11) and an amorphous content of 50.8% (8; 37.7-64.7; 11). The peat contained large quantities of *Carex* roots, felt moderately slippery to the hands, stained and was pliable but did not contain any Eriophorum fibres or lignin at all. Its mean water content was 89.6% (2.3; 86.9-93; 10), its dry density 97.2 kg/m³ (20.4; 60.4-124.4; 11), its mean organic content 8.3% (1.1; 6.6-10.1; 10) and the ash content of its dry matter 19.2% (10.7; 6-35.6; 10). The mean pH of the peat was 5.6 (0.4; 5-6.1; 11) and its redox potential -46 mV (68; -170 - +90; 11). The mean element concentrations in the peat ash (ppm) were: P 950 (403; 520-1607; 10), Na 323 (194; 109-736; 10), K 412 (307; 146-1192; 10), Ca 4043 (1608; 1983-5935; 10), Mg 1253 (833; 365-2375; 10), Al 4531 (1730; 1916-7522; 10), Fe 28925 (26077; 4324-76020; 10), Mn 90 (56; 29-181; 10), Cu 29 (10; 16-50; 10), Zn 84 (75; 14-280; 10) and Pb 14 (9; 3-31; 10) and their ratios (n 10) Ca/Mg 4.1 and Fe/Mn 520.4, Ca/K 12.5, Na/K 0.8, Fe/P 29.6 and Cu/Zn 0.54.

The <u>limnic peat (L)</u>, that deposited in water, fell fairly evenly into four categories as far as its peat-forming factors were concerned. Sedges (*Carex canescens, C. chordorrhiza, C. diandra, C. lasiocarpa, C. magellanica, C. rostrata* and *C. vesicaria*) and reeds (*Phragmites australis*) each accounted for a good fifth of the material and brown mosses for about a sixth. Among the Bryopsida it was *Calliergon giganteum, Warnstorfia exannulata* and *Scorpidium scorpioides* that were dominant, with some 10% in all. The ligneous contribution was then no more than about 5%, in addition to which debris and seeds from numerous herbs and waterplants (*Eleocharis palustris, Scirpus lacustris, Hippuris vulgaris, Menyanthes trifoliata, Myosotis, Nuphar luteum, Potentilla palustris, Potamogeton pusillus, P. gramineus, P. berchtoldii, Myriophyllum verticillatum,*

Sparganium simplex and Cristadella mucedo) together with Sphagnum mosses (*S. fallax, S. riparium, S. squarrosum, S, subsecundum, S. teres* and *S. warnstorfii*) were to be found to some extent. The most common peat types were *Carex* peat (C), *Phragmites australis* peat (PRC), *Phragmites australis/Carex/Equisetum* peat with some brown mosses and *Menyanthes* ((B,MN)PRCEQ) and brown-moss/*Carex* peat (BC), with a humification of H_{4-5} , mean 4.8 and median H_5 (0.4; 6) and an amorphous content of 46.1% (1). This peat was of normal moisture content and slipperiness, stained well and was highly pliable and contained *Carex* roots but no *Eriophorum* fibres or woody material. The mean water content of the peat was 86.9% (2.8; 82.2-89.4; 6) and its dry density 136.5 kg/m³ (49.1; 96.8-229.9; 6), including a mean organic content of 9.7% (1.9; 8.4-13.6; 6) and an ash content of 25.6% (9.4; 13.2-41; 6). The mean pH of the peat was 5.4 (0.9; 3.8-6.1; 6). The mean element concentrations in the peat ash (ppm) were: P 587 (n=1), Na 302 (101; 157-427; 5), K 267 (121; 110-412; 6), Ca 7618 (5740; 609-14718; 6), Mg 865 (479; 254-1699; 6), Al 5836 (2754; 3403-10152; 6), Fe 27621 (30166; 1219-69732; 6), Mn 133 (112; 29-252; 6), Cu 45 (32; 16-102; 6), Zn 58 (39; 10-109; 6) and Pb 4 (4,9; 1-10; 3) and their ratios Ca/Mg 7.8 (6) and Fe/Mn 174.3 (6), Ca/K 32.2 (6), Na/K 1.1 (6), Fe/P 2.1 (1) and Cu/Zn 0.94 (6).

Indicators of the mire ecology of plant remains in peat

Water content

The peats with a moisture content of at least 91% contained remains of dwarf shrubs, sedges, herbs and a variety of mosses (*Vaccinium oxycoccos, Carex diandra, C. elongata, C. limosa, C. pauciflora, C. pseudocyperus, Trichophorum cespitosum, Caltha palustris, Cicuta virosa, Dactylorchis maculata, Drosera spp., D. anglica, Pedicularis palustris, Potamogeton natans, Ranunculus spp, Scheuchzeria palustris, Sparganium minimum, Sphagnum balticum, S. compactum, S. contortum, S. cuspidatum, S. cuspidatum coll., S. fallax, S. jensenii, S. lindbergii, S. magellanicum, S. majus, S. obtusum, S. papillosum, S. recurvumcoll., S. rubellum, S. subsecundum, S. squarrosum, S. teres, Bryum weigelii, Calliergon megalophyllum, Dicranum spp., Hamatocaulis lapponicus, Meesia triquetra, Pseudo-calliergon trifarium, Scorpidium revolvens, Warnstofia spp., W. exannulata, W. trichophylla and Cladonia spp.), while remains of willows and trees in general were indicative of a moisture content of less than 90% (Appendices 9 and 10). The water content of the 707 samples that contained woody material (lignin) varied in the range 45.7–96.5%, mean 88.8%, sd 5.2, while the 897 samples containing sedge material (<i>Carex* spp.) had a mean water

content of 89.5%, sd 4.8 and range 45.7–96%. Certain species then stood out as having adapted to a particular water content in the peat: *Carex pauciflora* and *C. pseudocyperus* to levels over 93%, *Trichophorum caespitosum* and *Carex diandra* to over 91% and *C. limosa, C. chordorrhiza, C. rostrata, C. magellanica, C. lapponica, Eriophorum angustifolium* and *C. cespitosa* to over 90–91%. The remaining species, more than 63% of the mire species identified here, may be said to be indicative of water content values below 90%.

The mean moisture content of the 831 samples of peat containing debris from a herbaceous vegetation was 89.7%, sd 4.6 and range 45.7–96.5%. Here *Pedicularis palustris* and *Ranunculus* spp. stand out as characteristic of peats with a water content of over 95% (Appendices 8 and 9), while *Epilobium angustifolium, Pyrola rotundifolia, Caltha palustris* and *Scheuchzeria palustris* had adapted to moisture levels of 91–93%, and *Cicuta virosa, Potentilla palustre, Menyanthes trifoliata, Lysimachia vulgaris, Equisetum fluviatile* and *Calla palustris* occurred on average at levels of 89–91%. The mean water content of the 101 samples in which remains of grasses (Poaceae) were found was 87.9%, sd 4.5 and range 59.6–94.0%, and the mean for samples containing *Phragmites australis* was 88.7%.

Sphagnum mosses were clearly indicative of high water content, the mean figure for the 903 such samples being 89.9%, sd 4.7 (Appendices 9 and 10), but the range of values was very wide (45.7–96.5%). Most of the water content figures for ombro-oligotrophic samples were in excess of 90%, while moisture levels in the mesotrophic peats rose steadily, with wetter conditions indicated by *S. subsecundum* and drier ones by *S. centrale*. In eutrophic peats it was only *S. warstorfii* that indicated moisture levels below 92%. Most of the indifferent *Sphagnum* species in this respect had mean moisture levels of over 91%.

More than 52% of the Bryidae, which occurred altogether in 628 samples, were found at moisture levels of over 90% (90.4%, sd 4.0; 56.0–96.0%, Appendices 9 and 10) and about 15% of them at over 92%. *Calliergon megalophyllum* and *Warnstorfia trichophylla* were indicative of a water content in excess of 93%. Species to be found in the driest of all the peat samples were *Rhizomnium perssonii* and *R. pseudopunctatum*. The liverworts (Hepaticae) grew for preference on the hummock surfaces of mires, where the mean moisture content of the peat in the 7 samples studied was 87.7%. By contrast, the mean figure for the four habitats of *Potamogeton natans*, a species typical of peat horizons laid down in water, was 94.3%.

Dry density

The mean dry density of the whole series of 1077 peat samples (including ash) was 92.4 kg/m³ (median 82.2, mode 78.7), while the values without ash were in the range 48–116 kg/m³ (Fig. 26). There were some samples, however, with exceptionally high dry density figures (717, 540 and 440 kg/m³) caused by an unusually high secondary mineral content. The lowest density measured here was 22 kg/m³ (Appendices 9 and 10).

The dry densities of the peat were somewhat lower in mires where birch or pine was growing (69.2 kg/m³ for 13 samples with *Betula pendula*, 82.4 kg/m³ for 147 samples with *B. pubescens* and 81.6 kg/m³ for 170 samples from mires with *Pinus silvestris*), the exception being alder (98.1 kg/m³ for 29 samples with *Alnus*). The mean dry density of the 705 peat samples that contained woody material (Lignin) was 101.5 kg/m³, sd 60.4 and range 26–717 kg/m³ depending on the ash content (Appendices 9 and 10). The mean densities of the surface peat samples containing dwarf shrub material were fairly low (76.8kg/m³ in the total set of 590 samples and 66.6 kg/m³ in the 214 samples containing remains of cranberry plants (*Vaccinium oxycoccos*).

The mean dry density of the 894 *Carex*-dominated peat samples was 96.4 kg/m³, sd 55.5 and range 22–717 kg/m³ (Appendices 9 and 10). The separate *Carex* species were placed in the following order in terms of the dry density of the samples in which they occurred as the dominant species: *C. canescens* (129 kg/m³, in 63 samples) >*C. globularis* (105 kg/m³, in 47 samples) >*C. vesicaria* (99.4 kg/m³, in 82 samples), *C. lasiocarpa* (99.3 kg/m³, in 171 samples) > *C. limosa* (84.8 kg/m³, in 134 samples), *C. rostrata* (84.8 kg/m³ in 185 samples) and *C. chordorrhiza* (83.7 kg/m³ in 175 samples). By contrast, the mean dry density in the 206 *Eriophorum vaginatum* peats was 75.8 kg/m³, while the figures for the 102 samples containing remains of grasses were markedly higher than for the *Carex*-dominated ones, with a mean of 111.7 kg/m³, sd 50.4 and range 24–444.4 kg/m³. Those with remains of herbaceous plants, on the other hand, were only slightly higher than the overall mean, 95.4 kg/m³ in 828 samples, sd 53.4 and range the same as in the *Carex* peats. The dry densities of the 520 peat samples containing *Equisetum*, 98.7kg/m³, were higher than those of the 536 samples containing *Menyanthes*, 86.8kg/m³.

The mean dry density of the 901 samples of *Sphagnum* peats was 88.8 kg/m³, sd 53.6 kg/m³ and range 22–717 kg/m³. Only 7 *Sphagnum* species were found in more than 100 peat samples and these could be placed in the following order of the dry densities of the peats in which they occurred: *S. angustifolium* (96.7kg/m³ in 214 samples) *>S. fallax* (85.6 kg/m³ in 118 samples) *>S. papillosum* (79.8 kg/m³ in 149 samples), *S. magellanicum* (79.3 kg/m³ in 155 samples) *>S. teres* (73.8 kg/m³ in 180 samples), *S. subsecundum* (73.5kg/m³ in 110 samples) *>S. fuscum* (68.0 kg/m³ in 128 samples) (Appendix 10). The mean dry density of the 628 peat samples in which Bryidae occurred was 88.0 kg/m³, sd 45.2 kg/m³ and range 24–544.8 kg/m³. The densities associated with the two most common species are very similar: *Calliergon cordifolium* 83.6kg/m³ in 108 samples and *Straminergon stramineum* 84.2 kg/m³ in 240 samples, whereas the figures of 68.6 kg/m³ recorded for the 86 samples containing *Pseudo-calliergon trifarium* and 75.8 for the 94 containing *Warnstorfia exannulata* were considerably lower. The mean dry density results of 64.6 kg/m³ obtained for 7 samples of hummock surface peats containing liverworts (Hepaticae) and 136.5 kg/m³ for 6 limnic peats must be regarded as no more than indicative of a certain trend.

Degree of humification, amorphous material and organic content

The degree of humification of the ombro-oligotrophic peat samples was in the range H₂₋₃ on the von Post (1922) scale, while the mean overall values for the peats formed by the most common mire plants varied in the range 2.0–4.8 and the means for the separate groups of trees and bushes (L), dwarf shrubs (N), grasses (Poaceae), sedges (C) and mosses (S and B) were in the range 3.5–4. The highest degrees of humification were found in certain individual samples, especially those containing plants that thrive under eutrophic conditions.

The mean proportions of unrecognizable amorphous material in the plant biomass were in the range 7.5–59.8% and were found to increase as humification proceeded, so that the proportions in poorly humified peats representing low trophic levels, as indicated by the presence of dwarf shrubs, were mostly below 35%, while the highest proportions were found in the mesotrophic and eutrophic peats. The largest amounts of peat had been deposited by forms of mire vegetation that had adapted to these latter conditions.

Among the groups of plants, the largest amounts of organic matter, close to 10%, were found in peat horizons with a high water content containing mostly remnants of grass, woody material and

Eriophorum, but the percentages varied greatly between species, especially between those that occurred infrequently, and the standard deviations were high.

Ash content

The ash content of the peat samples as a percentage of dry weight varied in the range 1.7–72.8%. Mineral material had been transported into the sloping mires in particular by surface water, and this was an especially prominent feature on the margins of sloping areas and in low-lying areas subject to flooding. It was also significant that the ash content of peats supporting a vegetation of dwarf shrubs and *Eriophorum* was only about half of that of peats containing grasses and woody material from trees and shrubs. Likewise, although the *Carex* and herb-rich peats had a similar mean ash content (7.8%), the *Sphagnum* peats contained 0.7%-points less ash than the Bryidae peats. In at least ten instances mean ash content figures of over 15% were recorded for peats that included remains of *Alnus incana, Carex canescens, Selaginella selaginoides, Sphagnum girgensohnii, S. warnstorfii, Campylium stellatum orWarnstorfia sarmentosa.* Details of the ash content of the peat samples in relation to the occurrence of certain plants are given in Appendices 9 and 10.

Geochemistry

Employing the data presented in Appendices 9 and 10 it is possible to deduce the nature of the growing conditions in each mire and the geochemistry of the resulting peat horizons. Among the groups of mire plants, the trees and shrubs (L), dwarf shrubs (N), sedges (C), herbaceous plants, *Equisetum, Sphagnum* mosses and Bryidae (Appendix 8) had fairly moderate element concentrations, whereas exceptional concentrations were observed in peats containing *Eriophorum*, grasses (Poaceae), liverworts (Hepaticae and *Marchantia*) and lichens. Grassy peats in particular had a high aluminium content. The cation concentrations in the peats (on a scale of 1-10) were lowest in the case of lichens, 1-2, while the level for liverworts, *Marchantia* and *Sphagnum* mosses, *Eriophorum* and the dwarf shrubs was 3, that for trees, sedges and Bryidae 4, that for herbaceous plants 5 and that for grasses 6, and the order for pH values was practically the same. Where redox potential (mV) was concerned, four groups could be distinguished: 1) lichens, liverworts and *Marchantia* > 250 mV, 2) *Eriophorum*, dwarf shrubs and *Sphagnum* mosses > 138 mV, 3) trees and bushes, sedges and Bryidae > 105 mV, and 4) *Equisetum* and grasses < 98 mV.

Where element concentrations are concerned, any decrease in the ratio Ca/Mg will reflect a change from nutrient-rich minerotrophic conditions to nutrient-poor ombrotrophic ones, in the order: > 7 grasses and Bryidae, < 7 *Sphagnum* mosses, *Carex* sedges and herbaceous plants, < 6 *Eriophorum*, dwarf shrubs, trees and bushes, and < 4.2 *Marchantia*, liverworts and lichens.

The peat horizons containing fragments of alder (*Alnus*) were rich in K, Fe, Pb and Zn, and those containing downy birch (*Betula pubescens*) and spruce (*Picea abies*) were also rich in zinc, whereas the horizons with large amounts of dwarf shrub debris generally had low element concentrations, except for the 82 samples with remains of dwarf birch (*Betula nana*), which were fairly rich in zinc (108 ppm).

Of the sedges, the presence of *Carex flava* on a mire led to high Al, Ca, Mg, Fe and Mn concentrations in the peat, *C. diandra* to high magnesium, *C. globularis* to high phosphorus, *C. lasiocarpa* to aluminium and *C. nigra* to manganese. On the other hand, *C. magellanica* led to extremely low element concentrations in the peat, *C. diandra*, *C. lasiocarpa* and *C. vesicaria* to low concentrations of lead and *C. diandra* to low zinc. All the *Carex* peats were low in manganese.

The *Eriophorum vaginatum* and *E. angustifolium* peats contained plenty of Fe and Zn, but the former were low in manganese, zinc and phosphorus. *Trichophorum cespitosum* peat was also low in phosphorus.

The grassy peats were moderately supplied with phosphorus, but contained high concentrations of AI and Na, while the highest Ca, Mg, Na, Cu, Fe and Mn concentrations were found in the *Molinia caerulea* peats. The peats containing material from common reeds (*Phragmites australis*) had more Cu in them than those based on any other plant species.

Large amounts of aluminium, calcium, magnesium, iron and manganese were found in the peat of herb-rich mires on which the clubmoss *Selaginella selaginoides* also grew, and an abundance of Al was also found in the presence of remnants of *Lysimachia vulgaris* and high concentrations of P in the presence of *Calla palustris* and *Equisetum sylvaticum*. Conversely, *E. fluviatile*, *Lysimachia vulgaris*, *Menyanthes trifoliata* and *Scheuchzeria palustris* were all markers of a low potassium concentration. Peats that supported a vegetation including stands of cowbane, *Cicuta virosa*, *Equisetum fluviatile* and *Menyanthes trifoliate* were low in manganese and zinc. It must be said, however, that the peats containing fragments of *Lysimachia vulgaris* and *Scheuchzeria palustris* were somewhat deficient in a number of cations (Table 9).

Among the *Sphagnum* mosses, those thriving in the presence of high element concentrations were *Sphagnum girgensohnii* (with respect to Ca, Mg and Na), *S. warnstorfii* (Ca and Mg) and *S. cuspidata* (K and Zn), together with some that required a high concentration of one specific element: *S. centrale* (P) and *S. riparium*, *S. recurvum* coll. and *S. teres* (Zn). Otherwise the element concentrations in the *Sphagnum* peats were in general low.

Low nutrient levels were particularly common in cases where the peat-forming factors were the following Bryidae: *Dicranum polysetum, Paludella squarrosa, Pleurozium schreberi, Pohlia nutans, Polytrichum* spp., *Pseudo-calliergon trifarium* (except with respect to calcium), *Warnstorfia exannulata* and *W. fluitans*. By contrast, *Scorpidium* spp., *Warnstorfia sarmentosa* and *Tomentypnum nitens* were markers of eutrophic peats.

Finally, the fungus *Cenococcum graniforme* occurred in a number of peat samples with high Al and P taken from the lower horizons of mires. Statistics on indicative element concentrations in peat ash are provided in Appendices 9 and 10.

5. DISCUSSION

Mire formation, mire type stratigraphy and the mire succession

Prior to the gradual melting of the ice sheet that began ca. 11 500–10 000 BP cal (Saarnisto & Salonen 1995; Eronen 1974, 1996; Saarnisto 2000) almost a half of the area of Northern Finland considered here was covered by the Ancylus Lake phase in the history of the Baltic basin. The oldest mires in this aapa mire region were naturally those that formed over 10 000 BP cal ago in the supra-aquatic eastern parts (Mäkilä & Grundström 2008, Mäkilä & Muurinen 2008), but from that time onwards the coastal plains slowly emerged from beneath the sea and created basins that were suitable for primary mire formation (Lindholm *et al.* 1989, Lindholm 1991, Munsterhjelm 1997, Rinkineva & Molander 1997, Rehell 2006).

Viewed on a global scale, the area concerned is located at the humid, oceanic western end of the Middle and Northern Boreal taiga forest vegetational zone, where optimal conditions existed for widespread mire formation. The climate in this zone fluctuated greatly over time, the warmest period occurring ca. 7000–5500 BP cal (Eronen 1996), and the current climate is such that the growing season lasts approximately 130–150 days, the total duration of the summer and autumn seasons is 170–200 days and the temperature sum is 800–1000 d.d. (Eurola 1999). The development of a mire vegetation was also influenced by the existence of certain refugia on the Norwegian coast (including nunataks in the inland mountain areas), the varying lengths of time for which given areas have been free of ice or above the water level, the macroclimate and its temperatures and the hygric effects of oceanicity and continentality. According to Damman (1979), mires are in a constant state of dynamic equilibrium with climatic conditions, which in effect constitute, alongside geological and topographic considerations, the principal factor determining the occurrence of mires (Charman *et al.* 2007).

The postglacial climatic optimum referred to above was followed by a cooling of the climate, as a consequence of which a distinct rise in water levels in the Sphagnum bogs of Central Europe has been detected and dated to ca. 5700-6000 BP cal (Magyari et al. 2000), and a change to more or less current climatic conditions has been observed from ca. 5500 BP cal onwards in the lake waters of the Baltic States, with a progressive trend towards moister conditions from just under 2000 BP cal (Harrison et al. 1996), from which point the development of raised bogs can be said to have commenced (Virtanen 2006). The proportion of noble deciduous trees in the forests declined and spruce became more common in the eastern parts of the area considered here from ca. 5800–5000 BP cal onwards (Miettinen 1985) as a result of the increased humidity (Lukkala 1933; Vasari 1962), and over practically the whole of the area by 4500 BP cal (Appendix 3). It has been shown, for instance, that spruce had reached the environs of the Järvenpäänsuo mire in Utajärvi (no. 12 in Fig. 1.) by the beginning of the Subboreal, ca. 5100 BP cal (Holappa 1976), at roughly the same time as a rise in lake levels is reported to have taken place in Central Europe as a consequence of climate change, 4900 BP cal (Magny et al. 2004). The thickest peat horizons in the present cores that date from before the spread of spruce were to be found in the north-eastern and south-eastern parts of the area, and to some extent also in the central parts, while the radiocarbon dates (Appendix 1) and pollen analyses (Appendices 2 and 3) indicate that all the mire deposits in the coastal strip and the upper peat horizons of more than half of the older mires were laid down at a time when spruce was growing in the local forests (Fig. 3). Primary mire formation was widespread in the vicinity of the coast (Huikari 1956), with sedges (Carex), woody material (lignin), Sphagnum mosses and brown mosses (Bryales) the most common peat-forming factors in

the early stages (Fig. 4). *Sphagnum* peat would have been deposited in places where surface conditions were poor in nutrients, whereas certain mire plants such as *Potentilla* spp. would have been preserved in the basal peats, pointing to swampy conditions.

Under the climatic conditions described above, the aapa mires of Ostrobothnia would have characteristically gained low strings of intermediate surfaces in their central parts and pine bogs at their margins, but as the climate became cooler and more moist this would have encouraged the spread of Sphagnum mosses. Thus pronounced increases in these mosses have been reported at certain periods, most notably 6750-6400, 5100-4950, 4100-3850, 2950-2750, 2650-2500 and 800 BP cal (Mäkilä & Saarnisto 2008), so that the Sphagnum invasion in the Järvineva mire in Ruukki, for example, is reported to have begun around 4100 BP cal, i.e. at a present-day peat depth of 140 cm (Picken 2007). This increase in humidity reached its culmination ca. 2800 BP cal, leading to the observation of a number of cool/moist horizons in the mires of Denmark and North Germany that are indicative of rises in water level, dated to 2800, 1700 and 1300 BP cal, and also to the "Little Ice Age", 1250–1350 BP cal (Barber et al. 2004). The formation of permafrost and palsas in Northern Fennoscandia has been shown to have begun ca. 2550 BP cal (Salmi 1972; Seppälä 2005, 2006; Oksanen 2005), and the proportion of Sphagnum mosses in the mires of North America evidently increased around 2000 BP cal as a consequence of a rise in the groundwater table (Janssens et al. 1992, Gorham & Janssens 1992). In Finland, a minor peak in Sphagnum spp. at a depth of 4–5 m has been detected in thick-peat mires such as Takasuo in Ylikiiminki (63 ma.s.l., depth 5 m), Riissuo in Posio (329 m, depth >3.9) and Matosuo in Kuusamo (273 m, peat depth 6.55 m+ 1.75 m gyttja). It is also possible, however, that Sphagnum mosses may have thrived especially well during the previous humid climatic period, when the water level in the lakes of a zone stretching into Northern Europe and Eastern Finland is similarly known to have risen (Janssens et al. 1992), and raised bogs developed in many places on the coasts and close to waterways, mainly after the spread of spruce.

According to inventories performed by the Geological Survey of Finland, the mean depth of the mires in the province of Oulu is 1.2 m and that in Lapland 1.3 m (Virtanen *et al.* 2003). By comparison, the cores used in the present work show the mean peat depth to be just under 1.5 m, although it should be remembered that this material was composed of both geologically and biologically defined mires, which would explain the high standard deviation in the depth figures for all the mire types studied here. The 54 mire types recognized in this analysis, together with peat

deposited in water, were deposited at different heights in the mire type stratigraphy relative to the overall thickness of the peat at the sampling site (Figs. 8a and b, and 9a and b).

It was possible here by grouping the recent and subfossil mire types together on an ecological basis to reduce the number of types to 14 plus limnic peat (Table 4, Fig. 8b). In this scheme the horizons with a mire margin effect are regarded as being located at the base of a mire or as forming an entire thinnish peat horizon on the edge of a mire in places; in other words, as the peat deposit becomes thicker the types influenced by location at the mire centre lose their contact with the underlying mineral soil. The final stages in the succession of mire types are thus regarded as being the ombrotrophic and oligotrophic surface peat horizons of *Sphagnum fuscum* bogs (SphfB), dwarf shrub pine bogs (DsPiB), *Eriophorum vaginatum* pine bogs (ErPiB) and poor fens (OmOIPF).

The course of development of the mire type succession can be described with reference to the pH and water content of the peat, in terms of which the types representing different trophic levels and the progression from one type to another will operate for the most part in the following manners: 1) progressively from moist, rich eutrophic conditions towards nutrient-poor ombrotrophic conditions, 2) retrogressively at times, if the mire becomes markedly wetter for some reason, 3) oscillating in a progressive-retrogressive-progressive manner, or 4) in a stable manner, remaining almost the same right from the onset of mire formation. In the case of Kiimisuo on the island of Hailuoto in the area of pronounced land uplift (Fig. 1, no. 15; Appendix 1), the natural, autogenic succession (Magyari et.al. 2000) from open water to an ombrotrophic Sphaqnum bog took place extremely rapidly in the form of a transition from an aquatic vegetation in 880 BP cal to a minerotrophic short-sedge bog and on to an ombrotrophic short-sedge bog and most recently to a Sphagnum fuscum bog at 11.9 m a.s.l. (Rönkä 1985). On the other hand, a regressive pattern was seen at Ruostesuo in Kiiminki from a poor birch fen to a mesotrophic tall-sedge fen followed by a mesotrophic mud-bottom flark fen (no. 3 in Fig. 1, 60 m a.s.l.; Appendix 1), and an oscillation under alternating wetter and drier conditions at Säynäjäsuo in Suomussalmi, from a flark fen to a mesotrophic tall-sedge pine fen, a true tall-sedge fen, a Sphagnum papillosum poor fen, a short-sedge fen and eventually a Sphagnum flark fen (no. 27 in Fig. 1, 191 m a.s.l.; Appendix 1). A stable situation was found at Matosuo in Kuusamo, where an aquatic vegetation gave way to a swampy rich fen and then to a flark fen (no. 35 in Fig. 1, 273 m a.s.l.; Appendix 1). An interesting case was that of Purkuputaansuo in the eastern part of the Kuusamo district, which has a continental climate but oceanic moisture conditions (Eurola &

Vorren 1980). Here the mire developed allogenically from a eutrophic state, a herb-rich spruce mire, via a birch-spruce mire with rich fen features and a rich pine fen to an ombrotrophic Sphagnum fuscum bog, possibly because the climate became cooler and wetter (no. 13 in Fig. 1, Appendix 1, 228 m a.s.l., 6840 BP cal, Miettinen 1983, 1985). In the case of mires that are in a natural state, this allogenic progressive succession brought about by environmental changes most commonly takes place at the margins of mire types that have developed on account of the paludification of forest land and are influenced by an increase in the thickness of the peat, causing it to dry out and acidify. The most common stimuli for this are forest fires, the digging of drainage ditches or changes in the macroclimate (Magyari et.al. 2004). Cyclic variations in climate over the past 6300 years (cal) have been said to have led to the development of peat horizons of the kind seen in raised bogs (Aaby 1976), in that meso-eutrophic mire types (Fig. 10) with a peat acidity in excess of pH 5 advance in a progressive succession from mesotrophic complex and poor fen stages (pH 4.5–5) to oligotrophic pine fens and complexes and eventually spruce-pine mires, Eriophorum vaginatum pine bogs and dwarf shrub pine bogs (pH 3.5–4). The poorest mire types of all tend to develop at the climax stage into ombrotrophic Sphaqnum fuscum bogs (pH < 3.5), which in the present material would appear to represent at its height the seventh stage in mire type development. Correspondingly, Rybnicek & Rybnickova (1968) recognized 8 stages in the mire type succession in their model, while Walker (1970) distinguished 12 stages in the development of British mires from open water to raised bogs. Later, however, using statistical methods, Rybnicek and Rybnickova (1974) arrived at the figure of 11 stages in mire type development.

Decomposition of peats

Amorphous decomposed plant biomass can form even in recent horizons, especially in mesotrophic and eutrophic mire types with margin effects (Fig. 14.), whereupon the amount of amorphous material as a percentage of dry weight will show a linear correlation with the degree of humification on the von Post scale (Fig. 13, $r^2 = 0.9914$). Similarly the functions describing the decomposition of individual mire plants will possess fairly high explanatory powers (Table 6). On the other hand, the basal peats of the particularly rich fens in the present material were regularly found to be poorly decomposed, so that the peat contained a relatively small proportion of amorphous matter, a situation which may be attributed to the rapid deposition of peat at the initial stages in mire formation (cf. also Tolonen 1967). In any case, a positive correlation has in general been demonstrated between depth and the degree of humification (Mäkilä 1987). No biomass

measurements were made during the growing season in the present work, but it has been noted previously that deep-rooted plants belonging stratigraphically to the most recent mire type are able to add both living biomass and dead necromass to that already accumulated in the previous, older mire type phase (Sjörs 1991), assuming that a change in mire type has taken place.

The organic material in peat generally decomposes to carbon dioxide, water and various salts, and at the same time this decomposition gives rise to humic substances, predominantly lignoproteins (Grosse-Brauckmann & Puffe 1965; Naucke 1976; Eurola 1992). Although there is no clear difference between pine bogs and rich fens in the mineralization of nutrients, this process is more pronounced in forested mire types than in herb-rich ones (Aerts et al. 1999). Cellulose and hemicelluloses decompose most rapidly during humification, so that the proportions of these in the peat decrease as humification advances (Naucke 1976). Efficient decomposition takes place in the well-aeriated surface layer of the peat in the acrotelm, above the groundwater table, where the plant biomass generated is pre-decomposed by invertebrate organisms in the soil to the extent that 80–95% of this biomass is emitted in the form of gasses, chiefly carbon dioxide (Ingram 1978). Methane is also given off, but this is oxidated to carbon dioxide under the influence of methanotrophic bacteria (Sundh et al. 1994, Laine et al. 1996), and nitrogen is produced under the influence of nutrients from the environment and as a consequence of the mineralization of organic material. Thus the peats to be found in mesotrophic and eutrophic mire types are more advanced in their decomposition, as the amount of nitrogen in the acrotelm shows a (significant) positive correlation with the degree of humification and the total nitrogen content of the peat. The total amount of nitrogen in pine bog peat types is only a half of that in mesotrophic or rich types, or in the peats of poor fens (Bayley et al. 2005). It was also the case in the present material that the mesotrophic and eutrophic peats were distinctly better humified, although admittedly no determinations of nitrogen content were available. It has been claimed by Malmer et al. (2003), however, that Sphagnum mosses make efficient use of nutrients, so that an imbalance between nitgrogen and phosphorus will give these mosses an opportunity to reduce the survival potential of vascular plants.

Decomposition processes continue to some extent in the less well aeriated water of the catotelm thanks to the action of anaerobic bacteria, releasing hydrogen sulphide, ammonia and nitric oxide in addition to the above-mentioned gasses (Nykänen *et al.* 1998). The more slowly decomposing mire plants become enriched in these peat horizons as the degree of humification increases, since

their exceptional organic composition affects the rate of decomposition of their remains (cf. Clymo 1983). The present finding that the estimated percentages of the various plant remains in the peat samples correlated with the degree of humification of the sample is consistent with these observations, and it can thus be proposed that the decomposition of mire plants proceeds broadly speaking in such a way that the proportions of woody material (lignin), dwarf shrubs (nanolignin), Eriophorum, Equisetum and herbaceous plants in peat increase as its degree of humification rises, and to some extent this is also true of the sedges (Cyperaceae) (Fig. 11). This also implies that the proportions of recognizable remains of Sphagnum mosses and Bryidae diminish to below 10% as humification reaches or exceeds H₅ on von Post's scale (Fig. 12). By this stage the mosses and a large amount of the other peat-forming plants will have disintegrated to an amorphous mass. We can conclude, therefore, that only tree fragments, the remains of bushes and dwarf shrubs together with fibres of Eriophorum and silicon-containing Equisetum species stand any chance of occurring in H₁₀ peats. Nevertheless, Heikuraisen and Huikari (1956) noted that Sphagnum mosses and dwarf shrub remains were still quite visible in completely humified peat, and various plants such as Calluna, Eriophorum vaginatum and Rubus chamaemorus are mentioned by Heal et al. (1978) and Clymo (1978) as having diminished in weight within the biomass as a function of time on account of its further decomposition. The equations listed in Table 7 of the present work indicate clearly that it would be possible to estimate changes in the composition of a given peat mathematically if one knew either the degree of humification according to von Post (x) or the percentage of a given plant in the peat biomass (y).

Organic content and dry density of peats

No attempt is made in this survey of aapa mires to measure the nitrogen content of peat horizons, although it has been demonstrated in experiments to determine carbon and nutrient cycles using *Carex* and *Sphagnum*-dominated samples (Scheffer *et al.* 2001) that, on account of the varying availability of nutrients and the ability of microbes to adapt to changes in the nutrient supply and other environmental factors, the cycles are not the same in these two cases, as the sedges will have decomposed more rapidly than the *Sphagnum* mosses, and the increased C/N ratio and high carbon dioxide content in the latter case will lower the concentrations of the main nutrients, K, Mg, N and P (Jauhiainen *et al.* 2004), thereby detracting still further from the competitive potential of the vascular plants. Furthermore, high concentrations of N and P in the atmosphere would

appear to increase the growth and accumulation of *Sphagnum* mosses (Malmer 1990) where otherwise the leaves of these mosses would have only low N and P concentrations (Aerts *et al.* 1999). The dependence of carbon accumulation on water level would seem to take the form of a curve (Swanson 2007), which would mean that the rate of accumulation, around 40 g C m⁻²yr⁻¹, would be greater in mire types that possess intermediate and hummock surfaces, and that the eventual carbon content of the catotelm would be dependent on the hydrology of the mire. Other factors explaining the fluctuations observed in the dry density of peat horizons are the nitrogen content, degree of humification, carbon loss and decomposition of the organic litter (Malmer & Wallén 2006). The long-term average net accumulation of carbon has been estimated to be 17 g m⁻²yr⁻¹ in aapa mires and 21 g m⁻²yr⁻¹ in raised bogs (Mäkilä & Goslar 2008), and it has also been suggested that old, swampy aapa mires may be approaching a situation in which primary production is scarcely able any longer to compensate for the carbon lost due to decomposition of the peat. Thus it is quite possible that the above estimates for the long-term accumulation of carbon may be too high and that the true combined vertical and lateral accumulation may be around 8.0 g C m⁻² y⁻¹ (Mäkilä *et al.* 2001).

The peat horizons of the mires in the present area that are in a natural state have a mean organic content of 12–7.4%, the figures for the individual mire types being arranged in the order: spruce mires > mire complexes > pine mires/bogs > poor fens > rich fens (Fig. 25). In other words, dry densities in kg/m³ would be highest in forested mires (true spruce mires 116 > oligotrophic complexes 99, herb-rich spruce mires 98, mesotrophic complexes 94 > other mire types). Limnic peats, those laid down in water, vary greatly in their dry densities, so that no firm conclusions can be reached on the basis of the present data due to the small number of observations (Fig. 26).

Determination of the botanical composition of peats

The compositions of the surface peat horizons of recent mire types are reflected to some extent in the existing descriptions of the plant species to be found on peatlands (Ruuhijärvi 1960, Eurola 1962, Vasari 1962), and the resulting analyses of the vegetation cover may be said to provide a fairly reliable picture of the nature of the surface peat horizon in each case. The chief problem, however, is that the differing speeds with which plant remains decompose and mineralize as a function of time (Clymo 1983) cause considerable distortion in the proportions of the recognizable

plant debris (Table 10). It has been proposed by the First and Fifth Commissions of the International Peatland Society (Anonymous 1972) that a general system for the classification of peats should be simple and easy to adopt and based on observations that can be made with the naked eye. The principal criteria used should be the composition of the peat in terms of plant species (*Sphagnum* mosses, Bryidae, sedges and ligneous plants) and the degree of humification (light H ₁₋₃, dark H ₄₋₆and black H ₇₋₁₀), together with the trophic levels (eutrophic, mesotrophic and oligotrophic), the hydrology of the place of origin of the peat (terrestrial, telmatic, limnic, minerotrophic and ombrotrophic) and its coarseness (fine, medium, coarse). The Geological Survey of Finland uses one sixth of the peat sample, about 17%, as the resolution limit for assessing the botanical composition of a peat horizon, i.e. its "peat-forming factors" (Lappalainen *et al.* 1984).

The precise determination of the percentages of the various plants in peats belonging to particular mire types would nevertheless call for the performing of macrosubfossil analyses, first by eye and then checked microscopically, as mentioned in Figure 2, followed by estimation or determination of the proportion of amorphous matter in the < 0.125 mm fraction of the fully decomposed peat. A further essential would be to determine other properties of the peat, such as moisture content, the amounts of sedge roots, *Eriophorum* fibres and ligneous fragments present and the pliability, slipperiness and staining capacity, all on a scale of 1–5, although it must be admitted that the scale of 0–6 proposed by Mäkilä (1994) is able to express the moisture content of peat more precisely. The assumption is that the mean proportions of the various recognizable plant remains will represent a peat horizon typical of a vegetation that has adapted to certain environmental conditions and reflects a particular mire type, or else a limnic peat. This implies that peats belonging to the same mire type will show some degree of evident similarity in terms of their botanical composition even though the determinations may have been arrived at on the basis of either plant cover analyses of the surface peat (representing the recent mire type) or macrosubfossil analyses of older horizons (Tables 10 and 11). It would seem, however, that 10% would be a more suitable minimum limit for recognizing a plant species as a peat-forming factor, even in the case of peats which differ in their trophic level. A very well humified peat will consist mostly of entirely decomposed amorphous biomass which will be recognized as a major contributory factor alongside Carex, Sphagnum and Bryidae. When estimating the proportions of amorphous matter it would perhaps be sufficient to set the limits at < 25%, 25–50% and >50% (Fig. 15).

Physical properties of the mire types

The mV values in the surface peats studied here were higher than those in the intermediate level or basal peat horizons, differing from them almost by a factor of three in the case of ombrotrophic peats. Similarly, the pH was lower than in basal peats and deviations were greater than those found in mesotrophic or eutrophic mire complex types located in areas with an alkaline bedrock.

Of the various mire types, swampy poor or rich fens, those with a mire centre effect and some of the poorer *Sphagnum* bogs or fens were wetter than the spruce mire types, and the thick-peat, poorly humified, oligotrophic spruce mires and pine fens with a centre effect had high mV values, whereas their pH of 3-4 was a couple of units lower than in the eutrophic mire types with a margin effect. The proportions of amorphous matter (< 0.125 mm) in the peat correlated well ($r^2 = 0.9914$) with the distribution of degrees of humification quoted by von Post (1922), and the proportions of organic matter in the spruce mire and mire complex types exceeded those in the treeless fens in spite of the swampy or rich fen character of the latter. The huge contrast between the swampy treeless fens and spruce mires on the one hand and the types showing a mire centre effect on the other is manifested best in their ash content, especially in alkaline bedrock areas, where it is to be seen in the herb-rich spruce mires and related mire complexes and the peats of the rich and poor fens. A high ash content will lead above all to a higher dry density in the basal peat.

Geochemistry of the mire types

The peat in an uncompressed mire profile will increase in porosity towards the surface, so that its ability to conduct water in a horizontal direction will increase exponentially (Ivanov 1981, Rehell 1985, Swanson 2007), as is the case in coarse-grained mineral soils. This will allow the surface runoff and the cation-rich groundwater infiltrating via the underlying soil to transport additional nutrients from the bedrock and the surficial deposits overlying it into the peat horizons. A capillary mire margin effect will then be manifested in a spring vegetation and the effect of surface runoff in a swamp or spruce mire vegetation, which will in turn be reflected in the geochemistry of the mire types affected by this minerogenic groundwater in high Ca, Mg, P, Fe, Mn, Al, Cu, Zn and Pb concentrations in general and high Na and K in the spruce mire and pine bog types (Figs. 23 and 24). In the same way high Ca and Mg concentrations have been detected in the margins of a mire

in the Italian Alps (Bragazza & Gerdol 1999, 2002). By far the highest Ca concentrations in the present material were seen in the eutrophic mire complex and rich fen mire types and in the limnic peat, while extremely high accumulations of Mn were found in the eutrophic mire complexes, herb-rich spruce mires and rich fens of the alkaline bedrock area, where they may have become enriched to toxic or deleterious levels as far as the forest trees were concerned on account of the ditching of the mires. Apart from manganese, the concentrations of Ca, Mg, Fe, Al and Cu were higher in the alkaline bedrock areas than in the areas characterized by acidic rock types.

The acidity of the peats studied here varied in the range pH 3.3–6.8, and their redox potentials in the range -110 - +310 mV. The metals concerned are not only biophyllic elements but they are also ones that are essential for the growth of plants, although there are also elements accumulating in mire plants that are unable to serve as nutrients and may be to a greater or lesser degree toxic. Under the acidity and redox potential conditions defined here the bivalent cations to be found in the peat are Ca²⁺, Mg²⁺, Mn²⁺, Pb²⁺and Zn²⁺, in addition to which iron is divalent (Fe²⁺) at low pH and mV values and trivalent (Fe³⁺) under oxidative and less acidic conditions. Pb is likewise divalent under reducing conditions (Pb²⁺), but can be found partly in hydroxy form (PbOH⁺) in more neutral environments. Copper is divalent (Cu²⁺) under oxidative conditions but univalent (Cu⁺) under reducing conditions, and phosphorus occurs in peat as a soluble phosphate under all the above conditions. The readily soluble elements sodium and potassium are consistently univalent cations (Na⁺ and K⁺).

The following percentages of the amounts of elements accumulating annually in Southern Finland have been shown to be transported into the catotelm of raised bogs: N 38%, K2.5%, P 18%, Na 15%, Ca 3%, Mg 51% and S 3.5%. Through the action of the mobile ions Na and S, the nutrients bound by the vegetation (K, N, P, Ca and Mg) and the increased volumes of dust deposited, high concentrations of cations accumulate in the acrotelm (Damman *et al.* 1993). The vegetation on a mire with a centre effect receives nutrients only from precipitation, material transported by winds or animals and decomposition of the surface peat, so that the mire itself can only be either ombrotrophic (e.g. the central parts of raised bogs, hummock surfaces possessing thick peat horizons) or minerotrophic. This means that the mire centre effect will be manifested through the presence of pine bog, pine fen or rich fen features (Eurola & Kaakinen 1978). It should also be remembered, of course, that an abundance of meltwater from snow will carry mineral matter with it into the lower parts of the slopes, those that form the mire margins, as seen here at Riissuo (no.

10 in Fig. 1) and Rytisuo at Siikavaara (no. 33), and that runoff water entering a mire (Rehell 1985) may induce a swamp nutrient effect. Where ombrotrophic and oligotrophic conditions scarcely differ in terms of surface peat analyses, there is a clearer difference between them in the catotelm, and the distinction between these and mesotrophic or eutrophic conditions is in most cases an obvious one, since the latter stand out best by virtue of their pH values and the amounts of Al, Mg, Ca, Mn and Fe present. As the plants take their nutrients from the water in the mire, the clearest direction of development to be seen in both the vegetation pattern and the growth figures is towards ombrotrophic conditions (see Vasander1981a and b, 1983; Lindholm & Vasander 1979; Eurola & Holappa 1984). Fe, Al, Mn, Ca, K, P and Mg concentrations are distinctly lower in ombrotrophic surface peats.

The highest levels of Fe, Ca, K, Mg, Al and P were found here in the surface peats of the minertotrophic mires, while the peat horizons of the sandy-bottomed mires contained rather less Al, Mg, K and P than those in the till-bottomed mires of either the alkaline or the acidic bedrock areas. Correspondingly, both the sandy-bottomed mires and the till-bottomed mires of the acidic bedrock area have the highest Mn concentrations. Thus ombro-oligotrophic conditions would seem to differ from minerotrophic ones in their geochemistry and not only in their mire water chemistry (Eurola & Kaakinen 1978; Tolonen & Hosiaisluoma 1978; Eurola *et al.* 1995; Tahvanainen 2004; Eurola & Huttunen 2006), while the margin and centre effects are manifested as special features of the physical properties and geochemical concentrations of the peats as well as the mire types.

The mean pH of ombro-oligotrophic peat in the mires of Canada is reported to be 3.85 (3.8–4.03) and that of minerotrophic peat 4.67 (4.49–5.13) (Wells & Zoltai 1985), values that are of almost the same magnitude as those obtained here for the respective aapa mires (3.3 and 4.5, Appendix 5). On the other hand, the mean Fe and Ca concentrations in both the ombro-oligotrophic and minerotrophic mires in Canada were lower than those in the peats of the present aapa mires, so that only Ca and Mg showed a correlation between the concentrations in the surface waters of the mire and those in the mosses (Malmer & Wallen 2006).

The peats of the herb-rich spruce mires, the peats laid down in water and those of the swampy mire types contained distinctly more sodium than the other types, while the herb-rich peats of the mire margins contained large amounts of potassium and the true spruce mires, spruce-pine mires and dwarf-shrub pine bogs had about half that amount. The low acidity and high calcium and magnesium concentrations of the eutrophic mire complexes and rich fens serve well to explain the species richness of the plant remains in the respective peats.

The lowest concentrations of phosphorus in this material are to be found in the peats of the ombrotrophic and oligotrophic mire types. Elsewhere, Terho (1976) reported that phosphorus concentrations in ash from peat samples representing mires in northern Satakunta decreased from the surface peat towards the bottom of the mire, whereas the concentrations in dried samples did not show any differences between the peat horizons. According to Aerts *et al.* (1999), the vegetation on a pine bog will make more efficient use of the available phosphorus than will a rich fen vegetation.

The trace metals Fe, Mn, Al, Cu, Zn and Pb tended to accumulate more markedly in the peat of mires involving a margin effect than in other mire types, and types in which swamp or spruce mire effects predominated showed particularly high Fe, Al, Cu, Zn and Pb concentrations. Amounts of trace elements in peat have been said to vary greatly on an areal basis on account of the mineral composition of the bedrock and may also vary spatially or with depth within a single mire (Salmi 1950, Tanskanen 1972, Yliruokanen 1980).

The correlations between element concentrations in peat ash and the physical properties of the peats concerned were the following:

<u>Phosphorus</u> (P) concentrations served best to explain the variations in a number of other elements in peats with swampy features, especially calcium but also aluminium in peats of various trophic levels and manganese in spruce-pine mires.

<u>Sodium</u> (Na) correlated positively with potassium and magnesium in particular in various mire types, but less obviously with iron, zinc and lead.

<u>Concentrations of potassium</u> (K) showed a clear correlation with magnesium and manganese in mire types with a mire centre effect and with zinc and lead in the presence of a mire margin effect.

<u>Calcium</u> (Ca) was (highly significantly) correlated with magnesium in the peat of various mire types and with iron and zinc in limnic peat.

<u>Magnesium</u> (Mg) correlated best with manganese, iron and lead concentrations in the peat of poor fens, rich fens and pine bogs, albeit with a low explanatory power.

<u>Aluminium</u> (Al) concentrations correlated with those of copper in the peats of poor fens, rich fens, spruce mires with a margin effect and mire complexes.

<u>Iron</u> (Fe) and <u>zinc</u> (Zn) showed correlations with lead in limnic peats and in the peat horizons of swampy sedge fens, swampy poor fens and rich fens.

<u>Manganese</u> (Mn) scarcely showed any correlations with other elements, the nearest relationships being with zinc in the peats of true spruce mires and with zinc and lead in rich fens.

<u>Copper</u> (Cu) correlated positively with lead in the peats of mesotrophic poor fens and eutrophic mire complexes.

<u>Zinc</u> (Zn) was correlated with lead concentrations in the peats of swampy sedge fens, rich fens, mesotrophic poor fens and herb-rich spruce mires.

<u>Lead</u> (Pb) was correlated with a number of other elements in the peats of rich fens, poor fens and also spruce mires and mire complexes.

The correlations with <u>water content</u> were negative and gave very high explanatory power values with respect to dry density, the proportion of organic matter, ash content, the proportion of amorphous matter and the degree of humification. Mäkilä (1987) found the water content of peat to correlate negatively (to a significant extent) with the degree of humification, dry density and ash content.

<u>Dry densities</u> served best to explain the positive significances of changes in the proportions of organic and amorphous matter, the degree of humification of the peat and its ash content. Correspondingly, the material of Mäkilä (1994) gave (significant) positive correlations with the degree of humification and ash content of the peat but a significant negative correlation with water content. This latter dependence was weaker in *Carex* than in *Sphagnum* peats.

The variations in the proportions of amorphous and organic matter could be explained by the degree of humification of the peat (v. Post 1922) in the case of a number of mire types, and amorphous matter had the highest explanatory power with respect to variations in organic matter. Organic matter, in turn, explained the mV and ash content values for swamps in a positive sense and the pH values of the peat in a number of mire types in a negative sense, independently of the trophic level. Mäkilä (1987) found significant positive correlations for ash content with both dry density and the degree of humification but a negative correlation with water content.

Ecological niches of mire plants

The driest peats were those containing remnants of grasses and ligneous material, whereas those formed chiefly of mosses, sedges and herbaceous plants had a water content of over 90%. It is well known, in fact, that the moisture content of peat in a natural state is over 80% of its fresh weight, but dry densities can vary considerably, largely on account of differences in ash content, the species composition of the vegetation and the degree of humification of the peat. Also, as humification advances, the proportion of amorphous material in the biomass increases. Sedge and herb-rich peats and those formed by the remains of herbaceous plants tend to have higher than average dry densities, while correspondingly these are lower than average in moss and *Eriophorum* peats. Mäkilä (1994) quotes figures of 90.8% for the mean water content of the peat in mires suitable for peat mining and 90.5 kg/m³ for dry density, having previously estimated the mean degree of humification of peat in Finland as a whole as 4.8 and the ash content as 3.6% of dry weight (Mäkilä 1987). The present results place the mean accumulation of organic matter in the peats of the area studied here at 9.3% of dry weight and the ash content at 7.1%.

The mean pH of the peat in the present mires was 4.8, with a wide standard deviation, which means that the amounts of soluble elements contained in them varied greatly. Also, the cations Ca²⁺, Mg²⁺, Mn²⁺, Pb²⁺ and Zn²⁺ were all divalent under the redox conditions encountered in these mires. In addition, the element concentrations were affected by local geological and hydrological factors and by the vegetation that had contributed to peat formation, since the geochemistry of the existing peat will have had a selective influence on the vegetation representing the recent mire type. The element concentrations in the peat ash samples (i.e. the k values), the pH, the redox potential (mV) and the Ca/Mg and Fe/Mn ratios all serve to demonstrate that various mire plants are, within certain limits and, through the medium of their concentrations in the peat ash, indicative of the geochemical composition of the bedrock and surficial deposits (Appendices 8 and 9). These indicative values can also serve to define ecologically distinct groups of mire plants, differences between substrates (hummocks, intermediate surfaces and flarks) and variations in geochemical concentrations between peats subjected to a mire margin or mire centre effect. Individual plant species reflect the geochemistry of the underlying peat better than do the main peat-forming factors (Carex, Sphagnum etc.). A plant that favours nutrient-rich habitats will not grow in ombrotrophic or oligotrophic peats, and the degree of minero-ombrotrophy will inevitably

be reflected in the Ca/Mg ratio and the redox potential in the Fe/Mn ratio. It is thus possible to some extent using selected plant species as indicators (on a scale of minimal–indifferent–maximal) to gain a rough estimate of the geochemistry of the peat in given mires and of the bedrock and surficial deposits of plant habitats in the vicinity of these mires.

The present research (for a comparison, see Kotilainen 1927) showed that markedly acidophilic plant species occur in soils with a pH in the range 3.34–3.99 (Appendices 8 and 9). Plants that have adapted to highly acidic conditions include *Dicranum polysetum*, *Polytrichum strictum*, *Sphagnum capillifolium*, *Sphagnum compactum*, *Sphagnum cuspidatum*, *Sphagnum fuscum*, *Sphagnum magellanicum*, *Sphagnum tenellum*, Hepaticae, *Calluna vulgaris*, *Chamaedaphne calyculata*, *Rubus chamaemorus*, *Vaccinium spp.*, *Vaccinium microcarpum*, *Vaccinium uliginosum*, *Ledum palustre*, *Salix caprea*, *Dactylorchis maculata*, *Carex globularis*, *Carex pauciflora*, *Eriophorum vaginatum*, *Trichophorum caespitosum* and *Cristatella mucedo*, while indicators of practically neutral peat conditions, pH >6, in addition to water plants, are *Tomentyphnum nitens*, *Calliergon giganteum*, *Calliergon megalophyllum*, *Warnstorfia trichophylla*, *Calamagrostis* spp., *Filipendula ulmaria*, *Pedicularis palustris*, *Rubus saxatilis* and *Sphagnum contortum*.

The more or less indifferent species indicative of meso-eutrophic peats with a pH in the range 5–6 number well over 80. These have been studied in North America in peats located above the groundwater table in mires (Gorham & Janssens 1992), where the pH has been somewhat higher than for the *Sphagnum* species described in the present material. On the other hand, the analyses of the accumulation of heavy metals falling onto *Sphagnum* mosses in Finnish mires performed for the Finnish Forest Research Institute by Lippa & Kubin (1998) are best suited for mapping the movements of airborne pollutants rather than for studying the geochemistry of mires.

Ore-critical sites in the area

The parts of the present area that are of interest for ore prospecting can perhaps be distinguished most clearly on the basis of high copper, lead and zinc concentrations in peat ash samples from sites with an alkaline bedrock (Table 10). These peats usually also have high iron and manganese concentrations, and alkaline bedrock areas possess large amounts of calcium. In the present material increased concentrations of copper were observed in the following mires: Loiraskangas in Utajärvi, Vaarajänkkä in Tornio, Ulkupuro in Suomussalmi, Takasuo in Ylikiiminki, Siikavaara in

Puolanka and Ruostesuo in Kiiminki. Similarly, somewhat elevated levels of lead were found in Purkuputaansuo in Kuusamo and Pilpasuo in Oulu, and high levels of zinc in Rautuojanaapa in Simo, Riissuo in Posio, Pilpasuo in Oulu, Takasuo in Ylikiiminki, Mustinsuo in Kuhmo, Päijännesuo in Muhos, Siikavaara in Pudasjärvi and Säynäjäsuo and Ulkupuro in Suomussalmi. These same areas, most notably Tornio-Simo, Ylikiiminki-Kiiminki-Oulu-Muhos, Utajärvi and Kuhmo-Suomussalmi, also showed relatively high levels of several heavy metals in their peat horizons.

6. SUMMARY AND CONCLUSIONS

The western end of the globally significant taiga forest belt of northern Eurasia is climatically sufficiently damp and cool that it favours the formation of aapa mires, particularly in the land uplift areas of Finland, the northern inland parts of Scandinavia and Russian Karelia. Primary development of aapa mires was most common on the coastal plains of the Bothnian Bay, where peat formation commenced on the strength of a sedge and herbaceous vegetation. Then, as the climate became wetter and colder, the peat horizons in the mires became thicker as a consequence of the availability of *Sphagnum* mosses for peat formation.

This work has made use of pollen analyses and previously published research to trace the development of the mires and the thickening of their peat horizons in a defined area of Northern Finland in relation to the spread of spruce (*Picea*) to the area. Radiocarbon dates were obtained for three sites and a total of 20 pollen diagrams were produced for 16 mires. Mire deposits had accumulated in the supra-aquatic part of the region, i.e. the geologically "old" terrain, and to some extent in the areas below the highest shoreline, before the arrival of spruce, and these were followed later by younger mire deposits and surface horizons of *Sphagnum* peat superimposed on the older mires.

As a consequence of variations in the topography of the region, its hydrology and geology, a peatland environment evolved that comprised numerous mire types, each covered by a vegetation appropriately adapted to its trophic status. In the course of the mire succession a stratigraphy developed at each site in which different stages of development, or mire types, could be defined on the basis of plant and macrofossil remains together with the physicochemical properties of the peat. It was then possible to combine ecologically similar mire types to reduce the total number to 14 plus a category of limnic peat, laid down directly in water. Each mire type has a distinct

vegetation that has given rise to peat that has physical and chemical properties of its own, with characteristic correlations between them.

As decomposition, or "humification", of the peat has proceeded, the ratio of recognizable plants and fragments in the peat to unrecognizable, more or less decomposed remnants is seen to have altered so that the proportion of the completely decomposed amorphous <0.125 mm fractions within the biomass increases as the peat becomes more humified. This also leads to an enrichment of slowly decomposing lignin (L) and fibrous plant remains containing waxes and resin, such as those of dwarf shrubs (N), *Eriophorum* (ER) and *Equisetum* (EQ). The progress of decomposition as described here is based on the percentages of the plants concerned in peats at different stages in decomposition, H₁₋₁₀ (v. Post 1922). The mean degree of humification of the peat samples studied in this work is "poorly decomposed" or "decomposed to some extent", whereupon the amorphous fraction makes up almost a half of the peat, 47.2%.

Mire bases that differ substantially in their physical properties can develop more or less similar minerotrophic or ombrotrophic peat horizons, except, that is, for those located in alkaline bedrock areas where the pH of the peat is only marginally acidic. Element concentrations in the peats are nevertheless quite different in the cases of sandy-bottomed mires and mires located in acidic or alkaline bedrock areas. Also, ombrotrophic conditions will stand out in terms of the geochemistry of the peat ash as well as the water chemistry of the mires.

Since the vegetation on a mire will be ecologically well adapted to the trophic level of its substrate, the plant composition of the peat in the acrotelm normally conforms well to the results of plant coverage analyses performed on the mire vegetation. Organic material from the biomass of this mire vegetation will account for an average of 7.4–12% of the fresh weight of the peat, with higher values reached on the poorer mire types than on the more luxuriant rich fens, where mineralization is more efficient. Mean dry densities range from a minimum of 48 kg/m³ in *Sphagnum fuscum* bogs to a maximum of 116 kg/m³ in the peat of true spruce mires, while the highest accumulations of dry matter without ashing are to be found at the meso-eutrophic mire type stage.

Element concentrations in mire types with a mire margin effect are distinctly higher than those in types with a mire centre effect, and the nature of the base gives rise to some variation in the physical properties as well as in the moisture content of the peat and its redox potential (mV). The

correlations between the various properties of the peats in each mire type differ from the correlations in the other types, so that a statistical analysis based on the total data alone would show a highly significant correlation, either positive or negative, between almost any of the properties.

The peats containing large amounts of ligneous matter were slightly drier than average, since the mean of the water content values indicated by the various mire plants is in the region of 90%. The mean densities of the ligneous, sedge and herbaceous peats are all higher than the mean for all the peat samples, while the lowest dry densities were recorded for liverwort, *Eriophorum* and dwarf-shrub peats.

Ash content also varied greatly, so that a wide standard deviation existed in the densities of the various peats. The high Cu, Pb and Zn concentrations in the peat ash samples point to interesting sites for ore exploration in the Tornio-Simo, Kiiminki-Ylikiiminki-Oulu-Muhos, Utajärvi and Kuhmo-Suomussalmi areas in particular.

The present material and the findings yielded by it, when combined with earlier published macrosubfossil and pollen data, offer an opportunity for reconstructing the vegetation history of the area concerned and the stages in the development of its forests with greater precision than previously. Furthermore, it would be possible to estimate the state and quality of the mire environments of the area on the basis of mean values of the various mire plants as ecological indicators. Another potential tool for studying the region's mire ecology would be a model of the succession of mire types based on the pH and water content of the peat horizons. Additional tools suitable for use in the study of mire ecology would include the functions depicting the decomposition of mire plants and the accumulation of debris from them, the data on the biomass produced at the various stages in the development of the mire types, the proportions of the amorphous fraction in peats and the indicator values of given mire plants with respect to the ecology of their growing sites.

The results presented here allow the following conclusions to be drawn:

1. All the peat horizons of the mires in the coastal areas of Northern Ostrobothnia and the younger ones further inland, together with the majority of the horizons of the older inland thick-peat mires, have formed since the spread of spruce (*Picea*) to the area, i.e. since

about 5700 BP cal in its eastern parts and 500–1000 years later in the central and western parts.

- At the early stages in mire formation the peat consisted mainly of debris from a *Carex* vegetation (C), ligneous material (L) and the remains of dwarf shrubs (nanolignin, N), *Sphagnum* mosses (S) and Bryidae(B), with only a small proportion of herbaceous plants.
- 3. A distinct peak in the occurrence of *Sphagnum* mosses can be observed in the lower horizons of the deep thick-peat mires, marking the cool, moist period that preceded the climatic optimum. Another possible explanation for the scarcity of *Sphagnum* mosses in the middle parts of the peat profiles could be that the peat was better humified during the climatic optimum so that there was much less visible evidence of *Sphagnum*.
- 4. The cooling of the climate and the increase in humidity led to a pronounced increase in *Sphagnum* in the acrotelm, with the proportion of the total thickness of the peat containing evidence of this effect increasing towards the coast. Thus the youngest mires in the coastal strip may consist almost entirely of *Sphagnum* peat, while in some places further inland the acrotelm may consist of a *Sphagnum* layer almost a metre thick.
- 5. The proportions of the various plant remains in the peat tend to be dependent on the sampling depth, enabling the contribution of particular species to peat formation to be estimated as a function of depth in the mire.
- 6. A set of mire types which are distinct in their plant species composition and the physical and geochemical properties of their peat horizons can be proposed on the basis of ecological similarities between recent and subfossil mires. This process of combination and generalization will work best when the plants are determined to species and their proportions in the peat assessed taking into account changes in the physical properties of the peats, the geochemical composition of the peat ash and the ratios between the element concentrations. In this way a set of more than 80 mire types was reduced to 15 generalized types.
- 7. The whole peat stratigraphy, or mire type succession, includes more horizons in aapa areas with a mire centre effect than it does in areas with a margin effect, even to the extent that thin-peat horizons with a mire margin effect may have been formed during a single phase of mire development, although it is also the case that mire types with a margin effect are more apt to form a new mire type than are those with a centre effect. As a peat horizon gains in thickness the surface vegetation on the mire will alter (succession), just as the

moisture and nutrient balances of the peat will alter and its pH will decline. Progressive succession features of this kind can be seen in the deposition of peat both at the stage of primary mire formation and during paludification of forest land. The normal pattern is for the vegetation on a mire to revert to a lower trophic level as the peat deposit becomes thicker.

- 8. The above mire type succession is clearly visible in the water content of peat horizons and their pH. The mainstream of a progressive succession is from eutrophy via mesotrophy to oligo-ombrotrophic conditions, although deviant patterns can be seen in the aapa mires of both the coastal strip and the eastern part of the area studied here, in which rapid changes occur and an entirely new mire type emerges. The mire succession nevertheless mostly operates either progressively, towards a poorer nutrient level, or regressively, towards wetter conditions. Other possibilities include a stable situation in which no succession occurs or an oscillation between alternate periods of drying out and flooding.
- 9. The decomposition of mire plants follows certain mathematical models calculated on the basis of the present data regarding the degrees of humification of the peat horizons (von Post 1922) and the proportions of the plants and their remains in the peat samples. Once these functions have been normalized with respect to the numbers of samples, they enable the degree of humification of a peat to be estimated if the percentage of a given plant is known, or *vice versa* (Tables 6–8).
- 10. The proportion of the amorphous <0.125 mm fraction in the peat was found to increase linearly ($r^2 = 0.9914$) by about 10% with each degree of humification on the von Post (1922) scale.
- 11. The traditional classification of peats in terms of the estimated amounts of amorphous material (A) and plants or remains of *Carex* (C), *Sphagnum* (S) and Bryales (B) gives a more accurate picture of their true composition, as classifications of highly humified peats in terms of their composition can easily become distorted if they are based only on the amounts of the slowest of the recognizable plants to decompose and do not take account of the largest component in relative terms, the amorphous material, which will already have formed from the more easily decomposable plants. This source of error can be reduced by using a microscope to identify possible plant remains in the best humified peats.

- 12. Ombrotrophic peats were found to differ from minerotrophic ones on account of their high mV (~300) and fibre content (80%) and also their low pH, ash content, dry densities and element concentrations. Also, although the nature of the bedrock will have a minor influence on the peat geochemistry of otherwise similar mire types, these mire types will always be distinguishable one from another by their element concentrations regardless of whether they occur in alkaline or acidic bedrock areas.
- 13. Trophic differences beween peats will be reflected in differing Fe, Ca, Al, Mg and P concentrations, while in the case of recent mire types the influence of the vegetation on the surface peat horizons will mean that element concentrations are higher than in the lower parts of the same mire type.
- 14. The peats of mire types incorporating a centre effect are less well humified and contain little amorphous material. They have a low ash content, dry density and pH and their element concentrations are low, but their water content and mV values are high.
- 15. The mean physical properties of peats and the element concentrations in their ash can be used to construct a set of boundary values for use as indicators of mire ecology that could be of assistance when drawing up environmental reports concerned with mire areas (Appendices 9 and 10).
- 16. Extremely high heavy metal concentrations in peat ash may be treated as clues to areas of possible interest for ore exploration.

7. ACKNOWLEDGEMENTS

The research reported on here was carried out in the Department of Geology, University of Oulu, and was inspired by discussions held with Emeritus Professor Seppo Eurola, to whom I would extend my most sincere thanks. Especial thanks also go to Prof. Vesa Peuraniemi, who supervised the later stages of the work, and to Emeritus Prof. Risto Aario, Prof. Juha-Pekka Lunkka, Dr. Lars Forsström, Dr. Leo Koutaniemi, Dr. Kimmo Tolonen, Research Professor Sheila Hicks and Erkki Eijärvi, Phil.Lic., who contributed innumerable excellent and constructive comments. I thank all these people warmly for their help and advice, and for the interest that they have shown in my research.

The other members of our research team at various times have been Antti Huttunen, Phil.Lic., at the initial fieldwork stages, Juhani Paajala, M.Sc., in the fieldwork and laboratory work, and the

laboratory assistants Anneli Raitamaa, Anna-Liisa Väänänen, Anna-Kaisa Hätälä, Helena Kokkonen, Sari Liukkonen, Sirpa Roininen, B.Sc., and the laboratory technician Timo Kalenius. Eira Hiukka, M.Sc., carried out the majority of the pollen and macrosubfossil analyses, Eija-Liisa Aronpää, B.Sc., computer engineer Petri Tähkävuori, Jukka Mikkola, B.A., and laboratory engineer Seppo Kaakinen (deceased) helped with the processing of the results. The laboratory supervisor Kristiina Karjalainen helped with the drawing of the maps and figures. This whole work was translated into English for this edition by Malcolm Hicks, M.A. I am pleased to be able to thank all these people for their collaboration and for the work that they have put in to make the original version and this present publication possible.

Supplementary material for this work was obtained through collaboration with Dr. Antti Rönkä, Sakari Rehell, Phil.Lic., and Leena Miettinen, M.A., to whom I also extend my thanks.

Thanks also go to the official reviewers of my thesis, Dr. Markku Mäkilä, and Dr. Harry Uosukainen, for the many expert comments, instructions and corrections that they provided, and also to Prof. Seppo Eurola for checking through the manuscript and making appropriate corrections.

The Tauno Tönning Foundation is gratefully acknowledged for a grant that enabled me to embark on this work.

I would naturally like to thank all my colleagues for the friendly encouragement and support they gave me in the course of the years I spent on this research. And finally I wish to express my heartfelt thanks to my wife Eila, my family and all those close to me for the enthusiasm and encouragement which they showed towards my work, especially the excursions to the mires.

Oulu, November 2020, Kauko Holappa

8. BIBLIOGRAPHY

Aaby, B. 1976. Cyclic climatic variations in climate over the past 5500 yr reflected in raised bogs. *Nature* 263, 281–284.

Aario, L. 1932. Pflanzentopografische und paläogeographische Mooruntersuchungen in N-Satakunta. *Fennia* 55, 179 p.

Aario, R. 1984. The origin and properties of morainic landforms in northern Finland, with special reference to their potential range of use. Määräaikainen loppuraportti Suomen Akatemian tutkimusprojektista, 04–114. Oulu (in Finnish).

Aario, R. & Forsström, L. 1979. Glacial stratigraphy of Koillismaa and North Kainuu, Finland. *Fennia* 157, 49 p.

Aartolahti, T. 1965. Oberflöchenformen von Hochmooren und ihre Entwicklung in Sudwest-Häme und Nord-Satakunta. *Fennia* 93, 268 p.

Aerts, R., Verhoeven, J. T. A. & Whigham, D. F. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. *Ecology* 80, 2170–2181. Oct.

Alloway, B. J. 1992. Land Contamination and Reclamation. In: Harrison, R. M. (ed.) *Understanding our Environment*. An introduction to Environmental Chemistry and Pollution, 137–163.

Alloway, B. J. 1995a. Soil processes and the behaviour of metals. In: Alloway, B. J. (ed.) *Heavy Metals in Soils.* 2nd edition. Glasgow. Blackie Academic & Professional, 11–37.

Alloway, B. J. 1995. Heavy metals in soils. Glasgow. Blackie Academic & Professional, 28–305.

Andersson, G. 1898. Finlands torfmossar och fossila Kvartär ora. Bulletin de la Commission Geologique de Finlande 8, 210 p.

Anonyymi, 1972. Turveluokittelu. Suo 23, 117–120.

Arnell, S. 1981. Illustrated Moss Flora of Fennoscandia I. *Hepaticae, Botanical Society of Lund*. Stockholm, 308 p.

Auer, V. 1923. Suotutkimuksia Kuusamon ja Kuolajärven vaara-alueilta. *Communicationes Instituti Forestalis Fenniae* 6, 368 p.

Auer, V. 1924. Eräitä vastaisia tehtäviä suotutkimuksen alalla Suomessa. Über einige künftige Aufgaben der Moorforschung in Finnland. *Communicationes Instituti Forestalis Fenniae* 8, 55 p.

Aulio, K. 1980. Nutrient accumulation in Sphagnum mosses. A multivariate summarization of the mineral element composition of 13 species from an ombrotrophic bog. *Annales Botanici Fennici* 17, 307–314.

Backman, A. L. 1919. Torvmarksundersökningar i mellersta Österbotten. *Acta Forestalia Fennica* 12, 190 + 22 p.

Backman, A. L. 1935. Die nördlichsten Fossilfunde von Najas flexilis und Carex pseudocyperus in Finnland. *Society Scientific Fennia* V3, 9 p.

Backman, A. L. 1935. Smittelmossen, en förhistorisk fiskeplats I mellersta Österbotten. *Fennia* 61, 26 p.

Bailey, R. G. 2003. Ecological Climate Classification. USDA Forest Service, Inventory & Monitoring Institute. Discussion Paper, Draft of 11/21/03, 3 p.

Barber, K. E., Chambers, F. M. & Maddy, D. 2004. Late Holocene climatic history of northern Germany and Denmark: peat macrofossil investigations at Dosenmoor, Schleswig-Holstein, and Svanemose, Jutland. *Boreas* 33, 132–144.

Bayley, S. E., Thormann, M. N. & Szumigaalski, R. 2005. Nitrogen mineralization and decomposition in western boreal bog and fen peat. *Ecoscience* 12, 455–465.

Beijerinck, W. 1947. Zadenatlas der Nederlandsche Flora. H. Veenman & Zonen, Wageningen.

Berggren, G. 1969. Atlas of seeds. Part 2, *Cyperaceae*, Berlingska Boktryckeriet, Lund, 68 p, 39 plates.

Berglund, B. E., Birks, H. J. B., Ralska-Jasiewiczowa, M. & Wright, H. E. (eds) **1996.** Palaeoecological events during the last 15000 years: regional syntheses of palaeoecological studies of lakes and mires in Europe. John Wiley & Sons Ltd, 764 p.

Beschel, R. E. 1959. The copper swamp in the Aboushagen woods, north Sackville, N.B. Summary for the Maritime excursion after the 9th International Botanical Congress in Montreal, September 7, 1959, mimeographed.

Bgatov, V. I., Matukhina, V. G., Grigor'eva, T. R., Altukhov, V. M. & Rusanov, D. K. 1986. The peaty Vivianites and Vivianite peats of the Suzun area in Novosibirsk. *Geologiya i Geofizika* 27, 51–55.

Birks, H. J. B. & Birks, H. H. 1980. Quaternary Palaeoecology. Edward Arnold, 289 p. Blytt, A. 1886. On variations of climate in the course of time. *Christiania Videnskab-Selskab Forhandlinger* 6. **Boelter, D. H. 1969.** Physical properties of peats as related to degree of decomposition. *Proceedings - Soil Science Society of America* 33, 606–609.

Bourg, A. C. M. 1988. Metals in aquatic and terrestrial systems: sorption, speciation and mobilization. In: Salomons, W. & Förstner, U. (eds.) *Environmental impact and management of mine tailings and dredged materials*, Springer Verlag, 3–32.

Bradis, E. M. & Andrienko, T. L. 1972. Bogs in Ukrainian SSR. *Proceedings of the 4th International Peat Congress*, Otaniemi, 41–48.

Bragazza, L. & Gerdol, R. 1999. Hydrology, groundwater chemistry and peat chemistry in relation to habitat conditions in a mire on the South-eastern Alps of Italy. *Plant Ecology* 144, 243–256.

Bragazza, L. & Gerdol, R. 2002. Are nutrient availability and acidity-alkanity gradients related in *Sphagnum*-dominated peatlands? *Journal of Vegetation Science*. Article 13, 473–482.

Brant, A. L. 1948. Über die Entwicklung der Moore im Küstengebiet von Süd-Pohjanmaa am Bottnischen Meerbusen. *Annales Botanici Societatis Zoologicae-Botanicae Fennicae Vanamo* 23, 134 p.

Cajander, A. K. 1913. Studien über die Moore Finnlands. *Acta Forestalia Fennica* 2. 208 p.

Charman, D. 2002. Peatlands and environmental change. J. Wiley & Sons, London & New York, 301 p.

Charman, D. J., Booth, R. K., Mäkilä, M. & Sirin, A. 2007. Peatlands and past climate change. In: Parish, F., Sirin, A., Charman, D., Joosten, H., Minaeva, T. & Silvius, M. (eds) *Assessment on peatlands, biodiversity and climate change.* Global Environment Centre, Kuala Lumpur and Wetlands International Wageningen, 4.

Chuan, M. C., Shu, G. Y. & Liu, J. C. 1996. Solubility of heavy metals in a contaminated soil: Effects of redox potential and pH. *Water, Air, and Soil Pollution* 90, 543–556.

Clymo, R. S. 1978. A model of peat bog growth. In: Heal, O. W., Perkins, D. F., & Brown, W. M. (eds) *Production Ecology of British Moors and Montane Grassland.* Springer-Verlag, Berlin, 187–223.

Clymo, R. S. 1983. Peat. In: Gore, A. J. P. (ed.) *Ecosystems of the world 4 A, Mires: swamp, bog, fen and moor.* General studies. Elsevier Scientific Publishing Company. Amsterdam-Oxford-New York, 159–224.

Damman, A. W. H. 1978. Distribution and movement of elements in ombrotrophic peat bogs. *Oikos* 30, 480–495.

Damman, A. W. H. 1979. Geographic patterns in peatland development in eastern North America. In: *Proceedings of the International Symposium on Classification of Peat and Peatlands*, 42 – 57. Hyytiälä, Finland 1979.

Damman, A. W. H, Tolonen, K. & Sallantaus, T. 1993. Element retention and removal in ombrotrophic peat of Häädetkeidas, a boreal Finnish peat bog. *Suo* 43, 137–145.

Donner, J. 1965. The Quarternary of Finland. In: Rankama, K. *The Quarternary* I, 199–272. New York.

Donner, J. J. 1978. The dating of the levels of the Baltic Ice Lake and the Salpausselkä moraines in South Finland. *Societas Scientiarum Fennica, Commentationes Physico-Mathematicae* 48, 11–38.

Elomaa, P-L. 1981. Suokasvillisuuden ja turpeen käytöstä malminetsinnässä. *Suo* 32, 45 – 52.

Eronen, M. 1974. Late Weichselian and Holocene shore displacement in Finland. Shoreline and Isotasy. In: Dawson, A. C. & Smith, D. B. (eds) *Academic Press,* London. Institute of British Geographers, 183–207.

Eronen, M. 1979. The retreat of pine forest in Finnish Lapland since the Holocene climatic optimum: a general discussion with radiocarbon evidence. *Fennia* 157, 93–114.

Eronen, M. 1983. Late Weichselian and Holocene shore displacement in Finland. In: Smith D. E. & Dawson, A. G. (eds) *Shoreline and Isostacy.* Institute of British Geographers, Special publication 16, *Academic Press,* London, 183–207.

Eronen, M. 1996. Climatic changes during the Holocene, 37–52. In: Lappalainen, E. (ed.) 1996. *Global Peat Resources*. International Peat Society, Finland

Eronen, M. & Zetterberg, P. 1996. Climatic Changes in Northern Europe since Late Glacial Times, with special reference to dendroclimatological studies in northern Finnish Lapland. *Geophysica* 32, 35–60.

Eronen, M., Glückert, G., Hatakka, L., van der Plasshe, O. van der Plicht, J. & Rantala, P.
2001. Rates of Holocene isostatic uplift and relative sea-level lowering of the Baltic in SW
Finland based on studies of isolation contacts. *Boreas* 30, 17–30.

Erviö, R. 1989. Development of the content of extractable macro- and microelements in arable soil of Northern Finland. *Symposium on Environmental Geochemistry in Northern Europe*. Geological Survey of Finland, Chemistry Department. Rovaniemi Finland October 17 – 19. 1989.

Eurola, S. 1962. Über die regionale Einteilung der südfinnischen Moore. *Annales Botanici Societatis Zoologicae-Botanicae Fennicae Vanamo* 33, 243 s.

Eurola, S. 1992. Suokasviopas. Oulun yliopisto, Oulun yliopiston sarjajulkaisu. *Oulanka Reports* 11, 205 s.

Eurola, S. 1992. Suon synty. In: Eurola, S. & Huttunen, A. (eds.) Suoekologian seminaari. *Oulun yliopiston Kasvitieteen laitoksen monisteita*. No 47, 2–15.

Eurola, S. 1999. Kasvipeitteemme alueellisuus. Oulanka Biological Station, University of Oulu. *Oulanka Reports.* 22, 118 s.

Eurola, S., Aapala, K., Kokko, A. & Nironen, M. 1991. Mire type statistics in the bog and southern aapa mire areas of Finland (60–66°N). *Annales Botanici Fennici* 28, 15–36.

Eurola, S., Hicks, S. & E. Kaakinen, E. 1984. Key to Finnish mire types. In: Moore, P.D. (ed.) *European Mires, Academic Press,* London (1984), 11–117.

Eurola, S. & Holappa, K. 1984. Luonnontilaisten soiden ekologia ja soiden metsänojituskelpoisuus. *Metsäntutkimuslaitoksen tiedonantoja* 148, 90–108.

Eurola, S. & Huttunen, A. 2006. Mire plant species and their ecology in Finland. In: Lindholm, T. & Heikkilä, R. (eds) Finland - land of mires. *The Finnish Environment* 23/2006, 127–144.

Eurola, S., Huttunen, A. & Kukko-oja, K. 1995. Suokasvillisuusopas. *Oulanka Reports* 14, 85 s.

Eurola, S. & Kaakinen, E. 1978. Suotyyppiopas. WSOY, 88 s.

Eurola, S. & Vorren, K.-D. 1980. Mire zones and sections in North Fennoscandia. *Aquilo Series Botanica* 17, 39–56.

Fogelberg, P. & Seppälä, M. 1986. 122 Geomorfologia. Kartografinen suunnittelu. In: Alalammi, P., Fogelberg, P. & Seppälä, M. (eds) *Suomen Kartasto vihko 121–122. Maanpinnan muodot, Atlas över Finland häfte 121–122 – Atlas of Finland folio 121–122.*

Maanmittaushallitus, Suomen Maantieteellinen Seura. Maanmittaushallituksen karttapaino, Helsinki, 19 p.

Fraser, D. C. 1961. A syngenetic Copper deposit of recent age. *Economic Geology* 56, 951–962.

Fraser, D. C. 1961. Organic sequestration of Copper. *Economic Geology* 56, 1063–1078.

Frenzel, B. 1983. The developing mire. In: Gore, A. J. P. (ed.) *Mires: Swamp, Bog, Fen and Moor, Ecosystem of the World*, 4 A, 35–65.

Gordon, A. D. & Birks, H. J. B. 1972. Numerical methods in Quaternary palaeoecology I. Zonation of pollen diagrams. *New Phytologist* 71, 961–79.

Gorham, E. & Janssens, J. A. 1992. The paleorecord of geochemistry and hydrology in northern peatlands and its relation to global change. *Suo* 43, 117–126.

Granlund, E. 1932. De svenska högmossarnas geologi. *Sveriges Geologiska Undersökning årsbok* 26, 1–193.

Grosse-Brauckmann, G. 1972. Über pflanzliche Makrofossilien mitteleuropäischer Torfe. I. Gewebereste krautiger Pflanzen und ihre Merkmale. *Telma* 2, 19–55.

Grosse-Brauckmann, G. 1974b. Zum Verlauf der Verlandung bei einem eutrophen Flachsee (nach quartärbotanischen Untersuchungen am Steinhuder Meer). I: Heutige Vegatationszonierung, torfbildende Pflanzengesellschaften der Vergangenheit. *Flora* 163, 179–229.

Grosse-Brauckmann, G. 1976. Zum Verlauf der Verlandung bei einem eutrophen Flachsee (nach quartärbotanischen Untersuchungen am Steinhuder Meer). II: Die Successionen, ihr Ablauf und ihre Bedingungen. *Flora* 165, 415–455.

Grosse-Brauckmann, G & Puffe, D. 1965. Über Zerzetsungsprosesse und Stoffbilanz im wachenden Moor. Ber. VIII Int. Bodenkundl. Kongr. in Bukarest 1964, 635 – 648.

Harmsen, K. 1977. Behaviour of heavy metals in soils. *Agricultural Research Reports* 866, 171 p.

Harrison, S. P., Yu, G. & Tarasov, P. E. 1996. Late Quarternary Lake-Level Record from Northern Eurasia. *Quarternary Research* 45, 138–159.

Hartikainen, H. 1996. Maaperä. In: Heinonen, R., Hartikainen, H., Aura, E., Jaakkola, A. & Kemppainen, E. (eds) *Maa, viljely ja ympäristö*. Porvoo. WSOY, 9–89.

Havas, P. 1961. Vegetation und Ökologie der ostfinnischen Hangmoore. Ann. Bott. Soc. Vanamo 31, 188 s.

Havas, P. 1963. Suovesien elektrolyyttien määrästä johtokyvyn mittausten perusteella. Aquilo, Ser. Botanica, Tom 1. Societas Amicorum Naturae Ouluensis, 11 p.

Havas, P. 1999. Pohjoinen luontomme/Northern nature. <u>www.oulu.fi/northnature/</u> Northnature.html

Heal, O. W., Latter, P. M. & Howson, G. 1978. A study of the rates of decomposition of organic matter. In: Heal, O. W., Perkins, D. F. & Brown, W. M. (eds) *Production Ecology of British Moors and Montane Grasslands*. Springer-Verlag, Berlin, 136–159.

Heathwaite, A. L., Eggeismann, R., Gottlich, K. H. & Haule, G. 1990. Ecohydrology, mire drainage and mire conservation, 417–484. In: Heathwaite, A. L. (ed.) *Mires: Process, Exploitation and Conservation*. John Wiley and Sons, New York.

Heathwaite, A. L., Burt, T. P. & Trudgill, S. T. 1993a. Overview, The nitrate issue. In: Burt, T. P., Heathwaite, A. L. & Trudgill, S. T. (eds) *Nitrate: Processes, Patterns and Management*, Wiley, Chichester, 3–21.

Heikkilä, R. 1999. Human influence on the sedimentation in the delta of the river Kyrönjoki western Finland. *Monographs of the Boreal Environment Research* 15. Finnish Environment Institute, Helsinki, 64 s.

Heikkinen, P. 2000. Haitta-aineiden sitoutuminen ja kulkeutuminen maaperässä. Espoo, *Geologian tutkimuskeskus. Tutkimusraportti* 150, 74 s.

Heikurainen, L. 1960. Metsäojitus ja sen perusteet. Porvoo-Helsinki, 378 s.

Heikurainen, L. & Huikari, O. 1952. Turvelajin mikroskooppinen määrittäminen. *Communicationes Instituti Forestalis Fenniae* 40, 21–34.

Herlin, R. 1896. Paläontologisk-växtgeografiska studier i norra Satakunta. Vetenskapliga Meddelanden af Geografiska Föreningen i Finland 3.

Hesselman, H. 1924. Studier över salpeterbildningen i naturliga jordmåner och dess betydelse I växtekologiskt avseende. Meddelanden från Statens Skogsförsöksanstalt, H. 13–14. 1916–1917. Bd I. Stockholm. In: Waren, H. Untersuchungen über die botanische Entwicklung der Mooer mit berücksichtigung der chemischen Zusammensetzung des Torfes. *Suomen suoviljelysyhdistys. Tieteellisiä julkaisuja* 5, 95 s.

Hicks, S. 1975. Variations in pollen frequency in a bog at Kangerjoki, N. E. Finland, during the Flandrian. *Comm. Biol. Soc. Sci. Fenn.* 80, 28 p.

Hicks, S. 1977. Modern pollen rain in Finnish Lapland investigated by analysis of surface moss samples. *New Phytologist* 78, 715–734.

Hicks, S. 1985. Problems and possibilities in correlating historical/archaeological and pollen-analytical evidence in a northern boreal environment: an example from Kuusamo, Finland. *Fenn Archaeol* 2, 51–84.

Hicks, S. 1988a. Palynological evidence for the occupation of Hailuoto (in Finnish). In: Julku, K. & Satokangas, R. (eds) Hailuodon keskiaika. *Studia Historica Septentrionalia* 15, Rovaniemi, 33–88 (English summary)

Hicks, S. 1988b. The representation of different farming practices in pollen diagrams from northern Finland. In: Birks, H. H., Birks, H. J. B., Kaland, P. E. & Moe, D. (eds) The cultural landscape, past, present and future. *Cambridge University Press*, Cambridge, 189–207

Hicks, S., Ammann, B., Latalowa, M., Pardoe, H. & Tinsley, H. 1996. European Pollen Monitoring Programme: *Project Description and Guidelines*. University of Oulu, 28 p.

Holappa, K. 1976. Utajärven Järvenpäänsuon kehityksestä ja stratigrafiasta. Oulun yliopiston kasvitieteen laitos. Pro gradu, 92 s.

Huikari, O. 1956. Primäärisen soistumisen osuudesta Suomen soiden synnyssä. *Communicationes Instituti Forestalis Fenniae* 46, 79 s.

Huttunen, A. 1984. Kansainvälinen suokasvillisuuden luokittelusymposio Suomessa. Suo 35, 22 s.

Hämet-Ahti, A. T. & Jalas, J. 1968. Vegetation zones and their sections in northwestern Europe. *Annales Botanici Fennici* 5, 169–211.

Hänninen, P. 1992. Application of ground penetrating radar and radio wave moisture probe techniques to peatland investigations. *GTK. Bulletin* 361, 71 p.

Hänninen, P. & Lappalainen, E. 1987. Maatutkan ja suosondin soveltuvuus turvevarojen määrän ja laadun selvittämiseen. *Geologian tutkimuskeskus, Maaperäosasto, Turveraportti* 202, 32 s.

Immirzi, C. P., Maltby, E. & Clymo, R. S. 1992. The Global Status of Peatlands and their Role in Carbon Cycling. A Report for Friends of the Earth by the Wetland Ecosystem Research Group, Department of Geography, University of Exeter. *Friends of the Earth*, London.

Ingram, H. A. P. 1978. Soil layers in mires: function and terminology. *Journal of Soil Science* 29, 224–227.

Ingram, H. A. P. 1983. Hydrology. In: Gore, A. J. P. (ed.) *Mires: Swamp, Bog, Fen and Moor, Ecosystems of the World 4A*. Elsevier, New York, 67–158.

Janssens, J. A., Hansen, B. C. S., Glaser, P. H. & Whitlock, C. 1992. Development of a raised bog complex, 189–221. In: Wright Jr., Coffin, H. E., B. A. & Aaseng, N. E. (eds) The Patterned Peatlands of Minnesota. *University of Minnesota Press*, Minneapolis, MN.

Ivanov, K. E. 1981. Water Movement in Mirelands. *Academic Press*, London, UK. (translated by A. Thompson and H.A.P. Ingram).

Jauhiainen, J., Vasander, H. & Silvola, J. 2004. Nutrient concentration in shape Sphagna at increased N-deposition rates and raised atmospheric CO₂ concentrations. *Plant Ecology*. Volume 138, Number 2 / October. Springer Netherlands, 149–160.

Jeglum, J. K. 1971. Plant indicators of pH and water level at Candle Lake, Saskatchewan. *Canadian Journal of Botany* 49, 1661–1676.

Johansson, P. & Kujansuu, R. 2005. Deglasiaatio. In: Johansson, P. & Kujansuu, R. (eds) 2005. Pohjois-Suomen maaperä: Maaperäkarttojen 1:400 000 selitys. *Geologian tutkimuskeskus*, 236 p. Summary: Quaternary deposits of Northern Finland, Explanation to the maps of Quaternary deposits 1:400 000.

Jonasson, I. R., Jackson, E. L. & Sangster, D. F. 1983. A Holocene Zink orebody formed by supergene replacement of mosses. *Journal of Geochemical Exploration* 18, 189–194.

Kaakinen, E. 1980. Yhteispohjoismainen suoluokitus kehiteltävänä. Suoseminaari-80. *Oulun yliopiston kasvitieteen laitoksen monisteita* No. 9, 11 s.

Kaakinen, E. & Kukko-oja, K. 1981. Lettojen suojeluarvon ja -tarpeen arviointia. Esimerkkinä Kainuun alueen inventointi. *Suo* 32, 25–34.

Kabata-Pendias, A. & Pendias, H. 1992. Trace Elements in Soils and Plants, (2nd Ed.)., CRC Press, Boca Raton, FL.

Kalliola, R. 1973. Suomen kasvimaantiede. WSOY, Porvoo, 308 p.

Katz, N. J., Katz, S. V. & Skobeyeva, E. I. 1977. Atlas of Plant Microfossils in Peat (Moscow: *Nedra*), 376 p. (in Russian)

Keskitalo, J. 1982. Reserves of peat and ligneous material in the mires of the Siikajoki valley and the Oulujärvi area. *Oulun yliopiston maantieteen laitoksen julkaisuja*, 100 s.

Kivinen, E. 1976. Kansainvälinen ehdotus turpeiden luokittelun yhdenmukaistamiseksi. *Suo* 27, 85 s.

Kochenov, A. V., Zinev'yev, V. V. & Lovaleva, S. A. 1965. Some features of the accumulation of Uranium in the peat bogs. *Geochemistry* 2, 65–70.

Koljonen, T. 1990. Geokemia. Suomen kartasto, 123–126. Geologia, 40–42.

Koljonen, T. (ed.) **1992.** Suomen geokemian atlas, osa 2: Moreeni. *Geologian tutkimuskeskus*. Espoo, 218 s.

Korhola, A. 1990. Paleolimnology and hydroseral development of the Kotasuo bog, Southern Finland, with special reference to the Cladocera. *Annales Academiae Scientiarum Fennicae A. III*. 155, 40 p.

Korhola, A. 1995. The Litorina transgression in the Helsinki region, southern Finland: new evidence from coastal mire deposits. *Boreas* 24, 173–182.

Korhola, A. 1995. Holocene climatic variations in southern Finland reconstructed from peat-initiation data. *The Holocene* 5, 43–57.

Korhola, A. 1996. Initiation of a sloping mire complex in south-western Finland: Autogenic versus allogenic controls. *Ecoscience* 3, 216–222.

Korhola, A. & Tolonen, K. 1998. Suomen soiden kehityshistoria ja turpeen pitkäaikaiskertymä. In: Vasander, H. (ed.) *Suomen suot*. Helsinki: Suoseura ry, 20–26.

Korpela, K. 1969. Die Weichsel-Eiszeit und ihr interstadial in Peräpohjola (nördliches Nordfinnland) im Licht von submoränen Sedimenten. *Annales Academiae Scientiarum Fennicae* A III 99, 108 s.

Kosonen, R. 1981. Isovarpuisen rämeen kasvibiomassa ja tuotos. Suo 32, 95–97.

Kotilainen, M. 1927. Untersuchungen über die beziehungen zwischen der Phlanzendecke der Mooer und der beschaffenheit, besonders der Reaktion des Torfbodens. Eine Phlanzenökologische studie mit rücksicht auf die praktische bewertung der Ergebnisse. *Wissenschaftliche Veröffentlichungen des Finnischen Moorkulturvereins* N:o 7, 219 s.

Kubin, E. 1989. A survey of element concentrations in the epiphytic lichen *Hypogynia physodes* in Northern Finland. *Symposium on Environmental Geochemistry in Northern Europe.* Geological Survey of Finland, Chemistry Department. Rovaniemi, Finland October 17 – 19. 1989. Abstracts, 26 p.

Kujala, V. 1924. Keski-Pohjanmaan soiden synnystä. Ein Beitrag zur Kenntnis der Entstehung der Moore in Mittelösterbotten. *Communicationes Instituti Forestalis Fenniae* 8, 24 s.

113

Kujala, V. 1964. Metsä- ja suokasvien levinneisyys ja yleisyysuhteista Suomessa vuosina 1951–1953 suoritetun valtakunnan metsien III linja-arvioinnin tuloksia. *Metsäntutkimuslaitoksen julkaisuja* 59, 207 s.

Kujansuu, R. & Niemelä, J. 1984. Suomen maaperä. 1:100 000. *Geologian tutkimuskeskus.*

Kurki, M. 1963. Suomen peltojen viljavuudesta. Referat: Über die Fruchtbarkeit des finnischen Ackerbodens auf Grund der in den Jahren 1955–1960 durchgeführten Bodenfruchtbarkeitsuntersuchungen. Helsinki, 107 s.

Köppen, W. 1931. Klimakarte der Erde. *Grundriss der Klimakunde, 2nd Ed.,* Berlin and Leipzig.

Laajoki, K. 1983. Outlines of the Precambrian exogenic geology of Finland. *Res Terrae*. C. Teaching material.

Lahermo, P., Ilmasti, M., Juntunen, R., & Taka, M. 1990. The Geochemical Atlas of Finland, Part 1. The Hydrogeochemical Mapping of Finnish Groundwater. Geological Survey of Finland, Espoo, 66 p.

Laiho, R. 1996. Changes in understorey biomass and species composition after water level drawdown on pine mires in southern Finland. Suoseura, Finnish Peatland Society. *Suo* 47, 59–69.

Laine, J., Silvola, J., Tolonen, K., Alm, J., Nykänen, H., Vasander, H., Sallantaus, T., Savolainen, I., Sinisalo, J. & Martikainen, P. J. 1996. Effect of water level draw down on global climatic warming: northern peatlands, *Ambio* 25, 179–184.

Laine, J. & Vasander, H. 1986. Turpeiden tuntemus ja luokittelu. *Publications from the Department of Peatland Forestry*, University of Helsinki 9, 56 s.

Laine, J. & Vasander, H. 1990. Suotyypit. Kirjayhtymä, Helsinki, 80 s.

Laine, J. & Vasander, H. 1996. Ecology and vegetation gradients of peatlands. In: Vasander, H. (ed.) 1996. *Peatlands in Finland*, Finnish Peatland Society. Helsinki, 10–19.

Laine, J. & Vasander, H. 2005. Suotyypit ja niiden tunnistaminen. Metsäkustannus Oy. Karisto Oy, Hämeenlinna, 109 s.

Laitinen, J., Rehell, S., Huttunen, A., Tahvanainen, T., Heikkilä, R. & Lindholm, T. 2007. Mire systems in Finland - special view to aapa mires and their water-flow pattern. Suomen suosysteemit - erityistarkastelussa aapasuot ja niiden vedenvirtauskuviointi. Suoseura, Finnish Peatland Society. *Suo* 58, 26 p. Lappalainen, E. 1970. Über die spätquartäre Entwick- lung der Flussufermoore Mittel-Lapplands. Bulletin de Commission geoligique de Finlande 24, 79 s.

Lappalainen, E., Stén, C-G. & Häikiö, J. 1984. Turvetutkimusten maasto-opas. Geologian tutkimuskeskus. Opas N:o 12. Espoo, 62 s.

Largin, I. F. 1972. Peat deposit structure and properties depending on peat forming conditions. *Proceedings of the 4th International Peat Congress,* Otaniemi.

Lett, R. E. W. & Fletcher, W. K. 1980. Syngenetic Sulphide Minerals in a Copper-rich Bog. *Mineralium Deposita (Berl.)* 15, 67 p.

Liedenpohja, M. 1981. Avosuotyyppien kasvillisuus, kasvibiomassa ja tuotos Janakkalan Suurisuolla. *Suo* 32, 100–103.

Lindberg, H. 1901. Panelia mossens uppkomst och byggnad. *Finska Mosskulturföreningens Årsbok*.

Lindberg, H. 1910. Phytopaläontologische Beobahtungen als Belege für postglaziale Klimaschwankungen in Finland. In: Postglaziale Klimaveränderungen, *Geologorum Conventus Stockholm*, 177–194.

Lindholm, T. 1981. Suppasuon kasviyhdyskuntien perustuotanto-ominaisuudet. *Suo* 32, 104–109.

Lindholm, T. 1991. Från havsvik till insjö. From sea bay to inland lake, succession on the land uplift coast. *Miljöförlage*t, Åbo, 160 p.

Lindholm, M. 2005. Veden ja järvisedimenttien laatu Vihtamonjoen valuma-alueella Sotkamossa. Helsingin yliopisto, Maantieteen laitos, Pro Gradu, 110 s.

Lindholm, T., Rönnberg, O. & Östman, T. 1989. Husöviken – en flada i Ålands skärgård. (Summary: The Husö Bay – a flada in the Åland archipelago). *Svensk Botanisk Tidskrift* 83, 143–147.

Lindholm, T. & Vasander, H. 1979. Männyn kasvu ja uudistuminen luonnontilaisella ja ojitetulla sekä lannoitetulla keidasrämeellä. *Suo* 30, 93–102.

Lippa, H. & Kubin, E. 1998. Raskasmetallilaskeuma Oulun läänissä vuosina 1985–1995. In: Moilanen, M., Pietiläinen, P. & Väärä, T. (eds) Metsäntutkimuspäivä Pyhäsalmella 1996. *Metsäntutkimuslaitoksen tiedonantoja* 674. Muhoksen tutkimusasema, 55–63.

Lishtvan, I. I., Bambalov, N. N., Tanovitskij, I. G. & Lucoshko, W. S. 1982. The genesis and evolution of peat bogs in Byelorussia and methods for their rational utilization. Freshwater Ecosystem, Dynamics in Wetland and Shallow Water Bodies. Vol. 1. *Scientific* *Committee on Problems of the Environment (SCOPE)*. USSR, Minsk – Pinsk – Tshaltour. July 16 – 26. 1981. Centre of International Projects GKNT. Moscow, 261–270.

Lokki, O. 1980. Tutkimustulosten tilastollinen hallinta ja käyttö. Insinööritieto Oy.

Lukkala, O. J. 1920. Studien über das verhältnis zwischen den Moortypus und dem oberflächentorf der Moore. Helsinki, 21 s.

Lukkala, O. J. 1920. Tutkimuksia soiden kantokerroksista. Helsinki, 75 s.

Lukkala, O. J. 1933. Tapahtuuko nykyisin metsämaan soistumista. *Communicationes Instituti Forestalis Fenniae* 19, 127 s.

Mackereth, F. J. H. 1966. Some chemical observations on post-glacial sediments. *Philosophical Transactions of the Royal Society* B 250, 165–213.

Magny, M., Leuzinger, U., Bortenschlager, S. & Haas, J. N. 2004. Holocene climate variability as reflected by mid-European lake-level fluctuations and its probable impact on prehistoric human settlements. *Quaternary International* 113, 65–79.

Magyari, E., Jakab, G., Sümegi, P., Rudner, E. & Molnár, M. 2000. Paleobotanikai vizsgálatok a keleméri Mohos-tavakon (Palaeobotanical investigation of the Mohos-lakes at Kelemér), 101–131. In: *Tőzegmohás élőhelyek Magyarországon: kutatás, kezelés, védelem (Hungarian mires: research, management, conservation)*. Szurdoki, E. (szerk.), CEEWEB Munkacsoport, Miskolc.

Magyari, E., Sümegi, P., Braum, M., Jakab, G. & Molnár, M. 2004. Retarded wetland succession: anthropogenic and climatic signals in a Holocene peat bog profile from north-east Hungary. *Journal of Ecology* 89, 1019–1032.

Maimer, N., Horton, D. G. & Vitt, D. H. 2006. Element concentrations in mosses and surface waters of western Canadian mires relative to precipitation chemistry and hydrology. *Ecography* 15, 114 – 128.

Malmer, N. 1975. Development of bor mires. In: Hasler, A. D. (ed.) *Coupling of Land and Water Systems.* New York. *Springer-Verlag*, 85–92.

Malmer, N. 1990. Constant or increasing nitrogen concentrations in Sphagnum mosses on mires in Southern Sweden during the last few decades. *Aquilo, Series Botanica* ASBOD8. 28, 57–65.

Malmer, N., Albinsson, C., Svensson, B. M. & Wallén, B. 2003. Interferences between Sphagnum and vascular plants: effects on plant community structure and peat formation. *Oikos* 100, 469–482. Malmer, N. & Sjörs, H. 1955. Some determinations of elementary constituents in mire plants and peat. *Botaniska Notiser* 108, 46–80.

Malmer, N. & Wallén, B. 2006. Accumulation and release of organic matter in ombrotrophic bog hummocks – processes and regional variation. *Ecography, Pattern and Diversity in Ecology* 16, 193 – 211.

Maltby, E. & Proctor, M. C. F. 1996. Peatlands: Their Nature and Role in the Biosphere. In: Lappalainen, E. 1996 (ed.) *Global Peat Resources*. International Peat Society. Geological Survey of Finland, 11 – 19.

Mangerud, J, Andersen, S. T., Berglund, B. E. & Donner, J. J. 1974. Quaternary stratigraphy of Norden, a proposal for terminology and classification. Oslo. *Boreas* 3, 109–128.

Manskaya, S. M., Drozdova, T. V. & Emelianova, M. P. 1960. Distribution of copper in peats and peat soils of the Belo-russian SSR. *Geokhimiya* 6, 630–643.

Melin, E. 1917. De norrländska myrmarkernas vegetation med särskild hänsyn till deras skogsvegetation efter torrläggning. *Akad Avh. Särtryck ur Norrländskt Handbibliotek* 7, 426 s.

Metsävainio, K. 1931. Untersuchungen über das Wurzelsystem der Moorpflanzen. Helsinki, VII, 417 s. 86 ills. Annales Botanici Societatis Zoologicae-botanicae Fennicae Vanamo 1, 422 s.

Miettinen, L. 1983. Lähdekasvillisuudesta ja sen historiasta Purkuputaalla. L-esitelmä. Oulun yliopisto, Kasvitieteen laitos. 10.5.1983, 22 s.

Miettinen, L. 1985. Kuusamon Purkuputaan lähdesuon kasvillisuudesta ja paleoekologiasta. Kasvitieteen laitos, Oulun yliopisto. Pro gradu, 101 s.

Moore, P. D. 1984b. The Classification of Mires: an Introduction. *European Mires*. London, 10 p.

Moore, P. D. & Bellamy, D. J. 1974. Peatlands. Elek Science. London (GB), 221 p.

Munsterhjelm, R. 1997. The aquatic macrophyte vegetation of flads and gloes, S coast of Finland. *Acta Botanica Fennica* 157, 68 p.

Myllymaa, U. & Murtoniemi, S. 1986. Metals and nutrients in the sediments of small lakes in Kuusamo, North-Eastern Finland. Vesi- ja ympäristöhallitus, Helsinki. *Vesientutkimuslaitoksen julkaisuja* 69, 33–48.

Mäkilä, M. 1980. Toholammin turvevarojen käyttökelpoisuus ja turpeen ominaisuuksien välinen riippuvuus. Geologinen tutkimuslaitos, Maaperäosasto. Raportti P 13.4. 5, 137 s.
Mäkilä, M. 1984. Turpeen ominaisuuksista ja niiden välisistä riippuvuuksista. *Turveteollisuus* 4, 44–58.

Mäkilä, M. 1987. Suon energiasisällön laskeminen turpeen vesipitoisuuden ja maatumisasteen perusteella. Geologian tutkimuskeskus. Tutkimusraportti 77. Espoo 36 s.

Mäkilä, M. 1994. Suon energiasisällön laskeminen turpeen ominaisuuksien avulla. Geologian tutkimuskeskus, Tutkimusraportti 121, 84 s.

Mäkilä, M. 1996. Suomen soiden hiilitase ja turpeen hiilensitomiskyky verrattuna turvetuotannon ja turpeen käytön aiheuttamaan hiilipäästöön. Geologian tutkimuskeskus. Raportti P 36.4.002, 12 s.

Mäkilä, M. 1997. Holocene lateral expansion, peat growth and carbon accumulation in Haukkasuo, a raised bog in southern Finland. *Boreas* 26, 4 p.

Mäkilä, M. & Goslar, T. 2008. The carbon dynamics of surface peat layers in southern and central boreal mires of Finland and Russian Karelia (Tiivistelmä: Etelä- ja keskiboreaalisten soiden pintakerroksen hiilidynamiikka). Helsinki. Suo 59, 46–69.

Mäkilä, M. & Grundström, A. 2008. Turpeen ikä ja kerrostumisnopeus Lounais-Suomen soilla. Geologian tutkimuskeskus, Etelä-Suomen yksikkö. *Posiva*. Työraportti 2008 – 12, 30 s.

Mäkilä, M. & Moisanen, M. 2007. Holocene lateral expansion and carbon accumulation of Luovuoma, a northern fen in Finnish Lapland. *Boreas* 36, 198–210.

Mäkilä, M. & Muurinen, T. 2008. Kuinka vanhoja ovat Pohjois-Suomen suot? *Geologi* 60, 179–184.

Mäkilä, M. & Saarnisto, M. 2008. Carbon accumulation in boreal peatlands during the Holocene – impacts of climate variations, 24–43. In: Strack, M. (ed.) *Peatlands and climate change*, 223 p.

Mäkilä, M., Saarnisto, M. & Kankainen, T. 2001. Aapa mires as a carbon sink and source during the Holocene. *Journal of Ecology* 89, 589–599.

Mäkilä, M., Säävuori, H. & Grundström, A. 2009. Suomen soiden ikä. Etelä-Suomen yksikkö. Turvetutkimusselostus 103/2009, 14 s. Summary: The age of Finnish mires.

Mäkilä, M. & Toivonen, T. 2004. Rate of peat accumulation and its variability during the Holocene. In: Päivänen, J. (ed.) *Wise Use of Peatlands*, proceedings of the 12th International Peat Congress. 6-11 June 2004. Tampere, Finland. Oral Presentations. International Peat Society 1, 50–55.

Mörnsjö, T. 1968. Stratigraphical and chemical studies of two peatlands in Scania, South Sweden. *Botaniska Notiser* 121, 343–360.

Naucke, W. 1976. Chemie von Moor und Torf. In: Göttlich, K. *Moor- und Torfkunde*, 134–148.

Nilsson, T. 1975. Kompendium i kvartärpaleontologi och kvartärpaleontologiska metoder (Compendium in Quaternary palaeontology and palaeontological methods). Rahms, Lund.

Neuhäusl, R. 1972. Subkontinentale Hochmoore und ihre Vegetation. *Studie CSAV*. 13, 21 s.

Nyholm, E. 1975. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 2, 2nd edition. *Swedish Natural Science Research Council*, 85–190.

Nyholm, E. 1979. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 4, Swedish Natural Science Research Council, 287–408.

Nyholm, E. 1979. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 5, Swedish Natural Science Research Council, 407–648.

Nyholm, E. 1981. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 1, 2nd edition. *Swedish Natural Science Research Council*, 88 p.

Nyholm, E. 1981. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 3, 2nd edition. *Swedish Natural Science Research Council*, 189–288.

Nyholm, E. 1981. Illustrated Moss Flora of Fennoscandia. Il Musci. Fasc. 6, 2nd edition. *Swedish Natural Science Research Council*, 647–800.

Nykänen, H., Alm, J., Silvola, J., Tolonen, K. & Martikainen, P. J. 1998. Methane fluxes on boreal peatlands of different fertility and the effect of long-term experimental lowering of the water table on flux rates. *Global Biogeochemical Cycles* 12, 53–69.

Økland, R. H., Økland, T. & Rydgen, K. 2001. Scandinavian perspective on ecological gradients in northwest European mires: reply to Wheeler and Proctor. *Journal of Ecology* 89, 481–486.

Okko, V. 1955. Utajärven Pyykönsuo. Suo 5, 18–22.

Oksanen, P. O. 2005. Development of palsa mires on the northern European continent in relation to Holocene climatic and environmental changes. Faculty of Science, University of Oulu, 50 p.

Olsen, C. 1921. Studier over Jordbundens Brintionkoncentration og dens Betydning for Vegetationen, særlig for Plantefordelningen i Naturen. *Meddelerser fra Carlsberg Laboratoriet*, 15 Bd, Nr 1. Kjøbenhavn.

Paajala, J., Karila, R. & Holappa, K. 1981. Turpeen kemiallisia määritysmenetelmiä ja preparointitekniikkaa. Oulun yliopisto, Geologian laitos, 157 s.

Paasio, I. 1963. Pieni jäkälä- ja sammalkirja. Neljäs painos. Otava, 96 s.

Paasovaara, P. 1986. Riisitunturin alueen suotyypeistä. In: Viramo, J. (ed.) Riisitunturi: luonto ja tutkimus. Oulun yliopisto, Kuusamo. *Oulun yliopiston Oulangan biologisen aseman monisteita* 9, 51–87.

Pakarinen, P. 1975. Trophic classification of peatlands. Suo 26, 79–82.

Pakarinen, P. & Tolonen, K. 1971. Rahkaturpeen maatumisasteen määritysmenetelmistä. *Suo* 22, 48–50.

Pakarinen, P. & Tolonen, K. 1977. Vertical distribution of N, P, K, Zn and Pb in Sphagnum peat. *Suo* 28, 95 – 102.

Papunen, H. 1966. Framboidal texture of the pyretic layer found in a peat bog in SE-Finland. *Comptes Rendus de la Société Geologique de Finlande.* N:o XXXVII, 117–125.

Parikka, M., Karila, H., Railo, A., Pieniniemi, S., Salmi, J., Hytönen, M., Joensuu, O. & Rajasärkkä, A. 1999. Pohjanmaan luonnonvarasuunnitelma. *Metsähallituksen metsä-talouden julkaisuja* 26. Vantaa, 123 s.

Picken, P. 2007. Geological factors affecting on after-use of Finnish cut-over peatlands with implications on the carbon accumulation. *Publications of the Department of Geology* D 10. Helsinki, 119 p.

Plant, J. A. & Raiswell, R. 1983. Principles of environmental geochemistry. In: Thornton,I. (ed.) Applied environmental geochemistry. London: *Academic Press*, 39 p.

Pollet, F. 1972. Nutrient contents of peat soils in Newfoundland. *Proceedings of the 4th International Peat Congress.* Helsinki. 3, 461–468.

von Post, L. 1922. Sveriges geologiska undersöknings torvinventering och några av dess hittills vunna resultat. *Svenska Mosskulturföreningens Tidskrift* 1, 27 s.

120

Puranen, R., Mäkilä, M. & Säävuori, H. 1999. Electric conductivity and temperature variations within a raised bog in Finland: implications for bog development. *The Holocene* 9, 13–24.

Päivänen, J. 1969. The bulk density of peat and its determination. Seloste: Turpeen. tilavuuspaino ja sen määrittäminen. *Silva Fennica* 3, 19 p.

Päivänen, J. 1973. Hydraulic conductivity and water retention in peat soils. *Acta Forestalia Fennica* 129, 70 p.

Ramann, E. 1895. Organogene Ablagerungen der Jetztzeit. *Neues Jahrbuch für Mineralogie, Geologie und Palaeontologie*. X Beilage-Band. Stuttgart.

Ratcliffe, D. A. 1964. Mires and bogs. In: Burnet, J. H. (ed.) *The vegetation of Scotland*, 426–478. Oliver and Boyd, Edinburgh.

Raunio, A., Schulman, A. & Kontula, T. (eds) 2008. Suomen luontotyyppien uhanalaisuus – Osa 1. Tulokset ja arvioinnin perusteet. Suomen ympäristökeskus, Helsinki. *Suomen ympäristö* 8/2008, 264 s.

Rehell, S. 1985. Oulun Pilpasuon ja sen ympäristön vesitaloudesta ja turpeen ominaisuuksista. Pro Gradu. Oulun yliopisto, Geologian laitos, 107 s.

Rehell, S. 2006. Land uplift phenomenon and its effects on mire vegetation. *The Finnish environment* 23, 145–154.

Reinikainen, A. 1980. Suoekosysteemi. Moniste. In: Eurola, S. (ed.) Suoseminaari -80. *Oulun yliopiston kasvitieteen laitoksen monisteita* 9, 14 s.

Reynaud, C. & Hjelmroos, M. 1976. Vegetational history and evidence of settlement on Hailuoto, Finland, established by means of pollen analysis and radiocarbon dating. *Aquilo Series Botanica* 14, 46–60.

Reynaud, C. & Hjelmroos, M. 1980. Pollen evidence and radiocarbon dating of human activity within the natural forest vegetation of the Pohjanmaa region (northern Finland). *Candollea* 35, 257–304.

Rinkineva, L. & Molander, L-L. 1997. Fladorna och glosjöarna i Norra Kvarken. Flads and gloes in northern Quark area. *Merenkurkun Neuvoston Julkaisut* 3, 42 s.

Rose, A. W., Hawkes, H. E. & Webb, J. S. 1979. Geochemistry in mineral exploration. 2nd edition. Amsterdam, *Academic Press*, 657 p.

Ruuhijärvi, R. 1960. Über die regionale Einteilung der nordfinnischen Moore. *Annales Botanici Societatis Zoologicae-Botanicae Fennicae Vanamo* 31, 360 s. **Ruuhijärvi, R. 1963.** Zür Entwicklungsgeschichte der nordfinnischen Moore. *Annales botanici Societatis zoologicae-botanicae Fennicae Vanamo* 34, 40 s.

Rybnicek, K. & Rybnickova, E. 1968. The history of the flora and vegetation on the Blato mire in south-eastern Bohemia, Czechoslovakia. *Folia Geobotanica. Phytotaxonomica* 3, 117–142.

Rybnicek, K. & Rybnickova, E. 1974. The origin and development of waterlogged meadows in the central part of the Šumava Foothills. *Folia Geobot. Phytotax.* 9, 45–70.

Rybnicek, K. 1985. A central European approach to the classification of mire vegetation. *Aquilo Series Botanica* 2, 19–31.

Rönkä, A. 1985. Hailuodon Kiimisuon paleoekologiasta. Pro gradu. Oulun yliopisto, Kasvitieteen laitos, 64 s.

Saarinen, T., Vasander, H. & Tolonen, K. 1996. Roots as input of carbon in undrained sedge fens. In: Roos, J. (ed.) The Finnish Research Programme on Climate Change. Edita. Helsinki. Final Report. *Publications of the Academy of Finland*, 345–352.

Saarnisto, M. 2000. Shoreline displacement and emergence of lake basins. Geological Survey of Finland, Special Paper 29, 25–34.

Saarnisto, M. & Salonen, V-P. 1995. Glacial history of Finland. In: Ehlers, J., Kozarski, S & Gibbard, P. (eds) *Glacial deposits in North-East Europe*, 3–10. A.A. Balkema, Rotterdam.

Salmi, M. 1950. Turpeiden hivenaineista. Geologinen tutkimuslaitos, *Geoteknillisiä julkaisuja* 51, Helsinki, 20 s.

Salmi, M. 1955. Prospecting of bog covered ore by means of peat investigations. *Bulletin de la Commission Géologique de Finlande* 169, 34 p.

Salmi, M. 1958. Soiden peittämän kallioperän vaikutus turpeiden pH-arvoihin. In: Marmo, V. (ed.) Geokemiallinen ja biogeokemiallinen malminetsintä. Geologinen tutkimuslaitos, *Geoteknillisiä julkaisuja* 61. Helsinki, 29–39.

Salmi, M. 1967. Peat prospecting: Applications in Finland. In: Kvalheim, A. (ed.) Geochemical Prospecting in Finlandia. *Interscience Publishers*. Chapter 9, 113–126.

Salmi, M. 1972. Present developmental stages of palsas in Finland. Otaniemi, 121–141.

Salomons, W. 1995. Environmental impact of metals derived from mining activities: Processes, predictions, prevention. *Journal of Geochemical Exploration* 52, 5–23.

Scheffer, R. A., van Logtestijn, R. S. P. & Verhoeven, J. T. A. 2001. Decomposition of Carex and Sphagnum litter in two mesotrophic fens differing in dominant plant species. Research Papers. *Oikos* 92, 44–54.

Sauramo, M. 1940. Suomen luonnon kehitys jääkaudesta nykyaikaan. Helsinki & Porvoo, 286 s.

Schneekloth, H. 1965. Die Rekurrenzflächen im groben Moor bei Gifhorm – eine zeitgleiche Bildung? *Geologisches Jahrbuch* 85, 135–146.

Schneekloth, H. 1968. The significance of the limiting horizon for the chronostratigraphy of raised bogs: Results of a critical investigation. *Proceedings of the 3rd International Peat Congress, Quebec,* 116 p.

Schnitzer, M. 1978. Humic substances: Chemistry and reactions. In: Schnitzer, M & Kahn, S. (ed.) *Soil organic matter*. Amsterdam. Elsevier, 58 p.

Schulin, R., Geiger, G. & Furrer, G. 1995. Heavy metal retention by soil organic matter under changing environmental conditions. In: Salomons, W. & Stigliani, W. M. (eds) *Biogeodynamics of Pollutants in Soils and Sediments*: Risk Assessment of Delayed and Non-Linear Responses. Berlin: Springer-Verlag, 53–85.

Sepponen, P. 1989. On the chemical composition of berry plants in ploughed forest regeneration areas. In: Pulkkinen, E. (ed.) Symposium on Environmental Geochemistry in Northern Europe. Geological Survey of Finland, Chemistry Department. Rovaniemi, Finland, October 17–19.1989, 63 p.

Seppä, H. 1995. Turvestratigrafisen tutkimuksen historiasta ja kvartääritieteellisestä merkityksestä Pohjoismaissa. On the history and Quaternary scientific significance of peat stratigraphical research in the Nordic countries. Suoseura, Finnish Peatland Society. *Suo* 46, 39–54.

Seppä, H. & Hammarlund, D. 2000. Pollen-stratigraphical evidence of Holocene hydrological change in northern Fennoscandia supported by independent isotopic data. *Journal of Paleolimnology. Springer Netherlands* 24. 1/ June, 69–79. Earth and Environmental Science.

Seppälä, M. 2005. Dating of Palsas. Geological Survey of Finland, Special Paper 40, 79– 84.

Seppälä, M. 2006. Palsa mires in Finland. The Finnish environment 23, 155–162.

Seppälä, M. & Koutaniemi, L. 1985. Formation of string and pool topography as expressed by morphology, stratigraphy and current processes of a mire in Kuusamo, Finland. *Boreas* 14, 287–309.

Sernander, R. 1890. Om förekomster af subfossila stubbar på svenska insjöans botten. Afdrag ur *Botaniska Notiser*.

Sikora, L. J. & Keeney, D. R. 1983. Further aspects of soil chemistry under anaerobic conditions. In: Gore, A. J. P. (ed.) *Mires: Swamp, Bog, Fen and Moor. Ecosystems of the World* 4 A, 247–256.

Sillanpää, M. 1972. Distribution of trace metals in peat profiles. *Commission I and V of IPS Proceedings of the 4th International Peat Congress,* Otaniemi, Finland V, 185 – 192.
Sillanpää, M. 1975. Hivenaineet suoprofiilissa. *Suo* 26, 41–51.

SILMU. 1966. Publications of the Academy of Finland 4/96, 345–352.
Sirén, G. 1961. Skogsgränstallen som indicator för klimatflukryationerna in norra
Fennoskandien under historic tid. *Communicationes Institut Forestalis Fenniae* 54, 66 s.
Sjörs, H. 1971. Ekologisk botanik: Almqvist & Wiksell, Stockholm.

Sjörs, H. 1991. Phyto- and necromass above and below ground in a fen. *Holarctic Ecology* 14, 208–218.

Simonen, A. 1990. Kallioperä. In: Alalammi, P. (ed.) Suomen kartasto, vihko 123–126, 4 s. Sneddon, J. I., Farstad, L. & Lackulich, L. M. 1971. Fiber content determination and the expression of results in organic soils. *Canadian Journal of Soil Science* 51, 138–141.

Sonesson, M. 1970. Studies on mire vegetation in the Torneträsk area, Northern Sweden. IV. Some habitat conditions of the poor mires. *Botaniska Notiser* 123, 67–111.

Solmari, H. & Vasander, H. 1981. Neljän kasviyhdyskunnan kasvibiomassa ja -tuotos. Suo 32, 97–99.

Sundh, I., Nilsson, M., Granberg, G. & Svensson, B. H. 1994. Depth distribution of microbial production and oxidation of methane in northern boreal peatlands. *Microbial Ecology* 27, 253–265.

Swanson, D. K. 2007. Interaction of mire microtopography, water supply, and peat accumulation in boreal mires. Suoseura, Finnish Peatland Society. *Suo* 58, 37–47.

Tahvanainen, T. 2004. Water chemistry of mires in relation to the poor-rich vegetation gradient and contrasting geochemical zones of northeastern Fennoscandian Shield. *Folia Geobotanica* 39, 353–369.

Tanskanen,H.1972.Hivenalkuaineidenvertikaalisestaesiintymisestäturvekerrostumassa.Suo 23, 63–68.

Terho, A. 1976. Eräiden Pohjois-Satakunnan soiden stratigrafiasta ja fysikaaliskemiallisista ominaisuuksista. Turun yliopisto, Geologian laitos, 15 s.

Tikkanen, M. & Korhola, A. 1993. Divergent successions in two adjacent rocky basins in southern Finland: A physiographic and paleoecological evaluation. *Annales Academiae Scientiarum Fennicae* A III. Geologica-Geographica 157, 26 p.

Tolonen, K. 1967. Uber die Entwicklung der Moore im finnischen Nordkarelien. *Annales Botanici Fennici* 123, 219–416.

Tolonen, K. 1974. On the nutrient content of surface water in ombotrophic mire complexes in Finland. *Suo* 25, 41–51.

Tolonen, K. 1976. Soiden kehityshistorian tutkimusmenetelmistä. Suo 17, 93–102.

Tolonen, K. 1977. On dry matter accumulation and bulk density values in three South Finnish raised bogs. *Suo* 28, 8 p.

Tolonen, K. 1984. Interpretation of changes in the ash content of ombrotrophic peat layers. *Bulletin Geological Society Finland* 56, 207–219.

Tolonen, K. & Hosiaisluoma, V. 1978. Chemical properties of surface water in Finnish ombrotrophic mire complexes with special reference to algal growth. *Annales Botanici Fennici* 15, 55–72.

Troels-Smith, J. 1955. Karakterisering af løse jordarter. (Characterisation of unconsolidated sediments). *Danmarks Geologiske Undersøgelser,* Serie IV. 3, 73 p.

Tuominen, S, Eeronheimo, H. & Toivonen, H. (eds) **2001.** Yleispiirteinen biotooppiluokitus. *Metsähallituksen luonnonsuojelujulkaisuja,* Sarja B No 57. Vantaa 2001, 37 – 41.

Urvas, L. 1980. Etelä- ja Pohjois-Suomen luonnontilaisten turpeiden viljavuuserot. Comparison of the chemical properties of virgin peat soils in southern and northern Finland. *Suo* 31, 27 – 32.

Vartiainen, T. 1980. Succession of island vegetation in the land uplift area of the northernmost Gulf of Bothnia, Finland. *Acta Botanica Fennica* 115, 105 p.

Vasander, H. 1981a. Keidasrämeen biomassa ja tuotos. (Plant biomass and production in an ombrotrophic raised bog). *Suo* 32, 91–94.

Vasander, H. 1981b. Luonnontilaisen keidasrämeen sekä lannoitetun ojikon ja muuttuman ravinnevarat (Nutrients in an ombrotrophic bog ecosystem in the virgin state and after forest improvements). *Suo* 32, 137–141.

Vasander, H. 1983. Esimerkki keidassoiden ojitus- ja lannoitustoiminnan heikosta kannattavuudesta (The low profitability of draining and fertilizing sparsely tree covered ombrotrophic bogs for forestry purposes: A case study). *Suo* 34, 93–97.

Vasari, Y. 1962. A study of vegetational history of Kuusamo district (North East Finland) during the Late-Quaternary period. *Annales Botanici Societatis Zoologicae-Botanicae Fennicae Vanamo* 33, 142 p.

Vasari, Y. 1963b. Studies on the vegetational history of the Kuusamo district (North East Finland) during the Late-quaternary period. II. Radiocarbon datings. Preliminary report. *Annales archaea Societatis Zoologicae-Botanicae Fennicae Vanamo* 18, 121–127.

Vasari, Y. 1964b. Studies on the vegetational history of the Kuusamo district (North East Finland) during the Late-quaternary period. IV. The age and origin of some present-day vegetation types. *Annales Botanici Fennici* 2, 248–273.

Vasari, Y. 1966. Suomen myöhäisjääkautinen kasvillisuus. (Late-Glacial vegetation in Finland.) *Terra* 81, 267–273.

Vasari, Y. 1974. The vegetation of Northern Finland – past and present. *Inter-Nord* 13, 17–36.

Vegetationstyper i Norden, TemaNord, 1994:665, 627 s.

Virkkala, K. & Valovirta, V. 1957. *Suomen geologinen kartta*. Raate, Vuokkijärvi. Maaperäkartan selitys. Geologinen tutkimuskeskus, 27 s.

Viro, P. 1955. Loss of nutrients and natural nutrient balance of the soil in Finland. *Communicationes Instituti Forestalis Fenniae* 42, 45 p.

Virtanen, K. 1994. Geological control of iron and phosphorous precipitates in mires of the Ruukki-Vihanti area, Central Finland. *Geological Survey of Finland, Bulletin* 375, 69 p.

Virtanen, K. 2006. Soistuminen ja turvekerrostumien muodostuminen. In: Räty M. *et al.* (eds) *Paludification, Terrestrialisation, Primary Mire Formation and Peat Deposition*. IV Maaperätieteen päivien laajennetut abstraktit. *Pro Terrae* 29/2006, 12–14.

Virtanen, K., Hänninen, P., Kallinen, R.-L., Vartiainen, S., Herranen, T. & Jokisaari, R. 2003. Suomen turvevarat 2000. Summary: The peat reserves of Finland in 2000. Geologian tutkimuskeskus, Tutkimusraportti 156, 101 s.

Walker, D. 1970. Direction and rate of change of some British Post-glacial hydroseres. In: Walker, D. & West, R. G. (eds.) *Studies in the vegetational history of the British Isles*, 117–139. Cambridge: Cambridge University Press.

Warén, H. 1924. Untersuchungen über die Botanische entwicklung der Moore mit berücksichtigung der chemischen Zusammensetzung des Torfes. Wissenschaftliche Veröffentlichungen des Finnischen Moorkulturverereins 5, 95 s.

Weber, C. A. 1902. Über die Vegetation und Entstehung des Hochmoors von Augstumal im Memeldelta, mit vergleichenden Ausblicken auf andere Hochmoore der Erde. Berlin, 252 s.

Weber, C. A. 1907. Aufbau und Vegetation der Moore Norddeutschlands. *Beiblatt zu den Botanischen Jahrbüchern* 90, 19–43.

Weber, C. A. 1911. Das Moor. Hannoversche Geschichtsblatter 14, 255–270.

Wells, E. D. & Zoltai, S. 1985. Canadian system of wetland classification and its application to circumboreal wetlands. *Aquilo Series Botanica* 21, 42–52.

Westman, C. J. 1981. Fertility of surface peat in relation to the site type and potential stand growth. Faculty of Agriculture and Forestry of University of Helsinki, 78 p.

Wheeler, B. D. & Proctor, M. C. F. 2000. Ecological gradients, subdivisions and terminology of north-west European mires. *Journal of Ecology* 88, 187–203.

Wilson, M, J. & Bell, N. 1996. Acid deposition and heavy metal mobilization. *Applied Geochemistry* 11, 133–137.

Winterhalter, B., Floden T., Ignatius, H., Axberg S. & Niemistö, L. 1981. Geology of the Baltic Sea. In: Voipio, A. (ed.) The Baltic Sea. *Elsevier Oceanography Series* 30, 121 p.

Vuorela, I. 1990. Siitepölyanalyyttinen tutkimus Puolangan kunnan kasvillisuuden kehityksestä. Geologian tutkimuskeskus, Ympäristötutkimukset. Raportti. Espoo, 19 s. www.fmi.fi/saa/tilastot 146.html. Säätilastot.

www.environment.fi Tiedote 22.1.2004. Ympäristöministeriö.

Vuorela, I. & Kankainen, T. 1991. Siitepölyanalyyttinen tutkimus asutuksen vaikutuksesta kasvillisuuteen Puolangan kunnan Kotilan kylässä. Geologian tutkimuskeskus, Maaperäosasto. Tutkimusraportti P34.4.100. Espoo, 21 s.

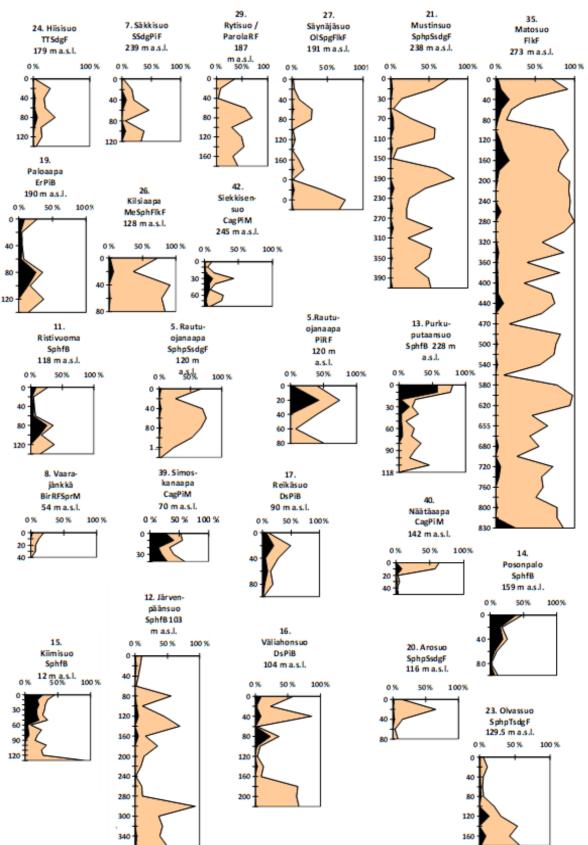
Yliruokanen, I. 1980. Hivenaineiden esiintyminen turpeessa. *Suoseminaari*. Oulun yliopisto, Kasvitieteen laitos, 15 s.

Yong, R. N., Mohamed, A. M. O. & Warkentin, B. P. 1992. Principles of contaminant transport in soils. *Developments in Geotechnical Engineering* 73. Amsterdam: Elsevier, 327 p.

Zailer, V. & Wilk, L. 1907. Über die Einfluss der Pflanzenkonstituenten auf die physikalischen und chemischen Eigenschaften des Torfes. *Zeitschrift für Moorkultur und Torfverwertung* 4.

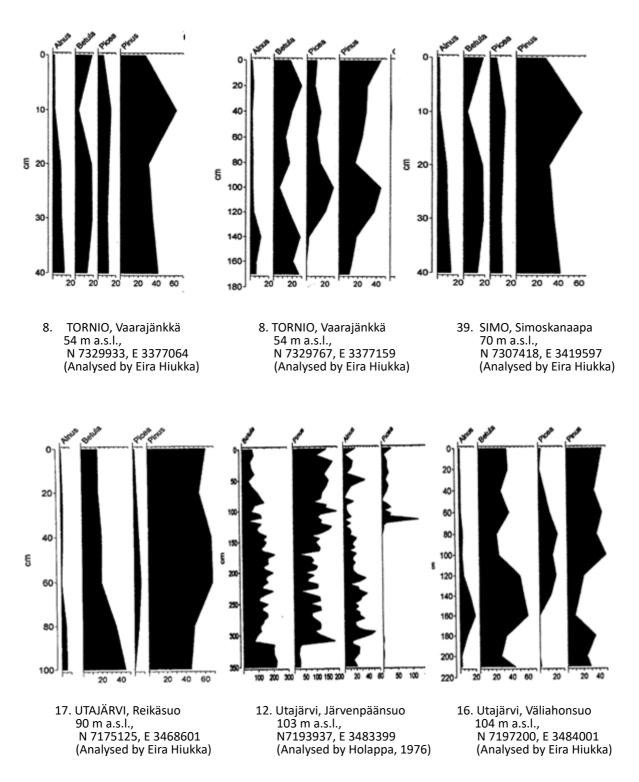
Appendix 1

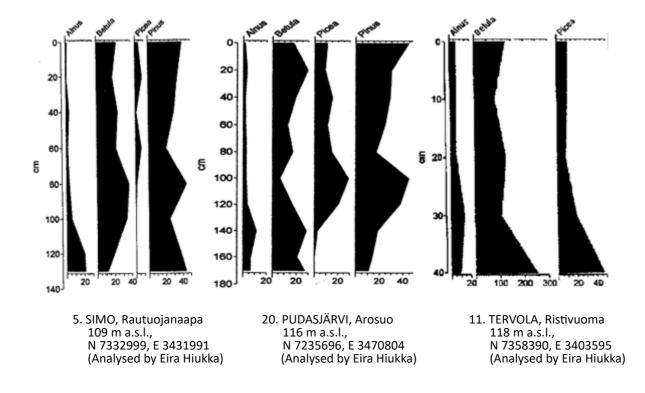
Mires studied previously in the same area and neighbouring districts, with dates (BP) of mire formation, isolation of lakes and the appearance and maximum of spruce (*Picea*)

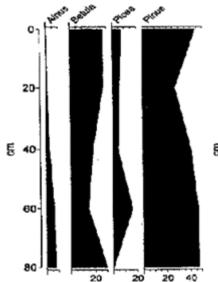

DistrictmPeatjapaludificationappearedmaximumMire / Lakea.s.l.cmcmmBPBPBPAuthor(s) C ¹⁴ date no.AlatornioLeväjänkkä94,5Peat6000±130 BPEronen, 1974Varevuoma1168400±190640±260 PeatEronen, 1974HailuotoKiimisuo11,9130950±130Rönkä, 1983Kittilä9970Hicks, 1988Sipola7,5800Hicks, 1988Sipola7,5800Hicks, 1988Kaimajänkkä401322590±140Reynaud, Hjelmroos, 1980, HeKiimajänkkä401322590±140Keskitalo, 1982Törmäsensuo139.12304500Keskitalo, 1982Ritikansuo88.93004500Keskitalo, 1982Kaatiaisneva122.9340104500Keskitalo, 1982Kiuvaniemi	
Alatornio Eronen, 1974 Leväjänkkä 94,5 Peat 6000±130 BP Eronen, 1974 Varevuoma 116 8400±190 640±260 Peat Eronen, 1974 Hailuoto Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kiitilä 9 970 Hicks, 1988 Kisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Keskitalo, 1982 Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, Hetkiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, Hetkiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, Hetkiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, Hetkiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, Hetkiimajänkkä Kestilä 75 300 4500 Keskitalo, 1982 Kärsämäki Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kuivaniemi Kaupinsuo 101-108 210 7340+/-100 Yicken, 2007 Kaupinsuo 101-108 8	
Leväjänkkä 94,5 Peat 6000±130 BP Eronen, 1974 Varevuoma 116 8400±190 640±260 Peat Eronen, 1974 Hailuoto Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kittilä 9 970 Hicks, 1988 Kittilä 9 970 Hicks, 1988 Kiasto 10 1080 Hicks, 1988 Kissi Sipola 7,5 800 Hicks, 1988 Isoaukionsuo 4 400 Hicks, 1988 Kiimajänkkä 40 Isoaukionsuo Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, Hetks, 1988 Kestilä Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, Hetks, 1982 Kiikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki Keskitalo, 1982 Keskitalo, 1982 Kärsämäki Kuivaniemi Kuivaniemi Kuivaniemi Kastiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kastiaisneva 122.9 340 10 4500 Keskitalo	
Leväjänkkä 94,5 Peat 6000±130 BP Eronen, 1974 Varevuoma 116 8400±190 640±260 Peat Eronen, 1974 Hailuoto Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kiimisuo Kiimisuo 10 1080 Hicks, 1988 Kiimisuo Kiimisuo 10 1080 Hicks, 1988 Kiimisuo Ki	
Varevuoma 116 8400±190 640±260 Peat Eronen, 1974 Hailuoto Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kiitillä 9 970 Hicks, 1988 Kaisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Kaisto 132 2590±140 Reynaud, Hjelmroos, 1980, Hok Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, Hok Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, Hok Kestilä Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, Hok Kestilä Törmäsensuo 139.1 230 4500 Keskitalo, 1982 Keskitälo, 1982 Kaatiaisneva 132.9 340 10 4500 Keskitalo, 1982 Kuivaniemi Kuivaniemi Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Hailuoto 11,9 130 950±130 Rönkä, 1983 Kitiliä 9 970 Hicks, 1988 Kaisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Isoaukionsuo 4 400 Hicks, 1988 Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaitikansuo 189,9 300 4500 Keskitalo, 1982 Kaitikansuo 189,9 10 4500 Keskitalo, 1982	
Kiimisuo 11,9 130 950±130 Rönkä, 1983 Kittilä 9 970 Hicks, 1988 Kaisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Isoaukionsuo 4 400 Hicks, 1988 Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kaitikansuo 139.1 230 4500 Keskitalo, 1982 Kaitikansuo 189.9 300 4500	
Kittilä 9 970 Hicks, 1988 Kaisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Isoaukionsuo 4 400 Hicks, 1988 Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kastilä 70 Meskitalo, 1982 Reynaud, Hjelmroos, 1980, He Kastilä 70 4500 Keskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki 122.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007 1000 <td></td>	
Kaisto 10 1080 Hicks, 1988 Sipola 7,5 800 Hicks, 1988 Isoaukionsuo 4 400 Hicks, 1988 Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kestilä U Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä U Statiansuo 88.9 300 4500 Keskitalo, 1982 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo	
Sipola7,5800Hicks, 1988Isoaukionsuo4400Hicks, 1988KeminmaaKiimajänkkä401322590±140Reynaud, Hjelmroos, 1980, HeKiimajänkkä401322590±140Reynaud, Hjelmroos, 1980, HeKiimajänkkä40Decreace of spruce 1260Reynaud, Hjelmroos, 1980, HeKestilä70Seskitalo, 1982Keskitalo, 1982Törmäsensuo139.12304500Keskitalo, 1982Ritikansuo88.93004500Keskitalo, 1982Kastiaisneva122.9340104500Keskitalo, 1982KuvaniemiXaupinsuo101-1082107340+/-100Picken, 2007Kaupinsuo101-1081806780+/-140Picken, 2007	
Isoaukionsuo 4 400 Hicks, 1988 Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä 70 Keskitalo, 1982 88.9 300 4500 Keskitalo, 1982 Kärsämäki 70 4500 Keskitalo, 1982 70 Keskitalo, 1982 70 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 70 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 72 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Keminmaa Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä 7örmäsensuo 139.1 230 4500 Keskitalo, 1982 Törmäsensuo 139.1 230 4500 Keskitalo, 1982 Kaskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kaskitalo, 1982 Kärsämäki 22.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kiimajänkkä 40 132 2590±140 Reynaud, Hjelmroos, 1980, He Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä 500 Keskitalo, 1982 Keskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki 500 Keskitalo, 1982 Keskitalo, 1982 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kiimajänkkä 40 Decreace of spruce 1260 Reynaud, Hjelmroos, 1980, He Kestilä Törmäsensuo 139.1 230 4500 Keskitalo, 1982 Törmäsensuo 88.9 300 4500 Keskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki Image: State of spruce 1260 Reynaud, Hjelmroos, 1980, He Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kestilä Keskitalo, 139.1 230 4500 Keskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki	el-888
Törmäsensuo 139.1 230 4500 Keskitalo, 1982 Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki Kastiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	el-956
Ritikansuo 88.9 300 4500 Keskitalo, 1982 Kärsämäki Kastiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kaitaisneva 122.9 340 10 4500 Keskitalo, 1982 Kuivaniemi Vitaniemi Picken, 2007 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kärsämäki Kastiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kuivaniemi Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kaatiaisneva 122.9 340 10 4500 Keskitalo, 1982 Kuivaniemi Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kuivaniemi Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kaupinsuo 101-108 210 7340+/-100 Picken, 2007 Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kaupinsuo 101-108 180 6780+/-140 Picken, 2007	
Kuusamo	
Purkuputaansuo 228 7750±170 Miettinen, 1985	
Maanselänsuo 257 170 9100±220 1900 Vasari 1963, 1965	
Kangerjoki 288 142 8240±190 4980±140 Hicks, 1975	
Liippasuo I 357 8040±180 3120 Seppälä, Koutaniemi, 1985	
Liippasuo 2 357 334 194 7640±160 4830±90 3940 Seppälä, Koutaniemi, 1985, H	el-1249
Oulu	
Pilpajärvi 40 122 4000±60 Reynaud, Hjelmroos, 1976	
Paltamo	
Isosuo 145.7 470 70 4800 Keskitalo, 1982	
Likasuo 174.3 340 10 4800 Keskitalo, 1982	
Laattaansuo 187 370 30 4800 Keskitalo, 1982	
Pello	
Valkiajärvi 188 140 9260±220 Saarnisto 1981	
Purajärvi 142.3 50 8650±180 Hyvärinen, Sepponen, 1988	
Lupojärvi 91.8 7 7860±150 Saarnisto 1981, Hel-797	
Posio	
Kolimiloukkonen 344 3620±140 Vasari 1962	
Maaselänpuro 248 8440 Heikkinen, 1975, Hel-785	

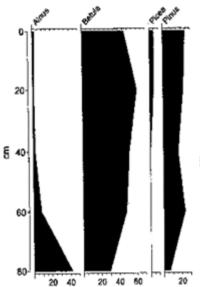
Puolanka							
Vasikkasuo I	270	220	65	8610±80	4680±70		Vuorela, 1990
Vasikkasuo II	270	130		5000	4000		Vuorela, Kankainen, 1991
Raahe							
Merijänjärvi	30			2640±55			Reynaud, Hjelmroos, 1980
Rantsila							
Kärenahonkortteikko	90.9	320			4400		Keskitalo, 1982
Huhanneva	87-93	350		5820±90			Picken, 2007
Huhanneva	87-93	180		4420±90			Picken, 2007
Rovaniemi							
Alempi Silmäslampi	197.3		67	8780±160			Juola-Helle 1982
Ylempi Silmäslampi	206.7		180	9030±200			Saarnisto 1981, Hel-781
Kuprujänkä	91			6800			Juola-Helle 1982
Kaakkurilampi	79.2		10	5950±110			Saarnisto 1981, Hel-1334
Kaakkurilampi	79.2		10	6220±121			Saarnisto 1981, Hel-1335
Ruukki							
Tervasneva	49.5	180			4300		Keskitalo, 1982
Järvineva	50-52	220		4130+/-80			Picken, 2007
Järvineva	50-52	210		3490+/-100	3240+/-90	5ph started	Picken, 2007
Salla							
Kaakkurilampi	180			9075±160			Sorsa 1965
Simo							
Peurasuo	17,6			1500			Lukkala 1933
Tervola							
Kivalo A	305	63		6790±100	2580±90		Hyvärinen & Sepponen 1988
Kuprujänkä	91			6800±			Juola-Helle 1982
Utajärvi							
Ahmasjärvi	98			8370±280			Eronen, 1974
Ahmasjärvi	98.5		366		4740±150		Reynaud, Hjelmroos, 1980, Hel-884
Järvenpäänsuo	103	292		7330±150	4480±120	3760±125	Holappa, 1975
Sotkasuo	81	95		5090±170	3320±180	2720±170	Reynaud, Hjelmroos, 1980
Vaala							
Nimisjärvi	135.5		254	10950±210	4750±230*		Reynaud & Hjelmroos 1980,
Vihanti							
Järvelänjärvi	100		192	5850±190	4830±170	4150±190	Reynaud, Hjelmroos, 1980, Hel-887, Hel-960
Ylikiiminki							
Vähä-Vuotunki	93.5			6480±150	6980±220 C	lypeys -limit	Eronen,1974
Lapinlampi	86.9		15		3930±110		Saarnisto, 1981, Hel-1332 "clypeus"
Lapinlampi	86.9		10	6430±90			Saarnisto, 1981, Hel-1333
Ylitornio							
Kaakonlantto	50			920			Reynaud & Hjelmroos 1980
Kivilompolon jänkä	110			7590±230			Eronen, 1974
lso-Mustajärvi	75			5380±65	3910±60		Reynaud, Hjelmroos, 1980, Lu-1431
lso-Mustajärvi	70		6	4820±170			Saarnisto, 1981, Hel-938

* hard water effect

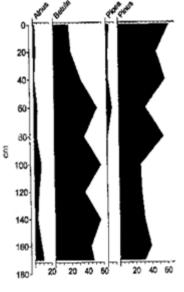

Appendix 2

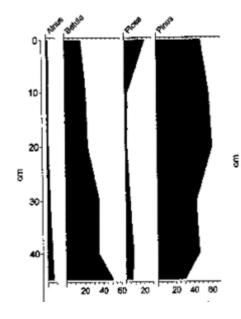

Percentages of dwarf shrub and herb pollen and spores in various mires. Black: dwarf shrubs, beige: herbs, white: spores. For C¹⁴ dates from Järvenpäänsuo (12) and Purkuputaansuo (13), see Appendix 1.

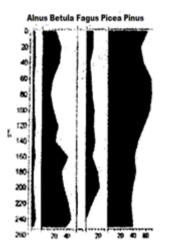



Appendix 3

Pollen diagrams for *Alnus, Betula, Fagus, Fraxinus, Picea* and *Pinus* from mires in the area studied here. For site locations, see Fig. 1.






COS OUT

5. SIMO, Rautuojanaapa 120 m a.s.l., N 7332490, E 3433678 (Analysed by Eira Hiukka) 26. TERVOLA, Kilsiaapa 128 m a.s.l., 7360705, E[´]3402084 (Analysed by Eira Hiukka) 23. UTAJÄRVI, Olvassuo 129,5 m a.s.l., N 7219740, E 3511340 (Analysed by Eira Hiukka)

40. RANUA, Näätäaapa 142 m a.s.l., N 7316386, E 3460463 (Analysed by Eira Hiukka)

27. SUOMUSSALMI, Säynäjäsuo 191 m a.s.l., N 7191934, E 3599077 (Analysed by Eira Hiukka)

20 40 60 80

24. RANUA, Hiisisuo

179 m a.s.l., N 7330291, E 3502250

(Analysed by Eira Hiukka)

Bellis

OF SCHOOL

20 40 60

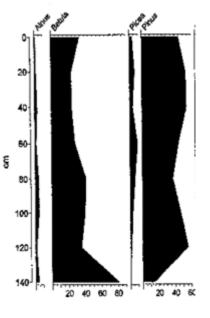
PLANE

0·

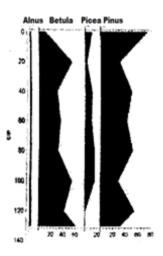
20

40

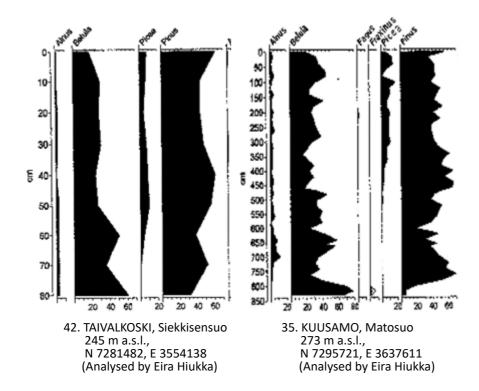
80


80

100-


120

140^J


21. KUHMO, Mustinsuo 238 m a.s.l., N 7153412, E 3589122 (Analysed by Eira Hiukka)

19. RANUA, Paloaapa 190 m a.s.l., N 7339209, E 3479708 (Analysed by Eira Hiukka)

7. SUOMUSSALMI, Säkkisuo 239 m a.s.l., N 7218571, E 3597833 (Analysed by Eira Hiukka)

Appendix 4

v. Post (1922)	H1			H ₂			Η₃			H ₄			H₅			H ₆			H ₇			H ₈		H9	
	x sd	mo	n	x sd	mo	n	x sd	mo	n	x sd	mo	n	x sd	mo	n	x sd	mo	n	x sd	mo	n	x sd	mo n	x sd m	o n
Lignin Alnus spp.	3,9 5,3	1	14	8,4 8,5	2	26	9,8 13,6 9.0	1	163 1	16,8 15,9	5	168	26,6 22,4 32,7 22,6	10	152 3	35,8 24,7 30.0 14,1	10	48 2	26,8 27,3	5	22	37,5 46,0	2		
Betula spp.	1,5 0,5	1	6	5,0 4,7	1	7	5,0 7,8 5,4	15	-	11,1 12,0	8	13	17.5 18.4	10	22	55,0 35,4		2	35,0 7,1		2				
Picea abies	1.0	-	1	4.0 1.4	-	2	2,8 1,7	10	4	2,9 1,7	1	8	6,3 5,8	10	6	,,-		~	,,.		~				
Pinus sylvestris	1.6 0.7	1	8	2.0 0.8	2	4	4,2 5,7	1	11	6.6 7.6	3	5	8,0 9,9		2										
Nanolignin	6,1 6,4	5	62	7,2 7,7	-	74	7,5 7,5	5	197	8,8 9,2	5	130	12,5 9,8	20		30,2 26,1	40	5	36,3 14,3		4			3,0	1
Andromeda polifolia	4.0 2.7	5	8	6.0 5.1	3	8	1,9 1.0	2	8	6.7 2.9	5	3												-,-	
Betula nana	2,4 1,1	2		1,2 0,4	1	5	3,9 3,9	2	12	3,0 1,7	5	12	4,5 3,5		2										
Calluna vulgaris	5,0		1	4,0 5,2	1	3	1.0		1				2,0		1										
Empetrum nigrum	7,0 6,2	10	9	2,2 1,6	1	6	1,0	1	3	5,0		1	1,0		1										
Ledum palustre	2,0 1,4		2	2,0		1	3,5 2,1		2	,															
Rubus idaeus				,									1,0		1										
Vaccinium microcarpum	2,8 2,1	1	4	3,8 3,8	1	5	1,5 0,7		2	1,0		1	· ·												
V. myrtillus	2,0 1,4		2	10,0		1				-															
V. oxycoccos	6,3 5,4	1	9	3,6 3,2	1	8	5,9 3,2	5	46	4,2 3,0	2	20	2,0 0,0		2										
V. uliginosum	4,0 3,2	3	6	1,0		1																			
V. vitis-idaea	2,0		1																						
Cyperaceae, total	13,9 10,7	15	39	18,2 18,1	10	77	24,1 17,9	10	502	23,5 18,8	10	395	26,8 22,1	10	288	23,7 20,5	10	77	32,6 25,3	5	39	23,7 31,7	3	15,0	1
Carex sp., total	16,5 10,4	5	20	24,5 22,2	5	34	28,7 17,6	30	321	25,6 18,6	10	269	31,0 22,6	20	189	24,3 20,3	10	46	31,7 23,3	10	23	34,5 36,1	2	15,0	1
Eriophorum spp.	11,2 11,4	5	15	12,5 11,7	5	30	17,4 15,8	30	139	20,0 18,8	10	114	19,4 18,8	20	92	24,0 21,4	10	29	33,8 28,8	10	16	2,0	1		
E. angustifolium	20,4 14,9		13	10,0 7,1		2	8,3 6,5		3	8,8 7,7		4	3,5 2,1		2										
E. latifolium				3,5 2,1		2	40,0		1																
E. vaginatum	11,6 13,1	2	10	13,7 11,9	10	16	22,5 16,1	10	82	27,8 21,9	5	55	21,7 15,3	15	19	37,0 24,0		2	48,0 38,9		4				
Poaceae, total	15,0		1	20,0 26,0	5	3	17,1 10,7	10	45	19,7 12,5	5	30	22,6 19,8	25	17	6,0 5,7	20	2	16,6 8,4		4				
Galamagrostis spp.							25,0		1																
Molinia caerulea	15,0		1	5,0		1	18,2 8,3		5	13,0 9,9		2	1,0		1										
Phragmites australis				5,0		1	16,1 11,1	10	34	19,9 12,3	15	15	25,1 23,6	10	7				3,0		1	20,0	1		
Trichophorum spp., total	12,5 8,7	5	4	14,8 13,3	10	13	10,7 12,6	10	42	10,5 13,3	5	11	8,4 6,5	5	7	6,5 4,9		2							
T. alpinum				20,0 7,5		4	15,6 17,3	10	18	35,0 14,1		2	20,0		1										
T. cespitosum	15,0 8,7	20	3	5,5 3,0	5	6	9,1 6,7	3	9	3,5 2,1		2													
Herbs, total	6,6 5,5	9	9	8,1 6,4	5	28	12,8 10,2	5	554	14,1 11,4	5	449	14,1 13,3	10	297	14,7 14,3	5	70	17,8 18,3	10	19	23,0 13,9	15 3	18,8 7,5 15	4
Calla palustris	5,0		1				5,3 5,2	2	6	2,0 1,4		2	11,1 8,8	5	7	12,0 10,4	5	5	2,0		1				
Cicuta virosa							10,0		1	1,0 0,0		2													
Equisetum spp., total	4,0		1	6,3 4,7	5	8	8,4 6,5	5	180	11,5 10,8	5	147	15,2 13,4		122	17,8 16,5	5	35	17,8 18,3	10	19	15,0 0,0	2	30,0	1
E. fluviatile							13,3 7,6	20	57	12,8 6,9	10	47	16,6 9,3	15	16	19,0 15,2	10	5	29,7 25,5		3				
E. sylvaticum	4,0		1	3,7 2,3	5	3	4,8 1,8	5	5	8,5 9,2		2	10,6 6,2		5	15,0 7,1		2							
Filipendula ulmaria										1,0		1													
Lycopodium inundatum	20,0		1																						
Menyanthes trifoliata	6,0 1,4	5	2	10,0 7,7	5	12	12,7 8,8	10	180	17,8 12,3	10	173	12,1 10,9	10	74	19,5 13,8	10	12	12,0 4,5		5			15,0	1
Pedicularis palustris				5,0		1																			
Potamogeton pusillus										1,0 0,0		2	1,0		1										
P. alpinus										1,0 0,0		2													
Potentilla palustris	8,0		1	2,0		1	12,2 8,8	5	41	9,2 7,8	5	44	16,2 19,6	5	31	7,6 6,4	5	8						15,0	1
Rubus chamaemorus	5,0		2	2,0		1																			
Scheuchzeria palustris				9,2 5,9	5	5	19,8 12,4	20	139	14,5 9,6	15	80	13,7 12,3	5	60	5,3 2,2	5	10	16,7 11,5	10	3	39,0	1	15,0	1
Selaginella selaginoides							1,1 0,4	1	7																

Mean proportions of plant species identified in the macrosubfossil analyses performed on the peat samples (n = 1079), by degree of humification on the scale of von Post (1922). x = mean, sd = standard deviation, mo = mode, n = number of observations, *= species identified.

	35 8 34 7	10	75		20	4.7.4	110 170	-	750		-	464			224						24		2
Sphagnales , total	25,8 21,7 20,4 14,9	10 20	75 14	30,5 26,4 24,5 16,2	20 30	131 22	14,8 17,0	5	758 50	9,5 11,3	5 2	461	5,5 5,9 5,4 8,8	1 3	221 33	5,2 6,5	1	54 11	4,5 5,7	1 2	21 4	2,7 2,1	3
Sphagnum angustifolium S. balticum		20	5		20	13	13,9 15,3	1 30		11,8 15,9	5	60 8		5	55 1	3,2 2,5	2	11	2,5 1,7	2	4		
	12,6 12,4			16,6 13,6	20	13	23,7 14,9	30	39	6,6 5,9		8	10,0		3								
S. capillifolium	7,0		1	10,0		1	30,0 21,2		2	2,5 0,7	10	-	5,7 4,0										
S. centrale							11,5 14,8		2	7,3 6,8		3	15,0		1	1,0		1					
S. compactum										10,0 0,0		2	10,0 0,0		1								
S. contortum							7,3 5,9		4														
S. cuspidatum coll		_	_			_	18,9 19,6	3	30	13,6 18,2	2	25	13,3 8,5		11	10,0 0,0		2					
S. fallax	19,2 20,8	5	6	19,6 12,5	30	8	6,8 5,3	5	35	7,5 5,5	5	35	3,7 2,9	2	22	1,8 1,0	1	6				2,0	1
S. fuscum	46,9 30,4	90		62,0 28,6	90	30	48,4 28,1	60	51	13,3 10,3	10	22	2,9 2,8	2	10	12,5 3,5		2					
S. girgensohnii	35,0 35,4		2	25,0 15,8		4	4,4 3,2	2	8	11,0 4,9	15	6	3,8 4,4	2	9	13,0 7,7	15		20,0		1		
S. jensenii	5,0		1	10,0		1	26,5 17,5	40	11	2,0		1	1,0		1	1,0		1					
S. lindbergii	10,0		1				23,1 20,5	15	14	8,0 3,2	10	6	4,5 1,0	5	4		_	_					
S. magellanicum	14,6 11,4	10		13,2 13,5	10	13	12,9 9,9	5	53	13,2 10,3	10	33	7,0 6,1	5	26	4,0 1,7	5	3	1,0		1		
S. majus	15,5 10,6		2	9,3 9,3		3	12,1 10,0		20	15,0 5,8	1	15	4,3 4,2	1	15								
S. obtusum	25,0		1				2,0 0,0		2														
S. papillosum	26,3 16,6		7	44,4 17,6		8	16,5 17,1	10	78	14,9 19,8	10	31	5,5 4,6	2	13	3,8 3,6	3	5					
S. platyphyllum	5,0		1				8,5 9,2		2				9,0 5,7		2								
S. recurvum coll				20,0		1	8,2 7,4	5	58	11,7 13,7	3	26	5,0		1								
S. riparium	41,0 29,2		3	31,3 12,5		4	10,1 11,6		32	5,5 4,8	5	22	3,8 3,5	2	10	1,0 0,0		2					
S. rubellum	42,5 24,7		2	29,0 15,6		2	11,0 7,4	10	24	4,3 3,1	2	8	10,2 5,6	15	5								
S. russowii	27,6 15,1		5	10,7 10,7		6	18,3 19,1	1	14	9,9 6,7	15	9	2,9 2,3	2	7	4,0 3,0		3	1,0		1		
S. squarrosum	40,0		1	22,5 3,5		2	12,3 13,0	3	9	6,3 5,2	5	29	4,5 4,5	5	8	3,0		1	3,0		1		
S. subfulvum	10,0		1				9,1 7,4	2	7	11,0 7,7	10	6	4,7 4,7		3								
S. subsecundum	5,0		1	7,0 5,3		3	6,0 5,2	2	80	3,7 2,4	1	18	2,2 1,2	2	6	1,0		1					
S. tenellum	10,0		1	5,0 0,0		1	11,6 9,7	10	89	3,0		1											
S. teres				9,0 5,3		3	11,6 9,7		89	8,0 6,7	2	63	4,3 3,9	1	15	2,0 1,0	1	5				1,0	1
S. warnstorfii	35,0 21,2		2	36,0 26,1	50	5	7,7 7,0	5	38	8,8 9,6	5	12	7,6 6,7	1	10	9,0 1,4		2	2,0		1	-	
S. acutifolia- type							9,0		1	35,0		1	3,0		1	3,0		1	1,0		1		
S. cuspidata- type							10,0 5,0		3	2,6 1,6		9	5,0		1								
S. palustria- type													4,0 1,4		2								
S. squarrosa- type										3,8 2,8		4	5,0		1								
Bryidae, total	9,8 10,7	10	30	11,6 14,8	5	64	10,5 12,7	5	495	10,1 9,8	10	359	7,9 8,2	5	107	3,4 2,2		22	8,2 9,6	5	12	10,4 12,4	1 5
Aulacomnium palustre	3,0 1,4	2	4	3,6 2,4		5	3,8 3,3	2	6	5,3 4,4	2	13				1,0		1	1 - C				
Bryum sp.							5,0		1														
Bryum weigelii							,			15,0		1											
Calliergon spp., total	6,5 4,0		6	10.7 18.8		11	12.7 14.9	1	192	11,5 11,1	10	176	8.9 9.3	5	51	4,1 2,5	5	12	4,0 1,5		3		
C. cordifolium	-//-			5,0 2,0	3	3	5,0 4,9	1	37	8,1 6,1	5	44	5,9 4,4	10	15	3,7 2,3	5	3					
C. giganteum				-)/-	-	-	-))-	-		-,,-	-		15,0		1	-,,-	-	-					
C. megalophyllum				67,0		1	51,5 2,1		2				,-		-								
C. richardsonii				,-		-	11,6 2,2		5	2,3 2,3	1	3											
Campylium stellatum				12,2 5,2		5	5,0 0,0	2		12,5 3,5	-	2	7,5 3,5		2								
Cinclidium stygium				5,0 2,8		2	5,0 6,0	-		1,0		1	3,5 2,1		2								
Dicranum sp. total	5,0		1	26,8 24,3		4				1,0		î	0,0 2,1		-								
D. polysetum	-,-		-	26,8 24,3		4	20,2 19,7	10	11	_,_		-											
Drepanocladus spp., total	18,0 14,1		4	15,1 16,7	5	9	8,2 10,1	5	134	7,2 4,8	10	53	4,6 4,8	3	20							3,0 2,8	2
D. fluitans	10,0 14,1		-	7,0		1	8,0 10,5	5	15	6,5 3,7	10	19	2,6 1,2	3	9							1,0	1
Hamatocaulis lapponicus				7,0		-	10,3 3,6	10	8	0,0 0,7	10	1.7	2,0 1,2		2							2,0	-
H. vernicosa							14,0 8,4	10	7	10,0		1	3,0		1							5,0	1
Helodium blandowii							1,8 1,0	1	4	5,4 4,3	10	7	3,0		-	1.0		1				5,5	-
Hylocomium splendens							2,0 1,0	-		10,0	10	1	3,7 2,3	5	3	1,0		1					
Loeskypnum badium	28,5 12,0		2	40,0		1	15,0 7,0		2	*			3,5 2,1	0	2								
Meesia trifaria	20,0 12,0		2	40,0		-	3,0 1,0		3	1,0		1	0,0 2,1		2								
M. triquetra							9,0 5,9	5	56	5,9 4,1	10	7											
Paludella squarrosa							4,2 3,3	2	12	15,9 10,7	10	34	6,5 5,0		2				3,0 2,8		2	1,0	1
Pleurozium schreberi	17,5 24,0		3	10,5 2,5	10	4	4,2 3,3 4,9 4,8	2	7	3,5 2,		2	1,0		1	2,0		1	3,0 2,0		2	1,0	*
Pohlia nutans	4,4 3,4	2	5	2,9 2,5	10	8	2,2 1,3	1	5	2,0 0,0	-	2	-,-		-	2,0		-					
. on a nations	-1- 0,4	-	2	-1 ⁻ 2,5	-		-,- 1,5	-	5	-, • 0,0		~											

Polytrichum spp., total	10,3 7,6		6	9,2 2,8	10	6	8,9 6,8	5	13	5,4 6,3	1	16	6,6 6,5	5	14	3,3 2,1	5	4	1,5 0,7	2		
P. commune		_	-	11,5 2,1		2	17,0	-	1	6,5 5,0		2	15,0 10,5		3	4,0 1,7	5	3				
P. strictum	7,4 2,9	/	5	8,0 2,4	10	4	8,6 6,9	5	11	9,5 8,4		2	3,5 2,1		2				2,0	1		
P. swartzii													5,0		1							
Pseudobryum cinclidioides							15,1 19,4	5	12	6,0 4,6	5	15	9,2 7,4		6	2,0 0,0	2	2	2,0			
Pseudo-calliergon trifarium				7,3 2,5		3	13,4 9,8	10	62	13,7 8,4	15	15	6,5 7,8		2				5,0 0,0	2	30,0	1
Rhizomnium magnifolium							17,0		1													
R. pseudopunctatum				5,0		1				3,0		1										
R. punctatum										7,5 3,5		2	5,0		1							
Rhytidiadelphus triquetrus										15,0		1										
Sanionia uncinata										*												
Scorpidium cossonii				2,0		1				16,7 10,4		3	11,0 8,5		2							
S. revolvens							11,5 14,3		22	4,0 4,1		4	5,5 6,4		2							
S. revolvens coll				8,3 5,8	5	3	11,6 12,3		39	6,0		1										
S. scorpidioides				29,2 21,6		5	15,8 16,3	5	20	34,3 11,8	30	6	19,6 9,5	25	5				23,3 5,8	3	15,0	1
Straminergon stramineum	4,8 3,8	2	4	3,5 1,0		4	15,3 19,2	2	80	13,6 12,8	10	104	10,3 11,3	2	29	4,5 2,7	5	8	2,0	1		
Tomentypnum nitens				•			4,0 4,4	1	9	9,4 8,5	5	12										
Warnstorfia badius	28,5 12,0		2	40,0		1	15,0 7,1		2				3,5 2,1		2							
W. exannulata	7,5 3,4		2	17,3 24,0		3	6,6 6,9	5	47	7,0 3,9	5	25	8,0 7,9		3	5,0		1	5,0	1		
W. sarmentosa	10,0 0,0		2				5,0 5,0	1	5	9,5 7,8		2	9,3 6,8	15	4	2,0		1	-,-			
W. trichophylla	,,-			1,0		1	29,8 11,1		4	-))-			-1/-			-/-						
Hepaticae spp, total	3,0		1	2,0 1,4		2	1,0		1													
Marchantia spp.	3,0		1	9,0		1	2,0		1													
Lichenes				2,0		1	1,0		1													
Lichenes				2,0		1	1,0		1													

Physical and chemical properties of ombrotrophic and minerotrophic peats based on field estimates and laboratory analyses.

(x = mean, sd = standard deviation, n = number of samples)

								Erioph-									
Physical		Mois-	Slipperi-	Stain-	Plia-		Sedge	orum				Water	Dry		Amorph.	Organic	Ash
properties		ture	ness	ing	bility	Lignin	roots	fibres				content	density		< 0,125	matter	content
		1-5	1-5	1-5	1-5	1-5	1-5	1-5				%	kg/m³	H1-10	%	%	%
Ombrotrophic	x	2.9	1.4	1.0	1.1	1.1	1.0	1.4				91.0	45.4	2.3	9.6	8.9	1.7
peat	sd	0.7	0.6	0.2	0.3	0.2	0.1	0.6				2.5	12.3	0.7	7.8	2.4	0.7
	n	58	58	58	58	58	58	58				60	60	60	30	60	60
Minerotrophic	x	3.1	1.5	1.5	1.2	1.3	2.1	1.2				90.0	68.6	1.9	32.2	8.9	9.9
surface peat	sd	0.6	0.7	0.9	0.5	0.7	0.9	0.6				3.8	36.5	0.9	21.8	3.5	8.8
	n	59	59	59	59	59	59	59				58	58	59	29	58	58
Minerotrophic	x	3.2	3.0	2.4	2.8	1.3	2.9	1.6				90.1	90.9	3.8	41.0	9.2	6.1
intermediate peat	sd	0.5	0.9	1.2	0.9	0.8	1.1	0.9				3.9	43.3	1.0	18.6	3.9	8.0
	n	890	890	890	890	890	890	890				889	890	898	434	889	80
Minerotrophic	x	3.1	3.6	4.0	3.7	2.2	2.9	1.3				82.7	171.2	5.6	58.8	12.2	22.4
basal peat	sd	0.6	0.9	1.0	0.9	1.2	1.0	0.6				8.5	105.9	4.8	17.4	3.5	19.2
	n	73	73	73	73	73	73	73				70	69	73	42	69	70
Chemical																	
properties		pH	Р	Na	к	Ca	Mg	A	Fe	Mn	Cu	Zn	Pb	Fe/Mn	Ca/Mg	Ca/K	Cu/Zn
Ombrotrophic	x	3.3	313	156	707	2067	738	256	827	85	4	30	9	90	3	7	0.2
peat	sd	0.1	165	76	769	1544	224	234	982	161	2	14	7	118	2,9	10	0.2
	n	60	50	55	55	55	55	55	55	55	55	55	55	55	55	55	55
Minerotrophic	x	4.5	779	250	1716	4579	1337	1370	13970	620	13	62	20	74	3	5	0.4
surface peat	sd	0.97	448	237	1246	4180	946	2549	32702	2028	15	105	16	120	2	6	1.1
	n	58	39	57	57	56	57	57	57	57	57	57	55	57	57	57	57
Minerotrophic	x	4.9	547	125	456	4712	814	2057	7436	134	12	46	7	166	6	46	1.0
intermediate peat	sd	0.88	462	197	1723	5115	694	2330	16380	838	15	129	11	202	4	50	2
	n	896	630	854	863	859	862	863	863	857	864	863	863	855	857	857	863
Minerotrophic	x	5.1	951	261	590	4642	1146	6410	11714	147	33	43	13	162	5	25	1.5
basal peat	sd	077	717	540	2019	5651	1154	4863		287	38	85	36	245	3	45	2
	n	74	48	66	68	67	68	67	67	67	68	68	67	66	67	67	67

Physical properties and geochemistry of surface peats in acidic and alkaline bedrock areas and sandy-bottomed minerotrophic mires with high element concentrations. Ombrotrophic samples are excluded.

		Acid ic			Alkaline			Sandy-			Total	
		bedrock			bedrock			ottomed				
	n	mean	sd	n	mean	sd	n	mean	sd	n	mean	sd
Dry density kg/m?	53	62	34	15	77	0	17	66	27	85	65	32
Water content %	53	90	5	15	89	2	17	89	3	85	90	4
Ash content %	53	9	10	15	8	7	17	8	8	85	9	9
рН	51	4	1	15	5	1	17	4	1	83	4	1
Amorphous matter%	40	30	21	10	33	22	9	29	18	59	30	20
H ₁₋₁₀	53	2	1	15	2	1	17	2	1	85	2	1
Elements (ppm)												
Al	53	1 315	2 4 5 6	15	1 347	1 972	17	517	369	85	1161	2124
Ca	52	4 297	4 299	15	6 893	6 663	17	3 605	2 729	84	4620	4635
Mn	53	811	2 727	15	301	204	17	981	3 614	85	755	2673
Cu	53	11	9	15	11	10	17	9	7	85	10	9
Mg	53	1 362	973	15	1 630	1 230	17	759	245	85	1289	965
Na	53	345	724	15	140	92	17	151	96	85	270	581
Pb	53	17	14	15	25	18	17	19	9	85	19	14
К	53	1 5 7 5	1 084	15	1 463	1 047	17	971	674	85	1435	1026
Zn	53	42	23	15	58	30	17	51	46	85	47	30
Fe	53	13 780	40 393	15	11 226	23 761	17	10 059	22 676	85	12585	34707
Р	51	792	365	15	644	192	17	589	264	83	724	330

Appendix 7

Physical and chemical properties of mires in the acidic and alkaline bedrock areas and the areas of Jotnian sediments by mire type (alk = alkaline bedrock, acid = acidic bedrock, j = Jotnian sediments, x = mean, sd = standard deviation, n = number of samples). For mire type symbols, see Fig. 8.

				Ash %															Fe/Mn	Ca/Mg	ca/K	cu/Zn	Fe/P
Site type		mV	рН	4	w %	kg/m³	Org.%	Al	Са	Mn	Cu	Mg	Na	Pb	К	Zn	Fe	Р	Ľ.	ő		Ö	
						452.0				5.05				-		~~							
alk HSprM	×	106	5.27	25.0	82.8	158.9	11.5	3837	5266	505	28	1564	526	7	607	62	14096	815	122.1	3.5	22.7	1.2	
	sd	140	0.74	21.7	7.5	90.2	3.8	2878	5361	1255	19	884	1063	9	619	80	12448	416	127.3	1.6	45.8	1.7	30.8
	n	40 61	41 5.19	40 11.6	40 87.9	40 111.7	40 10.3	40 2916	39 4005	38 130	40 15	40 791	39 152	35 14	40 2253	40 108	40 13053	36 739	35 150.0	40 5.4	40 19.8	40 0.9	36 20.0
ac HSprM	x sd	93	0.63	9.7	5.0	50.4	2.2	1750	2815	92	8	434	79	14	4580	207	9592	454	135.1	3.0	25.0	0.8	
	n	24	34	34	34	33	2.2	34	2015	33	34	34	34	34	4560	33	3552	31	33	34	25.0 34	33	31
alk TSprM	x	140	4.21	4.3	87.3	120.8	12.1	4191	3253	85	19	847	82	10	832	31	1935	912	50.7	4.0	25.5	2.4	2.3
актэрни	sd	58	0.38	0.9	2.4	38.0	2.2	3011	1112	96	10	341	36	8	1124	40	797	349	33.7	1.1	25.7	2.0	1.0
	n	7	7	7	7	7		7	7	7	7	7	7	7	7	7	7	7	7	7			7
ac TSprM	×	208	3.41	4.3	86.5	121.3	13.0	2719	1477	58	7.7	541	108	10	801	36	4046	1596	124.7	3.3	10.8	0.6	5.2
	sd	89	0.21	2.8	3.8	49.9	3.9	2309	760	66	4,0	346	58	8	967	27	4741	365	137.7	1.2	12.4	0.8	3.3
	n	3	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2	2	9	9	9	2
alk SprPiM	x	156	3.81	7.3	85.8	108.6	12.7	2185	1550	81	10	536	63	14	1066	29	1723	1769	20.4	2.9	2.5	0.4	0.8
	sd	24	0.27	11.1	5.3	76.2	2.8	2022	530	66	8	198	15	9	983	8	899	1039	2.8	0.3	2.1	0.3	0.5
	n	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	2	2	7	7	7	2
ac SprPiM	x	174	4.08	8.5	88.7	95.9	9.8	3000	2770	63	10	591	104	10	548	25	5013	759	160.0	5.3	13.8	0.7	5.5
	sd	86	0.45	12.3	5.6	59.5	3.1	3184	2048	107	12	310	67	9	675	18	7587	548	87.0	3.5	15.5	0.9	3.6
	n	23	28	28	28	28	28	28	28	27	28	28	28	28	28	28	27	10	9	28	28	28	10
alk DsPiB	x	217	3.36	2.3	89.7	71.5	10.1	573	2238	126	3	744	72	15	681	33	752	591	47.2	3.8	4.7	0.2	1.1
	sd	21	0.33	0.8	2.8	22.5	2.7	335	561	125	1	291	14	6	633	20	616	282	102.6	2.7	2.2	0.1	0.6
	n	7	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8
ac DsPiB	x	161	3.75	3.9	90.1	57.5	9.5	506	4845	48	7	889	110	15	1029	31	2232	630	165.5	5.3	9.8	0.3	3.1
	sd	93	0.47	2.1	2.8	16.0	2.8	364	3066	66	3	196	52	4	801	14	2639	208	178.5	2.7	12.8	0,2	2.7
	n	11	11	11	11	9	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11	11

alk SphfB	x	261	3.29	1.8	90.5	47.8	9.3	230	1901	84	3	793	96	10	647	21	1441	245	156.2	2.5	9.6	0,3	8.0
	sd	42	0.33	0.5	1.7	19.4	1.6	101	680	141	2	261	51	8	881	18	1370	112	190.3	0.9	7.9	0.4	8.9
	n	20	25	25	25	25	25	20	20	20	20	20	20	18	20	20	20	20	20	20	20	20	20
ac SpgfB	x	286	3.40	1.9	91.3	55.1	8.6	444	2940	84	4	714	192	9	554	33	671	356	97.8	4.5	12.2	0.1	2.3
	sd	48	0.39	0.8	2.3	15.0	2.2	424	2072	207	2	231	89	4	644	15	335	144	100.1	4.1	15.6	0.1	1.8
	n	16	23	23	23	23	23	23	23	23	23	23	23	23	23	23	23	16	16	23	23	23	16
j SphfB	x	344	3.29	1.1	92.3	39.8	7.6	135	1051	33	5	640	164	9	509	34	575	262	129.7	1.6	2.9	0.1	2.7
	sd	35	0.12	0.4	1.8	6.2	1.7	47	499	58	3	148	33	6	407	12	658	123	172.8	0.5	1.7	0.1	3.2
	n	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14
alk ErPiB	х	225	3.43	2.1	88.4	104.4	11.3	1162	1255	33	5	511	66	5	168	13	1676	412	164.1	2.5	26.7	0.7	7.6
	sd	22	0.26	0.9	2.6	31.3	2.5	1267	458	43	3	131	27	6	302	16	978	242	157.4	0.7	35.0	0.7	8.3
	n	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21	21
ac ErPiB	х	200	4.00	2.3	91.2	73.6	8.6	579	2965	33	4.76	514	84	7	412	19	2354	470	240.1	6.4	34.5	0.4	5.5
	sd	36	0.50	0.9	1.7	18.3	1.7	430	3123	56	4	185	50	5	988	15	1406	157	177.6	6.6	34.8	0.3	2.4
	n	19	24	25	25	25	25	25	25	25	25	25	25	25	25	25	25	20	20	25	25	25	20
alk OmOIPF	х	198	3.99	3.2	89.0	86.8	10.3	1603	1550	27	7	478	101	7	377	22	3206	344	222.7	3.6	17.5	0.6	10.1
	sd	58	0.44	2.2	4.2	42.6	3.2	1558	1131	36	4	281	82	8	782	17	1881	164	85.9	1.7	15.1	0.6	4.9
	n	17	32	32	32	32	32	28	29	29	29	28	28	29	28	29	28	17	20	28	28	28	16
ac OmOIPF	x	176	4.07	2.7	92.2	70.6	7.6	934	2497	17	5	516	116	5	151	24	2234	371	231.5	5.3	37.3	0.4	7.9
	sd	50	0.44	1.6	3.3	31.7	3.1	1703	1349	20	4	242	67	8	344	32	1210	188	173.2	2.9	23.8	0.4	3.9
	n	70	94	99	98	98	98	99	98	99	97	99	99	98	99	99	99	75	92	98	98	98	75
j OmOIPF	x	294	3.47	1.6	90.9	86.5	9.0	155	966	8	2	424	90	4	83	9	2073	238	278.1	2.3	12.2	0.4	9.4
	sd	13	0.11	0.6	2.1	22.9	2.0	58	104	2	1	50	16	2	22	6	403	89	94.3	0.1	2.4	0.3	2.8
	n	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
alk MePF	x	200	4.57	6.3	89.3	104.9	9.6	2285	2333	50	9	633	88	6	129	11	4086	534	155.4	4.8	37.8	1.3	8.8
	sd	118	0.48	10.3	4.5	50.2	2.6	1764	1088	54	8	350	67	8	171	11	3868	206	109	3.6	28.7	1.3	10.9
	n	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63	63
ac MePF	x	110	4.72	3.8	91.7	76.3	8.0	1465	2845	37	6	540	119	6	180	32	5647	574	259.4	6.0	35.0	0.7	13.4
	sd	74	0.40	1.7	1.8 88	20.6 88	1.7 88	1247	2139	36	3	405	82 88	10	447	45 88	3648	249	219.6 79	2.5	25.5	1.0 88	7.4
-III CC-I-F	n	62	88	88				88	88	88	88	88		88	88		88	65		88	88		65
alk SSdgF	x sd	59 32	4.96 0.32	4.1 1.6	88.7 1.7	98.5 29.7	11.0 1.8	2488 1376	2885 1236	64 52	10 6	633 183	74 21	1	77 25	16 13	8973 6242	314 70	135.4 12.9	4.5 1.1	42.1 19.4	0.8 0.4	38.0 14.4
		8	16	1.6	1.7	16	1.6	1576	1230	14	14	105	14	14	14	14	0242 14	8	12.5	13	13.4	14	14.4
ac SSdgF	n x	14	5.31	7.0	92.2	73.0	7	3319	3650	67	14	706	154	6	139	28	10251	719	224.2	5.6	29.9	1.3	13.7
ac sougr	sd	67	0.39	7.1	2.0	22.1	1.4	5291	1252	46	8	419	107	6	105	60	16518	750	294.2	2.9	15.0	1.7	9.5
	n	36	46	46	46	46	46	46	40	46	46	45	45	46	46	46	46	41	46	45	45	45	41
j SSdgF	x	280	3.55	2.8	86.4	151.9	13.2	1139	654	16	-40	368	81	40	78	-0	2031	443	128.0	1.8	9.7	0.8	4.9
1 00081	sd	200	0.07	2.0	3.0	40.4	2.6	911	221	3	1	45	25	1	30	4	161	173	12.6	0.4	6.7	0.4	1.6
	n	2	2	2.0	2	2	2.0	2	221	2	2	2	23	2	2	2	2	2	12.0	2	2	2	2
		-	2	-		2	2	4	2	2	-	2	-	-	-	-	4	4	2	2		-	-

alk RF	x	75	5.61	8.8	89.2	104.5	9.8	3207	7500	303	28	1231	108	7	172	30	9504	572	65.5	7.2	80.6	2.1	30.8
	sd	93	0.58	6.7	2.8	29.9	2.0	4789	5179	1442	42	884	65	12	166	46	13606	380	47.9	4.0	89.7	3.6	59.6
	n	85	108	108	108	108	108	108	108	108	108	108	108	108	108	108	108	85	94	108	108	108	85
ac RF	x	66	5.98	6.2	94.2	56.1	5.5	1695	8397	200	12	918	246	1	159	21	2840	483	63.4	9.1	76.6	0.6	9.6
	sd	53	056	4.4	1.5	13.2	1.3	1229	3577	112	10	347	96	3	209	12	2597	44	2.5	2.4	43.2	0.3	1.6
	n	5	73	73	73	73	73	73	73	73	73	73	73	73	73	73	73	5	5	73	73	73	5
ac S	x	-46	5.64	19.2	89.6	96.5	8.3	4531	4043	90	29	1253	323	14	412	84	28925	950	520.3	4.1	12.5	0.5	29.6
	sd	67	0.42	10.7	2.3	21.4	1.1	1730	1608	56	10	833	194	9	307	75	26077	403	730.0	1.6	6.2	0.5	25.1
	n	11	11	10	10	10	10	10	1000	10	10	10	10	10	10	10	10	10	10	10	10	10	10
alk OIMC	x	183	4.20	2.4	87.1	68.7	15.9	1015	1958	125	4	492	67	4	67	6,8	4926	424	177.0	4.0	48.6	0.7	
	sd	49	0.43	2.1	1.9	41.5	15.8	970	971	165	2	195	28	3	36	2,3	3384	195	152.2	1.0	56.5	0.4	
	n	9	24	24	24	24	24	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9
ac OIMC	x	168	4.18	3.0	87.8	103.7	12	1167	2603	15	4	347	70	6	355	16	2184	402	637.8	8.9	27.1	0.5	5.3
	sd	8	0.47	0.8	4.0	40.9	4	1265	2534	23	2	266	61	6	863	12	407	62	102.7	8.3	23.1	0.4	0.6
	n	8	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	3	3	12	12	12	3
alk MeMC	х	93	5.19	7.3	88.7	101.9	10	3751	4568	190	17	1108	136	5	236	19	11754	810	85.7	5.5	53.3	1.4	25.8
	sd	90	0.55	8.1	3.3	39.9	3	3356	1772	209	17	539	123	8	463	22	8791	1202	45.0	7.8	50.7	1.3	25.5
	n	57	73	63	63	63	63	57	58	58	58	58	56	58	58	58	58	48	53	58	58	58	48
ac MeMC	x	99	4.60	6.7	87.7	119.0	11	3598	2142	61	13	413	104	4	156	35	9632	916	204.6	5.5	27.5	0.7	19.6
	sd	78	0.63	10.8	5.6	66.1	3	2664	1387	101	10	290	104	9	205	25	26733	802	209.3	2.2	20.9	1.0	31.3
	n	28	67	67	67	67	67	67	67	67	67	67	65	67	67	67	67	33	64	67	67	67	33
alk EuMC	x	64	5.86	14.0	86.9	123.2	10	2812	13005	766	17	2268	136	9	391	43	24894	711	90.6	6.1	66.3	1.1	35.4
	sd	94	0.59	14.2	6.8	91.1	3	4026	10992	2863	17	1386	101	11	660	85	48635	321	113.4	2.8	59.7	1.2	58.2
	n	64	72	72	72	70	70	70	70	65	68	70	65	64	70	70	70	61	65	70	70	70	61
ac EuMC	х	83	5.46	10.7	89.6	96.8	8	995	6093	82	9	621	135	11	194	13	12039	699	147.1	8.7	51.5	0.7	15.5
	sd	87	0.24	15.7	6.4	82.7	1.4	420	4949	51	5	162	79	7	282	8	10293	248	100.0	5.6	39.2	0.3	11.0
	n	23	39	38	38	38	38	35	36	35	35	35	35	35	35	35	35	35	35	35	35	35	35
alk L	x		5.93	28.1	87.1	128.1	9	4451	12107	235	69	1151	283	1	256	90	51069			10.9	53.7	0.9	
	sd		0.35	14.0	2.2	19.4	0.2	1211	4139	15	28	499	136	1	151	24	24877			3.0	169	0.6	
	n		4	3	3	3	3	3	3	3	3	3	3	3	3	3	3			3	3	3	
jL	x		3.80	15.8	82.5	205.7	15	3295	476	21	14	245	234	8	125	9	1382	633	84.7	1.9	4.2	1.7	2.2
	sd			10.9	0.4	34.2	2	228	188	13	3	13	100	3	81	2	231	64	62.3	0.7	1.2	0.1	0.1
	n		1	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
ac L	x		5.20	22.8	88.8	102.6	9	9105	4388	32	24	741	358	1	325	33	5649			5.9	14.3	0.7	
	sd		0.0	3.7	0.9	8.1	0	1481	126	4	2	6		1	114	1	279			0.2	4.6	0.03	
	n		2	2	2	2	2	2	2	2	2	2	1	2	2	2	2			2	2	2	
Gyttja (total)	x	- 220	6.48	74.0	75.6	295.3	5	4846	6767	382	40	2583	1033	28	2715	247	644	0.6	0.3	4.0	8.1		77.8
	sd		0,33	17.6	25.6	361.2	2	2346	3453	209	11	1852	129	49	3380	275	528			3.0	7.0	0.2	
	n	1	4	3	3	3	3	3	3	3	3	3	3	3	3	3	3	1	1	3	3	3	1

Appendix 8

Composition of peats representing the various mire types, based on percentages in the macrosubfossil analyses and numbers of seeds/spores and leaves observed.

Plant species	- %	ა %	% SF	% %	% MePF	% OmOIN	% ErPiB	% DsPiB	% SphfB	% SprPiM	% olmc	% TSprM	% MeMC	% EuMC	% HSprM
Lignin (tot.)	5,7	10,4	1,7	1,3	5,3	2,8	6,7	8,1	0,6	6,3	11,6	35,3	25,6	16,5	43,8
Alnus spp. Alnus glutinosa	,	,	,	,	,	,	,	,	,	,	,	,	, 0,2		1,7 0,12
Betula spp.			0,16	0,24				0,28	0,02			0,32	1,2	1,35	
B. pendula B. pubescens		1,45	0,02	0,03				0,11		0,17		0,32	+ 0,1	0,01	5,47 0,28
Picea abies Pinus sylvestris				0,01 0,02	0,01	0,01	0,02	0,89	0,02	0,03 0,31	0,03 0,71		0,2	0,14	0,64 0,31
Rubus idaeus							-						0,01		
Nanolignin (tot.) Andromeda polifolia			1,6	5,2 0,09	5,5 0,18	3,7 0,17	5,8 0,28	16,9	10,3 0,19	23,9 0,29	4,0	2,2	2,6	4,9	1,7
Betula nana				0,02	0,17	0,11	0,22	0,17	0,02	0,26	0,31			0,24	
Calluna vulgaris Chamaedaphne calyculata						0,02	0,13		0,24	0,14					
Empetrum nigrum Ledum palustre				0,01 0,04	0,01	0,01	0,04	0,11 0,33	1,02	0,49					0,07
Vaccinium spp.				0,04 0,01											
V. microcarpum V. myrtillus							0,22	0,67	0,13 0,06	0,03	0,03				
V. oxycoccos			0,61	0,01	1,22	1,02	0,11	0,61	0,04	0,86			0,1	0,24	
V. uliginosum V. vitis-idaea								0,28	0,22 0,04	0,23					
Carex spp. (tot.) C. chordorrhiza	22,7	23,1	35,2	29,8 0,26	39,5	13,9	3,7	4,7	1,3	16,8	25,8 0,71	8,4	22,5	27,1	15,4
C. globularis								4,11		3,71	0,71	0,64			
C. lasiocarpa C. limosa				0,33 0,31											
C. rostrata				-,			0,04							0.04	
C. vaginata Eriophorum spp. (tot.)	0,9		2,5	1,1	4,1	15,5	41,0	3,7	7,2	10,9	33,4	4,5	7,3	0,01 0,1	0,7
E. angustifolium E. latifolium				0,02 0,26	0,34				0,28		0,57		0,1	0,04 0,02	
E. vaginatum			0,03	0,2	0,39	11,44	32,76	3,67	5,83	4,49	11,51	2,87	1,9	0,01	
Trichophorum spp. (tot.) T. alpinum	0,7			3,0 2,49		1,2			0,6	0,1	0,1	0,6	0,2	0,3 0,1	0,1
T. cespitosum	171	C A	0.4			0,78			0,56	0,06	0,14	2.0	0.2		4.5
Poaceae spp. (tot.) Calamagrostis spp.	17,1	6,4	0,4	1,4 0,14								2,9	0,2	3,5	1,5
Molinia caerulea Phragmites australis	17,1	6,4	0,2	0,2 3,4									0,1	0,54 1,2	0,07 0,1
Herbae (tot.)	35,6	79,0	52,3	2Ó,9	21,9	10,5	1,6	3,5	0,1	1,6	8,3	19,2	27,2	20,8	
Calla palustris Cicuta virosa			0,39 0,16	0,02		0,07							0,1 0,01		1,56
<i>Equisetum</i> spp. (tot.)	33,4	22,5	14,8	5,8	4,6	0,5		1,6	0,1	0,8	2,7	8,7	11,4	4,2	5,0
E. fluviatile E. sylvaticum		22,45	7,64	0,9	1,39	0,17		1,61		0,03 0,63		2,55	2,3 0,2	1,72 0,13	3,31
Filipendula ulmaria Lycopodium inundatum				0,01										0,18	
Menyanthes trifoliata	1,6	17,7	14,3	6,1	6,7	1,7					2,1	4,5	8,2	12,9	7,4
Pedicularis palustris Potamogeton alpinus		0,1											0,01	0,04	
P. pusillus Potentilla palustris	0,29 0,29	16,27	12 60	0,2	0,28	0,02							0,02 0,9	0,58	2,72
Rubus chamaemorus	0,25	10,27						0,28	0,04	0,14					
Scheuchzeria palustris Selaginella selaginoides			2,3	7,8 0,03	8,9	8,0	1,6				3,4	3,5	4,1	1,1 0,01	0,1
Hepaticae spp.								0,22	0,07						
Marchantia spp. Sphagnales (tot.)	0,7	8,3	4,2	9,0	14,7	48,9	34,5	56,1	0,17 74,9	34,9	13,7	25,9	9,7	13,5	9,4
Sphagnum spp. S. angustifolium		4,09	0,2	0,18	0,28	2,04	12 41	10,28	6,48	14,80	3,69	6,51	9,54 0,9	0,12 0,12	1,15
S. balticum			0,2	0,01	0,20	7,43	0,37	0,44	1,61	14,00	0,31	1,28	-	0,12	
S. centrale S. compactum						0,23	0,04					2,36	0,1		0,09
S. contortum		0.10	0.09	0,16			0.22				0.42		0.1	0.10	
S. cuspidatum S. cuspidatum coll.		0,18	0,08 0,06	0,55	0,82	3,64 0,12	0,22 0,09				0,43 1,17		0,1 1,2	0,18	0,17
S. fallax S. fuscum	0,14		0,81	0,11 0,02	1,8 0,04	2,64 0,19	8,74	36.00	64,65	0,77 5,26	0,29 0,63	2,62	0,5 0,3	2,74	0,17 0,01
S. girgensohnii				0,04			0,74	50,00	04,00	0,06	0,00	4,91	0,1	1	2,15
S. jensenii S. lindbergii			0,02 0,05	0,01	0,11	2,33 2,74						0,64	0,1		
S. magellanicum			0,14	0,09	0,29	6,81	5,00	5,44	0,2	4,37	1,2	,	0,7		
S. majus S. nemoreum			0,02	0,05	0,96	2,04					1	2,87	0,7 0,1		
S. obtusum S. papillosum			0,03 0,22	0,4	0,05 2,64	0,19 13,09	0,65		0,19		0,31		0,4		0,04
o, papinosani			0,22	0,4	2,04	10,09	0,00		0,19		0,01		0,4		0,04

S. riparium 0,45 1,31 1 S. rubellum 0,02 0,06 0 S. russowii 0,02 0 0 S. squarrosum 3,27 0,05 0,07 0	1,38 1,95 0,26 0,08 0,23	2,74									
S. riparium 0,45 1,31 1 S. rubellum 0,02 0,06 0 S. russowii 0,02 0 0 S. squarrosum 3,27 0,05 0,07 0 S. subsecundum 0,29 1,63 1 S. subfulvum 0,61 0 0	1,95 0,26 0,08 0,23		2,30		0,2		1,94		0,1	0,15	
S. russowii 0,02 0 S. squarrosum 3,27 0,05 0,07 0 S. subsecundum 0,29 1,63 1 S. subfulvum 0,61 0 0	0,08 0,23	0,05	0,11		-,-		-,		1,1	0,47	1,84
S. squarrosum 3,27 0,05 0,07 0 S. subsecundum 0,29 1,63 1 S. subfulvum 0,61 0 0	0,23	2,55	1,09		0,04				0,4	0,05	
S. subsecundum 0,29 1,63 1 S. subfulvum 0,61		0,02	3,07	3,94	0,02	8,23	0,14	0,45	0,4	0,04	
S. subfulvum 0,61	1 67								0,8	0,53	2,8
	1,57							0,06	0,2	0,33 0,3	
J. LEHEHUIH		0,08	0,41					0,00		3,3	
	2,22	0,01	-,						1,7	2,76	0,31
S. warnstorfii 1,2									-	4,72	0,64
	9,2	2,8	5,7	8,4	4,8	8,7	3,1	3,6	5,6	17,1	6,3
Aulacomnium palustre 0,03			0,17			1,23		0,13	0,02	0,16	
Bryidae spp.	0,03									0,32	
Bryum spp. (B. weigelii 0,09	0,05										
	0,07								0,04	1,32	0,01
	0,65	0,02							1,1	1,44	1,25
C. giganteum 2,14	-									-	
C. megalophyllum 0,97											
C. richardsonii										0,64	
C. trifarium 6,3										0,16	
Campylium stellatum 0,4										0,13	0,47
Cinclidium stygium 0,06	0,01									0,07	
Dicranum spp. (D. undulatum	0,01	0,02	2,11		4,35						
	0,01	0,02	-,		.,55				0,01	0,2	
D. badius 0,4		0,16							,	-,-	
D. exannulatus 0,43 0,11 2,23 (0,49	0,08							0,6	0,11	0,07
	0,52	0,92	0,04				0,37	0,77	0,1		
D. intermedius 0,07										0,42	
D. lapponicus	0.04									0,72	
	0,01								+	1,77	
D. trichophyllum 0,68 D. vernicosus 0,21										0,69	
	0,22										0,16
Hylocomium splendens	-,								0,1	2,00	0,10
Veesia triquetra 2,54									.,-	0,96	
Paludella squarrosa 1,01 (0,29								0,1	3,25	
Pleurozium schreberi 0,01			0,83	4,94	0,04	0,60				0,03	
Pohlia nutans	0.07		0,15	1,28	0,24	0,40	0.45	2.47	0,01	0,01	
	0,27		1,50		0,11	3,15	0,46	2,17	0,4		2 62
P. commune P. strictum	0,2		1 20	2,22	0,09	1,29 1,80	0,4	2,11	0,1 0,1	0.03	2,63
2. strictum 2. swartzii	0,2		1,39	2,22	0,09	1,60	0,4		0,1	0,03	
	0,44								0,04	0,16	
Rhizomnium perssonii									0,0	0,10	0,23
R. pseudopunctatum										0,09	0,04
R. punctatum										0,00	
										0,04	0,2
										0,04	0,2 0,2
Sarmentyphnum sarmentosum 0,02										0,04 0,57	
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76	F 00	2.45	0.07			0.00	4.55	0.45	2.5	0,04 0,57 0,49	0,2
armentyphnum sarmentosum 0,02 Corpidium scorpidioides 11,43 3,76 Ctraminergon stramineum 1,55 8,14 3,21 5	5,88	2,45	0,87			0,23	1,57	0,45	2,6	0,04 0,57 0,49 1,54	
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Fomentyphnum nitens 0,17	5,88	2,45	0,87		0.05	0,23	1,57	0,45	2,6 0,1	0,04 0,57 0,49 1,54 0,94	0,2
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Fomentyphnum nitens 0,17 Lichenes	5,88	2,45	0,87	0.05	0,06	0,23	1,57	0,45	0,1	0,04 0,57 0,49 1,54 0,94 0,02	0,2 0,96
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 Lichenes Cenococcum craniforme 0,01	5,88		0,87	0,06	0,06	0,23	1,57	0,45		0,04 0,57 0,49 1,54 0,94 0,02 0,04	0,2
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Fomentyphnum nitens 0,17 Lichenes Cenococcum craniforme 0,01 Coal		2,45 0,08 0,02	0,87	0,06	0,06	0,23	1,57	0,45	0,1	0,04 0,57 0,49 1,54 0,94 0,02	0,2 0,96
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 Lichenes Cenococcum craniforme 0,01 Coal Jnknown (0	0,11	0,08 0,02	0,87	0,06	0,06		1,57	0,45	0,1 3	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04	0,2 0,96 0,07 0,53
Garmentyphnum sarmentosum0,02Georpidium scorpidioides11,433,76Straminergon stramineum1,558,143,21Fomentyphnum nitens0,17Lichenes0,01Cenococcum craniforme0,01Coal0,710,01Vineral material0,710,01	0,11 0,2	0,08 0,02 0,01				0,34			0,1 3 0,02 0,4	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04	0,2 0,96 0,07 0,53 0,37
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Fomentyphnum nitens 0,17 Lichenes Cenococcum craniforme 0,01 Coal Jnknown 0 Vineral material 0,71 0,01	0,11	0,08 0,02 0,01 50	0,87	0,06	0,06	0,34 38	1,57	0,45	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04	0,2 0,96 0,07 0,53 0,37 48
Garmentyphnum sarmentosum0,02Georpidium scorpidioides11,433,76Straminergon stramineum1,558,143,21Fomentyphnum nitens0,17Lichenes0,01Cenococcum craniforme0,01Coal0,710,01Vineral material0,710,01	0,11 0,2 50	0,08 0,02 0,01 50	38	31	40	0,34 38	34	31	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04	0,2 0,96 0,07 0,53 0,37 48
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 omentyphnum nitens 0,17 ichenes enococcum craniforme 0,01 coal Inknown 0 Mineral material 0,71 0,01 pecies n 20 21 41 79	0,11 0,2 50	0,08 0,02 0,01 50	38	31	40	0,34 38	34	31	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04	0,2 0,96 0,07 0,53 0,37 48
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 Tomentyphnum nitens 0,17 0,17 ichenes 0,01 0,01 coal 0,71 0,01 Jnknown 0,71 0,01 pecies n 20 21 41	0,11 0,2	0,08 0,02 0,01				0,34			0,1 3 0,02 0,4	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04	0,2 0,96 0,07 0,53 0,37
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 omentyphnum nitens 0,17 ichenes cenococcum craniforme 0,01 coal Jnknown 0,01 dineral material 0,71 0,01 pecies n 20 21 41 79	0,11 0,2 50	0,08 0,02 0,01 50 Nowo	38 38	31 8ia G	40 Byyds	0,34 38 Viduds	34 DMIO	31 Strager	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,54 74	0,2 0,96 0,07 0,53 0,37 48 W adsh
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 omentyphnum nitens 0,17 ichenes 0,01 coal Inknown 0,01 dineral material 0,71 0,01 pecies n 20 21 41 79 eeeds / v ts tz pores (n) ignin 11 45 68 248	0,11 0,2 50 Lang 64	0,08 0,02 0,01 50	38 81 17	31	40	0,34 38	34	31	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 292	0,2 0,96 0,07 0,53 0,37 48 2 48 2 5 5 726
Tarmentyphnum sarmentosum 0,02 Corpidium scorpidioides 11,43 3,76 Corpidium scorpidioides 11,43 3,76 Comentyphnum nitens 0,17 Comentyphnum nitens 0,17 Comentyphnum nitens 0,17 Comentyphnum nitens 0,01 Coal 0,01 C	0,11 0,2 50	0,08 0,02 0,01 50 Nowo	38 38	31 8ia G	40 Byyds	0,34 38 Viduds	34 DMIO	31 Strager	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,54 74	0,2 0,96 0,07 0,53 0,37 48 X 4 X 4 Y 4 Y 26 9
Corpidium sarmentosum 0,02 Corpidium scorpidioides 11,43 3,76 Corpidium scorpidioides 11,43 3,76 Corpidium scorpidioides 11,43 3,76 Comentyphnum nitens 0,17 0,17 Ichenes 0,01 0,01 Coal 0,01 0,01 Jnknown 0 0 Vineral material 0,71 0,01 Species n 20 21 41 Species (n) 11 45 68 248 Muse spp. 2 2 2 A. glutinosa 12 4	0,11 0,2 50 Lang 64	0,08 0,02 0,01 50 Nowo	38 81 17	31 8ia G	40 Byyds	0,34 38 Viduds	34 DMIO	31 Strager	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,04 0,54 74 26	0,2 0,96 0,07 0,53 0,37 48 ¥ 1 48 ¥1 48 ¥1 49 40
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 omentyphnum nitens 0,17 ichenes enococcum craniforme 0,01 Coal Inknown 0 Aineral material 0,71 0,01 pecies n 20 21 41 79 eeeds / v to to to pores (n) ignin 11 45 68 248 Alvus spp. 2 A glutinosa 12 4 incana 1 6	0,11 0,2 50 L B 64 1	0,08 0,02 0,01 50 Note 20	38 89 17 1	31 8iaso 0	40 89 99 40 5 14	0,34 38 Viduds	34 WIO 22	31 S S S S S S S S S S S	0,1 3 0,02 0,4 66 209	0,04 0,57 0,99 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 20 492 26 10	0,2 0,96 0,07 0,53 0,37 48 2 48 2 48 2 4 5 726 9 40 28
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 0,01 5	0,11 0,2 50 Lang 64	0,08 0,02 0,01 50 Nowo	38 81 17	31 8iaso 0	40 Byyds	0,34 38 Viduds	34 22 5	31 ¥1 354 349	0,1 3 0,02 0,4 66	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,04 0,54 74 26	0,2 0,96 0,07 0,53 0,37 48 X 48 Y 48 Y 40 28 244
armentyphnum sarmentosum corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 omentyphnum nitens 0,17 ichenes 0,01 coal Inknown 0,01 pecies n 20 21 41 79 eeds / v to	0,11 0,2 50 L B 64 1	0,08 0,02 0,01 50 20 13	38 99 17 1 1	31 8iaso 0	40 89 99 40 5 14	0,34 38 Viduds	34 WIO 22	31 S S S S S S S S S S S	0,1 3 0,02 0,4 66 209	0,04 0,57 0,99 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 20 492 26 10	0,2 0,96 0,07 0,53 0,37 48 2 48 2 48 2 48 726 9 40 28
armentyphnum sarmentosum corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 ichenes 0,01 coal inknown 0,01 dineral material 0,71 0,01 pecies n 20 21 41 79 eeds / o, to	0,11 0,2 50 64 1 2	0,08 0,02 0,01 50 Note 20	38 89 17 1	31 8 2 21	40 89 44 5 14	0,34 38 <u>Xi</u> luds 9	34 22 5 3	31 ¥1 354 349	0,1 3 0,02 0,4 66 209 142	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 292 26 10 247	0,2 0,96 0,07 0,53 0,37 48 X 48 X 5 X 9 40 28 244 34
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 ichenes 0,17 0,01 0 6 enococcum craniforme 0,01 0,01 0 6 oal 0,71 0,01 0 0 inknown 20 21 41 79 eeds / s tz pores (n) 11 45 68 248 Inus spp. 2	0,11 0,2 50 64 1 2	0,08 0,02 0,01 50 20 13	38 99 17 1 1	31 8 2 21	40 89 44 5 14	0,34 38 Widrds 9	34 22 5 3 10	31 2 354 349 1	0,1 3 0,02 0,4 66 D W W 209 142 63	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 292 26 10 247 191	0,2 0,96 0,07 0,53 0,37 48 24 5 726 9 40 28 244 34 34 346
armentyphnum sarmentosum0,02corpidium scorpidioides11,433,76craminergon stramineum1,558,143,21comentyphnum nitens0,170,17ichenes0,010,01coal0,010,01Jnknown00Alineral material0,710,01pecies n202141Alineral material114568248224Mus spp.22Alineran16Betula spp.738Appendula22Appendula21Bubescens1112Vinus sylvestris21621626	0,11 0,2 50 64 1 2 56	0,08 0,02 0,01 50 20 13 1	38 81	31 8 2 21	40 89 44 5 14	0,34 38 Miduds 9	34 DWIO 22 5 3 10 2	31 ¥ 354 349 1 3 1	0,1 3 0,02 0,4 66 D W W 209 142 63	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 2 6 10 247 191 8	0,2 0,96 0,07 0,53 0,37 48 X 4 SH 726 9 40 28 244 34 346 18 7
armentyphnum sarmentosum 0,02 icorpidium scorpidioides 11,43 3,76 itraminergon stramineum 1,55 8,14 3,21 5 ichenes 0,17 0,01 0,01 5 conentyphnum nitens 0,01 0,01 0,01 5 conecoccum craniforme 0,01 0,01 0,01 5 coal 0,71 0,01 0,01 5 <	0,11 0,2 50 64 1 2 56 5 112	0,08 0,02 0,01 50 Nowe 20 13 1 6 93	38 89 17 1 1 1 1 14 109	31 81 21 21 23	40 8944 5 14 11 3 81	0,34 38 Widuds 9 9 93	34 22 5 3 10 2 2 498	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 26 10 247 191 8 9 1 28	0,2 0,96 0,07 0,53 0,37 48 ¥.4 9 40 28 244 346 346 18
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 corpidium scorpidioides 11,43 3,76 cornentyphnum nitens 0,17 0,17 comentyphnum nitens 0,17 0,01 conencyphnum nitens 0,17 0,01 chenes 0,02 0,01 Cond 0,01 0,01 Jnknown 0 0,01 Mineral material 0,71 0,01 pecies n 20 21 41 79 Geeds / w tz 4 Alus spp. 12 4 4 4 Alus spp. 12 4 4 4 6 Setula spp. 7 3 8 147 2 Bubescens 1 28 41 61 2 2 Nanolignin 0 50 270 264 26	0,11 0,2 50 64 1 2 56 5 112 104	0,08 0,02 0,01 50 20 13 1 6 93 61	38 89 17 1 1 1 1 1 1	31 9 21 21 21 23 18	40 99445 14 11 3	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482	31 ¥ 354 349 1 3 1	0,1 3 0,02 0,4 66 209 142 63 3 1	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 29 10 247 191 8 9 1 28 2 2	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 0,01 0,01 5 Concoccum craniforme 0,01 0,01 0,01 5 Coal 0,01 0,01 0,01 5	0,11 0,2 50 64 1 2 56 5 112	0,08 0,02 0,01 50 Nowe 20 13 1 6 93	38 89 17 1 1 1 1 14 109	31 89.450 21 21 23.18 18	40 g g g g g g g g	0,34 38 Widuds 9 9 93	34 22 5 3 10 2 2 498	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 26 10 247 191 8 9 1 28	0,2 0,96 0,07 0,53 0,37 48 X 4 SH 726 9 40 28 244 34 346 18 7
armentyphnum sarmentosum 0,02 corpidium scorpidioides 11,43 3,76 traminergon stramineum 1,55 8,14 3,21 5 ichenes 0,17 0,01 0,01 5 comentyphnum nitens 0,71 0,01 0,01 5 concoccum craniforme 0,71 0,01 0,01 5 coal 0,71 0,01 0,01 5 5 5 6	0,11 0,2 50 64 1 2 56 5 112 104 6	0,08 0,02 0,01 50 20 13 1 6 93 61	38 81-13 17 1 1 1 1 14 109 75	31 84 21 21 23 18 1 2	40 gy 14 11 3 81 20 42	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482 9	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426 424	0,04 0,57 0,94 0,94 0,02 0,04 0,04 0,04 0,54 74 29 10 247 191 8 9 1 28 2 13	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
armentyphnum sarmentosum0,02corpidium scorpidioides11,433,76traminergon stramineum1,558,143,21Tomentyphnum nitens0,170,17ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01ichenes0,010,01iphin114568ignin114568Mus spp.22A. glutinosa124A. glutinosa124Beetula spp.73B. pubescens11Vinus sylvestris21Carabies11Vinus sylvestris21ideuus21ideuus21ideuus21ideuus21ideuus211ichamaedaphne calyculata20	0,11 0,2 50 64 1 2 56 5 112 104	0,08 0,02 0,01 50 20 13 1 6 93 61	38 89 17 1 1 1 1 14 109	31 89.450 21 21 23.18 18	40 g g g g g g g g	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 29 10 247 191 8 9 1 28 2 2	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
armentyphnum sarmentosum0,02corpidium scorpidioides11,433,76corpidium scorpidioides11,433,76corpidium scorpidioides11,433,76comentyphnum nitens0,170,17ichenes0,010,01Coal0,710,01Jaknown00Mineral material0,710,01opecies n202141Aglutinosa124Alincana16Betula spp.738Aglutinosa1112Spice ables1112Vinus sylvestris216Cea ables1112Nanolignin050270Cedu aphene calyculata211Chamaedaphne calyculata211Chamaedaphne calyculata10	0,11 0,2 50 64 1 2 56 5 112 104 6	0,08 0,02 0,01 50 20 13 1 6 93 61	38 81-13 17 1 1 1 1 14 109 75	31 8 2 21 23 18 1 2 1 1	40 gy 14 11 3 81 20 42	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482 9	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426 424	0,04 0,57 0,94 0,94 0,02 0,04 0,04 0,04 0,54 74 29 10 247 191 8 9 1 28 2 13	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 Lichenes 0,01 Coal 0,01 Coal 0,01 Coal 0,01 Species n 20 21 41 79 Seeds / 10 0,01 Species n 20 21 41 79 Seeds / 20 21 41 70 Seeds / 20 21 41 70 Seeds / 20 21	0,11 0,2 50 64 1 2 56 5 112 104 6	0,08 0,02 0,01 50 20 13 1 6 93 61	38 81-13 17 1 1 1 1 14 109 75	31 84 21 21 23 18 1 2	40 gy 14 11 3 81 20 42	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482 9	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426 424	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,04 0,54 74 29 26 10 247 191 8 9 1 28 2 13 1	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
Sarmentyphnum sarmentosum 0,02 Scorpidium scorpidioides 11,43 3,76 Straminergon stramineum 1,55 8,14 3,21 5 Tomentyphnum nitens 0,17 Lichenes 0,01 Cenococcum craniforme 0,01 Coal Unknown 0 Mineral material 0,71 0,01 Species n 20 21 41 79 Seeds /	0,11 0,2 50 64 1 2 56 5 112 104 6	0,08 0,02 0,01 50 20 13 1 6 93 61	38 89 17 1 1 1 1 1 1 4 109 75 1	31 8 2 21 23 18 1 2 1 1	40 gy 14 11 3 81 20 42	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482 9	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426 424	0,04 0,57 0,94 0,94 0,02 0,04 0,04 0,04 0,54 74 29 10 247 191 8 9 1 28 2 13	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2
Scorpidium scorpidioides11,433,76Straminergon stramineum1,558,143,219Tomentyphnum nitens0,170,17Lichenes0,01Cenococcum craniforme0,01Coal0,710,01Unknown00Mineral material0,710,01Species n202141Species n202141Species n114568248Alnus spp.224A. glutinosa124A. glutinosa124B. pendula22B. pubescens12841Picea abies1112Pinus sylvestris216Betula nana2111Chamaedaphne calyculata211Chamaedaphne calyculata2010Vaccinium spp.501	0,11 0,2 50 64 1 2 56 5 112 104 6	0,08 0,02 0,01 50 20 13 1 6 93 61 1	38 81-13 17 1 1 1 1 14 109 75	31 8 2 21 23 18 1 2 1	40 gy 14 11 3 81 20 42	0,34 38 Xiduds 9 6 1 2 93 90	34 22 5 3 10 2 2 498 482 9	31 ¥-asp 354 349 1 3 1 3 1 3	0,1 3 0,02 0,4 66 209 142 63 3 1 426 424	0,04 0,57 0,49 1,54 0,94 0,02 0,04 0,04 0,54 74 29 492 26 10 247 191 8 9 1 28 2 13 1 9	0,2 0,96 0,07 0,53 0,37 48 ¥ 48 ¥ 48 ¥ 48 ¥ 48 244 34 346 18 7 2

Carex spp. (tot.) C. aquatilis	524	907 41	1767 38	1088 34	655 1	306	24	2	1	105	73	13 1	2084 10	459 5	1042 25
C. buxbaumii C. canescens	5	90	7 36	7	1		14					4	58	61	788
C. cespitosa C. chordorrhiza C. diandra C. dioica C. echinata	5	33	1014 4	1 199 51 26	143 14	4			1		2	2	190 86	24 70 41 10 24	26 2
C. elongata C. flava C. globularis C. lasiocarpa	65		65	1 30 189	151	28	6	2		103 2	12	3 2	19 971	23 33	43
C. laxa C. limosa	05		20	188	88	8	1			2	12	2	64	45	20
C. livida C. loliacea			20	2	00	0					1		04	1	20
C. magellanica C. nigra		5		5 5	34 21	1						1	5 6	1 21	
C. pauciflora C. rhynchophysa		5		5	21	3					1	1	42	21	
C. rostrata C. vaginata	402	738	532	228 11	98	46 1	1				56		291	84 4	29 11
C. vesicaria Eleocharis palustris	44 3	6	34 50	104 1	107	190					1		339	4	92
Eriophorum spp. E. angustifolium E. latifolium			1	13 1 1	9	57 1	13	2		2	137 10		52 1	3 1 2	
E. vaginatum Schoenoplectus spp.		1	1	8	9	16	11	2		2	127		51	2	
S. lacustris Trichophorum spp.	24	-		4		2,0									4
T. alpinum T. cespitosum				4 1		4								2	
Poaceae spp. Juncus spp.		1							1		2				2
Angelica sylvestris Bidens radiatus														1	1
Calla palustris Caltha palustris		2	10	1	4								3		21
Cicuta virosa Filipendula ulmaria	~	2	11	1 2	2								6	4	2
Hippuris vulgaris Lysimachia spp. L. thyrsiflora L. vulgaris	6	1	1 1 9	1									1 10	1	4
Menyanthes trifoliata Myosotis	3 1	51	155	350	68	23					4	2	277	148	60 4
Myriophyllun verticillatum Nuphar	15 1														-
Pedicularis palustris Potamogeton alpinus P. horobtoldii	2	1		2									1		
P. berchtoldii P. gramineus P. natans	102			3 8										1	
P. pusillus Potentilla erecta	9			0									4	14	
P. palustris Ranunculus spp.	9	116	490	38 1	40	2					3		200	77	166
Rubus chamaemorus R. saxatilis				1				2							
Rumex spp. Scheuchzeria palustris Selaginella selaginoides			1	66	6 9	1							8	2 524	1
Selaginella selaginolaes Sparganium minimum S. simplex	9			2	3									524	
5. simplex Cenococcum craniforme Cristatella mucedo	9		2		1	3			2	46	9	2	* spore	173	154
Unknown Species n	2 26	22	34	50	1 28	25	17	13	11	13	24	15	34* 31	2 43	6
opecies ii	20	22	34	50	20	23	1/	10	11	10	24	15	71	40	

				ш	MePF	omolN	ErPiB	DsPiB	SphfB	SprPiM	olMc	TSprM	MeMC	EuMC	HSprM
Leaves n	-	s	SF	RF	Z	0	ū	õ	S	S	0	μ	Σ	ш	Ï
Alnus spp.													17		
A. glutinosa													5		
Betula spp.	1			1			1					11		5	13
B. pendula															1
B. pubescens				2						2				4	5
Juniperus communis														5	
Picea abies		21	11	7	12		2	1	2	1		114	97	191	394
Pinus sylvestris			2	69	37	16	16	73	4	65	21	20	2	51	199
Salix spp.											1	2			
Andromeda polifolia				21	63	106	18		24	20	57		11	1	
Betula nana				1	2	11	1	3	6	21	12			9	1
Calluna vulgaris									60	50					
Chamaedaphne calyculata				2		1	4			12					
Empetrum nigrum			2	10	8	5	77	10	260	122	56		8	73	10
Ledum palustre				5			18	46	55	3	42	1			
Vaccinium microcarpum				6	1	5	54	89	80		8				
V. myrtillus									2	1		31			2
V. oxycoccos				52	109	223	23	56	62	95	31	3	73	63	
V. uliginosum								8	10	43	1	1			
V. vitis-idaea							2		6			15		9	3
Lycopodium inundatum														50	
Rubus chamaemorus									1	3					
Selaginella selaginoides				1											
Species n	1	1	3	12	7	7	11	8	13	13	9	9	7	11	9

Appendix 9

Indicative values of certain mire plants with respect to mean pH, redox potential (mV) and element concentrations in the peat ash (ppm). Cation concentrations in peat are based on k-values of 1-10 when the concentrations are within the following limits: $1 = < 8\ 000$, $2 = < 11\ 500$, $3 = < 16\ 500$, $4 = < 18\ 500$, $5 = < 25\ 000$, $6 = < 35\ 000$, $7 = < 51\ 000$, $8 = < 75\ 000$, $9 = < 100\ 000$, $10 = > 100\ 000$. O = minimum concentration of an element, X = maximum concentration; also shown are the rations Ca/Mg and Fe/Mn.

Plant species	n	рН	mV	k	A 0 < 700 X > 3 500	Ca 0 < 2 000 X > 8 000	Mg 0 < 550 X > 1600	Na 0 < 100 X > 300	K 0 < 180 X > 1800	Cu 0 < 7X > 40	Fe 0 < 3 000 X > 18 000	Mn 0 < 100 X > 800	Pb 0 < 6 X > 30	Zn 0 < 22 X > 90	P 0 < 450X > 1 000	Ca / Mg	Fe / Mn
Lignin (total)		4.98	115	4												5.9	138
Alnus glutinosa A. incana	27 14	5.40 5.40	9 100	6 5	<u> </u>				x				X	x		4.4 4.4	263 87
Alnus spp.	29	5.40	-5	7	<u> </u>				<u>^</u>		x			^		3.5	109
Betula pendula		4.60	245	5							^					3.9	74
B. pubescens	146	5.10	80	5										х		4.7	119
Betula spp.	188	5.40	83	5												6.0	126
Juniperus communis	7	5.79	87	8												3.6	94
Picea abies		5.22	86	5										x		4.8	108
Pinus sylvestris		4.66 5.35	144 155	4	<u> </u>											6.0	132 17
Rubus idaeus Salix aurita	2	4.80	155	7	<u> </u>								0			3.6 2.6	167
S. caprea	1	3.60	305	3						0			U U			2.6	27
S. glauca	1	4.70	170	4	х			х		-						1.3	28
5. myrsinites	1	4.10		4	0			0	х	0						3.2	7
Salix spp.	з	4.47	130	6	х			0				0			x	4.7	225
Nanolignin (total)	592	4.60	148	3												5.5	174
Andromeda polifolia	228	4.38	178	2								0				4.9	152
Betula nana	87	4.68	132	4										X	0	5.7	155
Calluna vulgaris	7	3.49	259	5						0		-				3.6	264
Chamaedaphne calyculata	15	3.69	287 203	1	<u> </u>	0				0		0				3.8 3.9	88 122
Empetrum spp. Ledum palustre	20	4.27 3.97	203	2	0			0			0	0			0	3.9	98
Vaccinium microcarpum	29	3.81	271	2				Ŭ			· ·	· ·			ō	3.9	103
V. myrtillus		4.37	211	4											-	3.0	93
V. oxycoccos	214	4.63	130	3						0				0		5.0	147
Vaccinium spp.	1	3.60	150	1	0			0		0	0	0				4.1	13
V. uliginosum	28	3.67	245	3						0						3.4	87
V. vitis-idaea	13	4.28	214	3	0					0						3.5	29
Carex (total)	_	4.99	112	4												6.1	160
Carex aquatilis C. buxbaumii		5.55	31	6 3	×				o			0				5.3 5.7	130 181
C. buxbaumii C. canescens		4.93 5.10	97	3 6	<u> </u>				0			0				5.7 4.4	150
C. cespitosa		5.80	160	8	<u> </u>	x	x					x			$\left - \right $	5.7	28
C. chordorrhiza		5.29	91	5												7.0	121
C. diandra		5.78	35	5			x						0	0		6.7	88
C. dioica	2	5.20	44	10		x					х	х				6.4	11

C. echinata	6	5.58	43	7	x	x										5.9	84
C. elongata		5.10		2	<u> </u>	^					0	0				5.1	14
C. flava		5.72	79	7	x	x	х				x	x				8.2	184
C. globularis	49	3.99	168	3								0			х	4.6	176
			-														
C. heleonastes	1	5.30	110	4	x					х	0	0	0	0		3.0	8
C. lasiocarpa	172	5.00	149	3	x							0	0			6.7	149
C. laxa	1	3.60	220	1		0	0	0			0	0		0		3.0	51
C. limosa	134	5.32	103	4												6.7	135
C. livida	2	5.75	130	8							Х	х	X			6.5	52
C. Ioliacea	1	5.50	225	6		X	х	0				0		0	х	6.5	95
C. magellanica	14	4.60	167	2			0	0	0			0				6.2	201
C. nigra	25	5.31	95	6								х				8.4	108
C. pauciflora	5	3.78		1	0	0	0			0	0	0			0	4.6	137
C. pseudocyperus	2	5.40	50	3				0						0		9.1	2685
C. rariflora	1	4.10		1		0	0					0				4.0	112
C. rhynchophysa	2	5.05		4				0	0			0	0	0		9.0	60
C. rostrata		5.15	89	5					0			0	0			6.2	198
Carex spp.		5.02	109	5												6.2	162
C. vaginata		5.41	88	5												5.9	68
C. vesicaria		5.14	103	5									0			5.7	149
Eleocharis palustris	-	5.75	0	5					Х				Х	X		3.2	26
Eleocharis spp.	-	5.10	107	10	X			Х			Х	0		X	х	0.0	899
Eriophorum spp. (total)		4.33	166	3								0				5.2	208
Eriophorum angustifolium		4.71	126	6							X			X		4.3	185
E. latifolium	4	5.43	118	7	X											5.3	102
E. vaginatum		3.94	197	2								0		0	0	4.7	199
Rhynchospora alba		5.45	178	6	X							Х			0	3.7	35
Scirpus lacustris		5.88	125	7									0			9.4	168
Scirpus spp.		6.00	-70	6	x		х	х	х		0		х	х		1.8	0,5
Trichophorum alpinum		5.58	114	5												7.9	62
T. cespitosum		3.97	216	2											0	4.1	167
Trichophorum spp.	86	4.85	141	3												6.9	122
Poaceae (total)		5.43	62	6	X											7.5	93
Poaceae spp.	37	5.35	30	5	x			х					0			9.0	51
Calamagrostis				_													
phragmitoides	1	4.80	180	7									0		х	6.5	167
Calamagrostis spp.		6.30	-90	6		Х	X	0	0	х				0		2.6	32
Juncus spp.	_	6.00	-70	6	X		X	X	х		0		х	X		1.8	0,5
Molinia caerulea		5.13	98	7	-	x	х	х		<u>x</u>	X	x	_			4.7	84
Phragmites australis	61	5.59	55	6	x					x			0			7.5	105
Herbae (total)		5.07		5	<u> </u>											6.3	164
Angelica sylvestris		5.40	76	10		X					х	<u>x</u>	X	X		5.5	11
Bidens radiatus		5.20		5	x							0	0	0		3.6	156
Calla palustris		5.17	34	5	<u> </u>	-	~	~	~			~	_	_	X	4.1	211
Caltha palustris Cicuta virosa		5.20		3		0	0	0	0			0	0	0		3.7	130
		5.14	53	3	_			~		~		0		0		5.2	127
Cirsium heterophyllum		4.10	252	4	0			0	х	0					~	3.2	7
Dactylorchis maculata		3.70	250	2						0	~	~			0	2.8	14
Drosera anglica		5.10	100	2	<u> </u>					~	0	0			~	5.1	14
Drosera spp.		4.55	183	2	<u> </u>					0					0	3.5	34
Equisetum spp. (total)		5.30	98	5					~			~				6.7	151
Equisetum fluviatile		5.30	41	5	-				0	_		0		0		6.9	255
Equisetum spp.		6.30	10	7	0				0	0		_		0		3.8	100
E. sylvaticum		4.33		3								0		_	x	5.2	126
Filipendula ulmaria		6.55	88	6	<u> </u>	X	х			х				0		5.6	17
Hippuris vulgaris		5.77	-63	7	_			_		-						8.1	163
Lucanadium incordatum	1	4.10		4	0		x	0	x	0			0			3.2	7
Lycopodium inundatum				~	-			~									
Lysimachia spp.	2	4.40		4	0			0	Х	0						3.2	7
	2 9		-16	4 6 3	o x		0	0	x o	0		0	0			3.2 4.7 11.0	7 144 349

Menyanthes trifoliata	538	5.25	65	5	I	I			0					I		6.6	160
Myosotis spp.	2	5.90	-40	4	x				-				0			4.5	86
Myriophyllum verticillatum	3	6.10		8		x					х		ō			10.9	217
Nuphar luteum	1	6.10		9		х					х		0			14.3	241
Pedicularis palustris	3	6.47	166	6		X	х						0			7.7	11
Potamogeton alpinus	2	5.20	90		х												
P. berchtoldii	1			1		0	0					0		0		2.4	41
P. gramineus	7	5.97		7		_	_					_	0			11.3	105
P. natans	4	6.45		4		х		х					0			6.9	2
P. pusillus	2	5.50	100	9		х					х		0			11.3	275
Potentilla erecta	2	4.85		10	0			0			х	х				4.8	12
P. palustris	177	5.32	40	5										x		5.0	165
Ranunculus sceleratus	1	6.70		4				х					0			6.1	2
Ranunculus spp.	2	6.50		4		x		х			0		0			7.2	2
Rubus chamaemorus	7	3.50	245	2	0			0								2.9	27
R. saxatilis	1	6.30	-90	6		x	х	0	0	х				0		6.5	32
Rumex spp.	1	5.20	125	5	х							0	0	0		3.6	156
Scheuchzeria palustris	303		128	3					0			0	0	0	0	6.5	193
Selaginella selaginoides	34	5.69	93	8	x	x	х		-		х	x	-	-	-	7.5	234
Solidago virgaurea	1	4.10		4	0			0	х	0						3.2	7
Sparganium minimum	2	6.25		4	-			-		-			0			8.6	7
S. simplex	2	6.10		9		x					х		-			11.3	275
Utricularia spp.	1	5.40	115	2						0		0				4.1	55
Sphagnales (total)	903	4.75	138	3						-		-				6.1	154
S. acutifolia-type	9	4.57	121	3								0		0		5.9	120
S. angustifolium	214		174	3								-		-		4.2	136
S. aongstroemii	1	4.10		3	x		0				0	0	0			8.0	38
S. balticum	70	3.71	222	1	0					0	0	0		0	0	3.8	180
5. capillifolium	9	3.80		1		0	0	0		0	_	0		-	-	3.8	174
S. centrale	15	4.35	178	4		_	-	-		-		-			x	3.0	72
S. compactum	4	3.90		1		0	0			0		0				4.9	47
S. contortum	4	6.55		5		х							0	0		9.0	20
S. cuspidata-type	16	5.50	1	6					х					x		4.2	90
S. cuspidatum	2	3.45	165	1	0	0	0			0		0		0	0	2.6	108
S. cuspidatum coll.	86	4.53	122	3						0		0	0		0	5.7	169
S. fallax	118	4.42	165	3			0	0				0				4.9	238
S. fimbriatum	1	4.80	180	7									0		Х	2.6	167
S. fuscum	130	3.86	216	2	0					0	0				0	4.7	156
S. girgensohnii	38	5.23	115	6		х	х	х						0		5.2	218
S. jensenii	19	4.32	188	2			0		0					0		4.4	190
S. lindbergii	23	4.14	188	1			0			0	0	0	0		0	5.2	190
S. magellanicum	155	3.98	196	1			0	0		0	0	0			0	4.7	176
S. majus	56	4.19	161	2		0	0	0	0	0			0		0	6.1	235
S. obtusum	7	4.89	4	3						0		0				4.4	562
S. papillosum	149	4.19	197	2			0					0				5.0	215
5. platyphyllum	6	5.50	-41	6	х					х						3.6	12
S. recurvum coll.	87	4.65	126	2	0							0		х	0	6.8	221
S. riparium	89	5.08	75	5										х		5.3	117
5. rubellum	43	4.17	174	2							0	0			0	4.5	161
S. russowii	49	4.39	178	3				0								4.6	167
Sphagnum spp.	29	4.61	61	4									0			4.7	123
S. squarrosum	58	5.31	44	6												4.5	125
S. subfulvum	20	5.52	176	6		x						х				9.4	47
S. subsecundum	110	5.16	173	3					0			0	0			7.3	158
S. tenellum	7	3.56	253	1		0		0		0		0		0	0	2.5	248
S. teres	180	5.51	87	5										x		6.3	96
S. warnstorfii	77	5.70	117	6		x	х									6.7	75
5. palustria-type	2	5.20	38	5				0	0				0	0	0	3.8	128
Bryidae (total)	628	5.05	111	4												9.7	162
Aulacomnium palustre	35	4.73	150	4						0						6.2	217

Bryidae spp.	17	5.11	128	5	I	I						0		I		8.5	155
Bryum pseudotriquetrum	3	4.83	295	5		x						<u> </u>				6.9	21
Bryum spp.	1	4.00	225	2		ő	0					0		0	x	4.5	332
B. weigelii	1		140	2		-	_	0	0			0	0	-		5.5	61
Calliergon cordifolium	109	5.33	75	5									0			5.0	148
C. giganteum	5	6.10		9	х	х					х		0			8.4	310
C. megalophyllum	9	6.52		4		х		х			0		0			6.6	2
C. richardsonii	9	5.23	157	4		x						0		0		12.7	146
Calliergon spp.	13	4.79	46	3								0				4.9	244
Campylium stellatum	12	5.48	177	7		х	х					х	х			4.9	47
Cinclidium stygium	6	5.60	91	7		x						x				6.2	41
Dicranum majus	1	6.80	230	5	0	х	х	0			0		0	0		4.3	2
D. polysetum	16	3.34	309	1	0	0				0	0	0			0	2.3	148
Dicranum spp.	1	4.40	145	3		0		0		0		0	0	0	0	3.2	124
Hamatocaulis lapponicus	9	5.61	41	5			0	0	0					0		4.9	149
H. vernicosus	11	5.16	176	3					0							10.1	63
Helodium blandowii	13	4.99	44	5								0		х		5.2	188
Hylocomium splendens	6	5.10	178	6	Х		х								х	3.6	39
Loeskypnum badium	8	5.54	127	6	x		х									4.4	60
Meesia triquetra	18	5.54	37	5					0					0		5.4	139
Mnium spp.	1	5.60	310	7		х	х						Х			5.7	50
Paludella squarrosa	58	5.85	20	5	0				0				0		0	5.5	102
Pleurozium schreberi	19	4.04	205	2				0		0	0	0				4.4	151
Pohlia nutans	23	4.25	187	3				0		0	0					3.9	199
Polytrichum commune	15	4.04	172	3											X	3.4	79
Polytrichum spp.	23	4.53	113	3	X			0				0		0		4.9	211
P. strictum	33	3.94	183	3								0				6.9	189
P. swartzii	1	5.30	80	6									0	0		5.2	20
Pseudobry um cinclidioides	41	5.34	52	5					х					x		4.7	135
Pseudo-calliergon trifarium	86	5.88	80	3		X			0				0		0	9.1	25
Rhizomnium magnifolium	2	5.05	308	3				Х							X	4.3	19
R. pseudopunctatum	3	5.73	273	5		х	х									4.1	10
R. punctatum	4	5.55	113	7	X		Х					Х				1.5	50
Rhizomnium spp.	1	5.60	310	7		х	х						х			5.7	50
Rhytidiadelphus triquetrus	1	4.80	240	7	x		х	х				х				0.0	4
Sanionia uncinata	1	4.90	30	5								0		0		5.1	179
Scorpidium cossonii	8	5.56	149	5		x	х									4.8	73
5. revolvens coll.	33	5.87	63	6		X				0						8.1	68
5. revolvens	33	5.84	95	6		X	X		0			X		0		8.1	67
5. scorpioides	44	5.72	102	6		x			0							8.4	65
Straminergon stramineum		5.05	88	4										0		5.0	167
Tomentypnum nitens		6.04	49	6		X	X							0		4.5	91
Warnstorfia exannulata		5.16	132	3		0						0				7.5	122
W. fluitans		4.25	167	2		0	0	0				0	0			4.4	194
W. sarmentosa		5.25	38	7	x	x	x	_		_		x				5.1	59
Warnstorfia spp.		5.16	91	3			0	0		0		0	_			5.7	188
W. trichophylla		6.56		5	<u> </u>	X		х		-			0			7.3	7
Hepaticae	7		255	3				-		0	-					4.2	93
Marchantia		4.85	260	3	L	X	х	0		0	0	-		0		3.9	10
Lichenes	5	4.03	290	2	0					0	0	0				4.0	43
Cladonia spp.	1	4.00	4.04	1	0						0	0				3.0	13
Cenococcum graniforme		4.93	121	5	x							-			X	5.7	156
Cristatella mucedo		3.80	200	1	<u> </u>	0	0					0		0		2.4	41
Unknown	26	5.20	90	5	I	I								I		6.0	134

Appendix 10

Physical and chemical properties of the various plant species and their decomposed remains recovered from the peat horizons of the mires studied here: water content (%), dry density (kg/m³), degree of peat humification H $_{1-10}$, amorphous and organic material (%), ash content (%) and element concentrations (ppm). Mean values (x) are shown in bold, followed by standard deviations, maximum and minimum values and frequencies (n).

Plant species		W %	kg/ m³	H ₁₋₁₀	Amorfic %	Org. %	Ash %	рН	mV	AI	Са	Mn	Cu	Mg	Na	Pb	к	Zn	Fe	Р	Fe/Mn	Ca/ Mg	Ca/K	Cu/Zn	Na/K	Fe/P	Sites
Lignin (total)	x	88,8	101,5	3,9	45,7	9,8	8,9	4,98	115	2866	5061	218	16	945	158	6	309	31	9508	693	138	5,9	44	1,1	1,0	20	
5	sd	5,2	60,4	1,3	19,7	3,1	12,0	0,92	113	3303	5038	1119	22	809	292	9	547	48	20819	590	200	4	51	2	0,8	38	
	max	96,5	717,0	9,0	91,2	26,2	88,7	6,8	375	35505	40226	18666	257	6145	5217	74	4733	436	228961	8540	2533	63	331	26	8	485	
	min	45,7	26,0	1,0	0,1	3,5	0,8	2,9	-195	84	89	1	1	11	4	0	7	1	104	63	0,3	0,2	0,4	0,0	0,0	0,2	
Alous son	n	707	705	713	340	704	706	716	469	681	678 5378	675	680	681 1573	670	664 6	682 634	681	681 25783	451 515	675	678 4	678	679	670	450	70
Alnus spp.	x sd	89,5 2,4	98,1 25,6	4,3 1,2	31,9 16,2	9,3 1,9	11,1 7,4	5,40 0.36	-5 77	2360 1864	2695	248 116	19 18	612	136 70	11	1875	83 140	21648	265	109 57	4	41 42	1,1 3	0,8 0,6	63 64	
	max	2,4 94,1	179,0	6,0	85,2	15,6	35,8	6,0	260	6182	15286	591	96	3763	403	48	9962	672	117506	1319	261	7	235	16	2	323	
	min	81,6	38,4	1,0	9,1	5,7	1,6	4,3	-160	141	1023	33	3	336	53	0	59	5	64	5	0,4	0,9	0,4	0,0	0,0	0,3	
	n	29	29	29	22	29	29	27	29	29	29	29	28	29	26	29	29	29	29	29	29	29	29	29	29	29	9
A. glutinosa	x	89,5	94,7	4,3	43,2	9,2	11,2	5,40	9	3008	3573	131	19	895	198	30	4251	243	17700	493	263	4	18	0,5	0,7	35	
	sd	1,9	22,3	0,9	9,6	1,2	10,2	0,36	76	2149	1393	70	11	520	154	54	5830	308	20124	482	490	1	22	0,5	0,8	26	
	max	92,1	166,8	6,0	64,7	12,1	36,2	6,0	180	10711	6557	315	50	2375	736	280	16841	821	76020	1607	2510	7	70	2	3	106	
	min n	83,4 27	64,2 27	3,0 27	27,7 20	7,2 27	4,1 27	4,3 27	-85 20	1047 27	1018 27	28 27	9 27	396 27	50 27	27	38 27	8 27	63 27	2 27	0,3 27	2	0,2 27	0,0 27	0,0 27	12 27	7
A. incana	n X	86,7	135,5	3,9	42,6	8,8	20,2	5,40	100	3436	5025	249	21	1270	291	33	3456	158	8455	531	87	4	24	0,7	0,7	57	/
A. Incuria	sd	8,5	114.8	1,4	18.1	1,5	24.5	0.54	171	3232	3374	487	12	874	300	72	6046	253	10211	489	99	1	37	0,7	0,7	126	
	max	93,1	489,4	6,0	70,3	12,1	78,6	6,8	315	12577	15263	1923	46	3577	915	280	16841	676	30580	1764	265	7	142	3	2	485	
	min	61,1	60,4	1,0	13,4	6,5	1,9	4,6	-170	293	2485	23	4	365	38	0	20	8	66	2	0,3	2	0,2	0,0	0,0	1	
	n	14	14	14	10	14	14	14	13	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	14	8
Betula spp.	×	89,1	98,1	3,7	41,7	9,7	11,1	5,40	83	2265	6601	319	19	1230	218	7	383	32	11647	703	126	6	55	1,2	1,1	33	
	sd	5,4	56,5	1,1	19,3	6,8	12,9	0,87	105	3206	4663	1222	23	827	427	10	601	47	15731	586	406	4	65	2	0,9	59	
	max	96,0	489,4	7,0	89,8	89,7	78,6	6,8	330	35505	21245	14983	211	6145	5217	59 0	3850	347	117506	5162	5304	24	328	16	4	485	
	min n	61,1 188	29,0 187	1,0 187	0,1 99	3,6 186	0,9 189	3,2 189	-160 127	94 181	357 181	3 181	2 180	59 181	4 178	181	19 181	1 181	377 181	63 120	0,6 182	0,0 182	0,0 182	0,0 182	181	0,7 120	42
B. pendula	×	89,8	69,2	3,5	30,3	9,4	7,5	4,60	167	3398	4524	374	24	1045	151	101	1077	35	12083	786	74	4	21	0,9	0,7	68	42
D. pendulu	sd	3,4	37,1	1,6	13,6	3,1	7,3	0,76	102	4264	3034	568	30	344	79	10	1109	19	10229	489	66	3	31	0,9	1,1	157	
	max	94,5	171,5	5,0	46,4	15,3	25,2	5,5	305	12577	11922	1923	99	1660	295	34	2917	57	30580	1421	166	9	81	3	4	485	
	min	82,0	36,0	1,0	13,4	5,3	1,3	3,2	45	345	1334	69	5	557	54	0	69	8	218	63	0,4			0,1	0,1	0,3	
	n	13	13	13	4	13	13	13	9	10	9	10	10	10	10	10	10	10	10	9	10	10	10	10	10	9	10
B. pubescens	x	90,3	82,4	3,8	39,7	8,8	7,9	5,10	80	2332	4910	328	14	1016	151	15	1749	113	12153	551	119	5	30	0,7	0,8		
	sd	2,7	29,9	1,4	17,9	2,2	7,9	0,80	116	2573	4423	1617	18	859	111	29	3551	232	26688	389	221	3	35	0,8	0,7		
	max min	95,1 81,1	190,2 26,0	9,0 1,0	87,6 1,8	17,7 1,5	47,7 0,9	6,8 0,5	330 -180	13074 10	30069 179	18666 2	184 2	5116 10	736	280	16841 10	821 1	217411 10	1817 2	2447 0,4	18	174	5 0,0	4 -0,3		
	n	146	26,0	148	84	1,5	146	148	-180	140	179	139	139	139	138	137	140	139	10	116	139	139	138	139	-0,3 140		45
Juniperus communis	×	88,7	89,5	2,6	25,7	9,3	17,5	5.79	87	4239	7024	616	20	2013	227	16	1148	72	42981	547	94	4	13	0,4	0,4	186	45
1	sd	1,8	26,5	1,4	14,1	1,6	10,9	0,94	130	4835	4536	611	17	1207	140	16	1338	80	43963	467	87	0,9	11	0,3	0,3	184	
	max	90,8	124,0	4,0	51,1	11,9	32,2	6,8	240	12577	15263	1923	53	3763	403	39	3850	241	117506	1319	201	6	29	0,9	0,7	485	
	min	85,2	40,5	1,0	13,4	7,2	5,5	4,1	-40	94	3095	154	4	562	80	0	155	13	271	63	2	3	1	0,1	0,0	0,4	
	n	7	7	7	6	7	7	7	6	7	7	7	7	7	6	7	7	7	7	6	7	7	7	7	7	6	5
Picea abies	×.	88,2	107,5	3,7	39,7	9,7	12,0	5,22	86	2362	5893	277	16	1308	245	13	1525	110	10988	738	108	5	35	0,9	0,8	24	
	sd	6,1	73,6 544,8	1,2 8,0	18,5	3,3	15,7	0,84	127 315	3659	5383	758	15	997	533	17 109	2917	221 820	16138	798	145 899	2	51	2	0,8 4	39 323	
	max min	95,4 56,0	544,8 29,1	8,0 1,0	85,2 0,1	26,2 4,5	78,6 1,2	6,8 3,2	-195	35505 115	40226 746	6843 2	115 3	5116 206	5217 26	109	12154 18	820	117506 64	5162 4	0,3	14 0,0	285 0,0	0,0	0,0	323 0,3	
	n	110	110	110	73	110	1,2	110	-195	109	108	110	110	110	108	107	110	110	110	85	110	110	110	110	110	85	42
Pinus sylvestris	×	89,9	81,6	3,3	39,7	9,3	6,5	4,66	144	2238	4953	293	13	914	171	8	533	34	6924	662	132	6	43	0,9	1,0	19	
	sd	4,2	38,9	1,4	19,3	3,5	7,4	0,98	93	3480	5471	1543	19	791	426	11	867	42	18996	604	251	4	63	1,3	1,1	57	
	max	96,5	269,0	8,0	77,8	26,2	43,8	6,7	320	35505	35839	18666	184	4282	5217	74	4733	347	208053	5162	2533	24	314	8	8	485	
	min	69,8	29,1	1,0	1,2	3,5	0,8	3,0	-180	94	123	1	1	25	20	0	7	1	122	63	0,3	0,0	0,0	0,0	0,0	0,3	
	n	171	170	170	54	171	171	170	102	166	165	166	166	166	166	163	166	166	166	92	166	166	166	166	166	92	55

Rubus idaeus	×	72,1	338,8	4,5	60,1	10,0	44,5	5,35	155	3709	4829	813	30	1648	335	9	372	25	9020	451	19	4	37	1,3	1,2	35	
	sd max	20,8 86,8	288,7 542,9	0,7 5,0	5,1 63,7	3,3 12,3	53,2 82,1	0,21 5,5	92 220	1199 4557	972 5516	813	27 49	892 2278	288 538	11 16	410 662	23 41	9476 15720		19	3	43 67	0,1 1	0,6 2		
	min	57,4	134,6	4,0	56,5	7,6	6,8	5,2	90	2861	4142	813	11	1017	131	1	82	8	2319		19	2	6	î	0,8		
	n	2	2	2	2	2	2	2	2	2	2	1	2	2	2	2	2	2	2	1	1,0	2	2	2	2	1,0	2
Salix spp.	x	82,0	129,9	4,7	0,1	13,6	16,8	4,47	130	9025	2681	60	24	626	78	11	1078	39	13257		225	5	3	0,6	0,1		
	sd	9,0	130,8	2,5		2,1	23,5	0,71		12292	506	4	19	223	37	15	460	6	4455		88	2	2	0,4	0,0		
	max	87,4	279,6	7,0		15,9	43,9	5,1		17717	3039	62	37	784	104	21	1403	43	16407		288	6	4	0,9	0,1		
	min	71,6	38,0	2,0 3		11,9	1,3	3,7		333	2323	57	10	468	51	0	752	34	10106		163	3	2	0,3	0,1		
Salix aurita	n n=1	3 89,3	3 64,2	3,0	1	3 9,3	13,5	د 4,80	1 180	1588	2 3218	2 163	2 22	1254	2 142	ő	2 1789	2 37	27254	1040	2 167	2 3	2 2	2 0,6	2 0,1	26	3 1
S. caprea	n=1	90,2	65,5	2,0		9,2	6,0	3,60	305	1204	2469	103	7	963	132	19	2529	57	3854	1338	27	3	1,0	0,1	0,1	3	1
S. glauca	n=1	56,0	544,8	6,0		12,0	72,8	4,70	170	5128	2198	109	36	1648	586	14	732	80	3004	4583	28	1	3	0,5	0,8	0,7	1
S. myrsinites	n=1	87,4	40,5	1,0		11,9	5,5	4,10		94	5656	711	4	1792	80	5	3850	49	4983		7	3	1,5	0,1	0,02	-,-	1
Nanolignin (total)	x	90,7	76,8	3.5	31,6	8,8	4,8	4.60	148	1307	4594	128	8	866	121	8	332	25	6488	496	174	5	42	0,7	1,1	18	
3 ()	sd	3,1	32,0	1,2	17,7	2,7	5,6	0,96	105	1782	6035	817	9	811	93	10	621	28	14638	277	207	4	54	1,2	1,1	36	
	max	96,5	279,7	9,0	78,7	19,4	68,8	6,8	425	17717	40258	18666	96	5116	915	74	4733	309	217411	2503	2533	25	470	16	16	485	
	min	71,6	22,3	1,0	0,1	3,5	0,8	2,9	-180	29	123	1	1	39	4	0	5	1	32	28	0,3	0,0	0,0	0,0	0,0	0,0	
A	n	592	590	592	249	592	593	588	427	565	563	559	563	564	562	552	565	566	564	427	558	563	563	566	563	426	53
Andromeda polifolia	x	90,7	71,4	3,4	30,4	8,9	3,7	4,38	178 90	1351	3346 3989	78	8 9	709 634	114 84	7	396	32 33	3990 5119	485 293	152 170	5 3	37 56	0,5	1,1	12	
	sd max	3,2 96,5	30,9 185,6	1,3 6,0	17,9 78,7	2,9 19,4	3,2 24,3	0,89 6,7	425	1518 10105	23516	124 921	60	4039	84 495	11 59	727 4733	309	36516	293	1076	23	470	1,0 7	1,1 8	14 82	
	min	74,8	22,3	1,0	0,3	3,5	0,8	2,9	-85	29	123	2	1	39	24	0	4733	2	30510	2303	0,6	0,2	0,4	0,0	0,0	0,4	
	n	228	226	229	52	228	229	226	123	207	207	206	205	207	206	205	207	207	207	120	206	207	207	207	206	120	42
Betula nana	x	90,2	75,3	3,1	31,3	9,3	5,1	4,68	132	1003	4841	111	8	978	125	15	1321	108	8092	448	155	6	39	0,6	0,7	23	
	sd	2,7	25,9	1,3	16,7	2,5	3,9	0,96	112	1237	4158	126	8	713	73	19	2456	244	13099	293	181	5	62	1,0	0,9	44	
	max	95,4	144,3	6,0	78,7	17,3	28,3	6,5	330	8089	22216	711	42	4039	407	109	9198	875	90044	1485	791	25	331	7	4	323	
	min	82,3	31,0	1,0	0,3	4,4	1,2	3,1	-90	94	709	3	2	192	35	0	39	3	34	2	0,2	2	0,3	0,0	0,0	0,3	
Calluna vulgaris	n	87 89,4	87 74,4	87 2,4	51 32,5	87 9,9	87 5,9	87 3,49	67 259	82 1709	81 2142	82 162	82 5	81 663	80 111	82 15	82 785	82 41	82 14096	72 416	82 264	81 4	81 9	82 0,3	82 0,4	72 30	32
Culturia valgaris	sd	2,9	36,4	1,3	22,1	2,2	9.9	0,73	239	2947	678	217	5	279	110	13	962	33	33496	153	252	1	7	0,6	0,4	63	
	max	91,9	124,0	5,0	60,9	14,4	28,3	5,1	330	8089	3095	467	16	1029	351	39	2555	98	90044	621	668	6	19	2	0,8	159	
	min	85,2	39,0	1,0	13,4	8,0	1,5	3,0	130	152	832	2	1	174	43	2	56	5	253	277	1,4	2	0,9	0,0	0,0	0,6	
	n	7	7	7	5	7	7	7	6	7	7	7	7	7	7	7	7	7	7	6	7	7	7	7	7	6	3
Chamaedaphne calyculat		89,4	73,9	3,3	13,4	10,1	3,9	3,69	287	1602	1998	48	6	566	196	10	565	35	2157	515	88	4	8	0,2	0,8	3	
	sd	5,2	39,9	1,8	16,4	4,6	4,3	0,88	71	2882	1449	58	3	226	118	8	651	13	3551	309	79	2	11	0,3	0,8	4	
	max min	95,2 77,3	174,9 36,2	7,0 1,0	47,8	19,1	15,7 1,1	5,5 2,9	350 93	11173 197	5464 707	189 3	12	968 168	398 43	31 0	2644 85	60 11	13901 280	1156 201	226 4	10	44 1	1 0.0	2 0,0	12	
	min	15	36,2 15	1,0	0,4	4,7 15	1,1	2,9	93 12	197	15	15	15	168	45	15	15	11	280	10	4	15	15	15	15	0,6 10	8
Empetrum spp.	×	89,5	70,7	3,2	25,3	9,9	4,8	4,27	203	935	5906	119	8	1214	116	9	618	26	4315	465	122	4	43	0,7	0,6	14	0
, ,,	sd	3,3	39,2	1,4	21,7	2,9	7,6	1,13	107	1347	9160	171	9	1111	118	11	836	20	10060	343	272	2	83	1	0,6	25	
	max	95,0	279,7	7,0	73,2	18,9	68,8	6,8	400	8089	40226	921	54	4517	915	74	3850	98	90044	2503	2533	17	470	7	4	159	
	min	75,7	24,0	1,0	0,1	4,4	0,4	2,9	-10	48	419	1	1	66	16	0	13	3	74	77	0	1	0,7	0,0	0,0	0,3	
	n	112	112	111	40	112	112	112	89	100	100	99	100	100	100	92	100	100	100	83	99	100	100	100	100	83	36
Ledum palustre	×	89,9	58,3	2,5	21.6	13,8	2,9	3,97	200	449	5270	80	12	1264	90	10	946	35	950	406	98	4	62	1,4	0,3	3	
Leadin parastre	sd	2,7	20,4	1,2	12,8	18,1	2,1	1,05	99	330	6152	109	14	998	46	7	1010	26	835	219	113	2	114	3	0,3	3	
	max	93,6	96,6	5,0	36,0	89,7	7,1	6,2	390	1333	17505	388	51	3184	191	27	2973	105	3302	855	337	10	304	7	1,2	11	
	min	82,4	29,0	1,0	1,2	6,4	0,9	3,0	10	90	833	3	2	140	35	0	51	5	122	142	0,3	1,3	0,7	0,0	0,0	0,3	
	n	20	20	20	9	20	20	20	17	18	18	18	18	18	18	18	18	18	18	17	18	18	18	18	18	17	11
Vaccinium spp.	n=1	89,5	51,2	3,0		10,2	2,8	3,60	150	248	2750	35	6	672	64	16	994	38	438	454	13	4	3	0,2	0,1	1,0	1
V. microcarpum	×	90,1	59,9	2,7	15,4	9,5	3,4	3,81	271	1116	3870	161	8	939	107	10	588	29	2920	336	103	4	25	0,6	0,5	23	
	sd max	3,1 94,3	25,3 122,9	1,4 6,0	13,6 49,5	3,0 17,3	5,1 25,2	1,01 6,8	73 400	3011 12577	6607 30069	381 1923	12 46	912 4426	62 295	34	620 2168	20 78	6637 30580	219 1211	136 422	4 17	66 331	1,4 7	0,6 3	95 485	
																						1/					
									80			3	1			0		4				1.0				0.2	
	min n	82,3 29	28,5	1,0 29	1,2 18	5,6 29	0,4	3,0 29	80 25	48 26	419 26		1 26	66 26	31 26		19 26		52 26	63 26	0,3 26	1,0 26	1,2 26	0,0 26	0,0 26	0,2 26	11

V. myrtillus	x sd	88,2 3,4	92,8 49,4	2,6 1,1	35,3 23,3	10,2 2,7	9,4 12,2	4,37 1,22	211 72	2111 3485	4759 5179	516 1024	11 8	1542 1414	164 121	13 12	1387 1003	33 23	6860 7823	857 379	93 152	3 2	12 27	0,5 0,3	0,4 0,6	7 9	
	max	95,4	190,2	4,0	64,6	15,0	47,7	6,8	305	13074	15263	3820	31	5116	500	34	2924	81	27254	1338	550	9	98	1,0	2	26	
	min n	81,1 13	39,0 13	1,0 13	0,1	4,5 13	1,4 13	3,2 13	110 9	293 13	498 12	14 13	3 13	336 13	63 13	0 13	56 13	3 13	271 13	320 6	1 13	0,0 13	0,0 13	0,1 13	0,04 13	0,4 6	11
V. oxycoccos	×	91,3	66,6	3,1	31,0	8,3	4,3	4,63	130	809	3639	116	7	783	138	7	454	22	7342	477	147	5	35	0,6	1,2	19	11
	sd	2,9	23,3	1,1	16,1	2,6	3,8	0,90	104	1156	2636	219	7	484	91	7	845	22	16660	252	142	3	35	0,8	1,0	42	
	max min	95,6 74,8	155,7 23,3	6,0 1,0	67,5 0,3	17,3 4,4	33,4 1,0	6,7 3	425 -85	12577 29	14995 386	1923 2	56 1	3631 61	658 4	40 0	4733 8	162 2	217411 32	1485 28	777 0,3	19 1	237 0,37	9 0,0	7 0,0	485 0,3	
	n	214	23,3	215	107	214	215	211	153	201	201	201	200	201	201	200	201	202	201	162	200	200	200	202	201	161	44
V. uliginosum	×	89,1	62,0	2,3	16,0	10,4	3,9	3,67	245	865	2971	182	7	902	127	15	1277	38	4931	584	87	3	6	0,3	0,3	12	
	sd	3,3	31,2	1,4	16,3	3,1	5,3	0,60	70	1559	4054	220	4	699 3941	85	12	1224	20 98	17452 90044	322	123	2	11	0,4	0,3	39	
	max min	94,5 82,4	141,3 29,9	5,0 1.0	51,1 1.0	17,1 5,5	28,3 0,9	5,6 2,9	390 130	8089 133	22410 828	921 3	22 2	140	351 31	53 1	4733 43	98	90044 122	1338 208	437 0,3	10 1,3	49 0,4	2 0,1	1,2 0,0	159 0,3	
	n	28	28	28	10	28	28	28	21	26	26	26	26	26	26	26	26	26	26	16	26	26	26	26	26	16	17
V. vitis-idaea	×	89,2	52,3	2,1	13,0	10,4	4,2	4,28	214	400	6709	289	6	1624	107	9	1700	47	2612	503	29	3	20	0,2	0,2	7	
	sd max	3,7 94,4	11,4 77,5	1,3 5,0	13,6 33,2	3,6 17,1	2,4 8,7	1,26 6,8	81 280	421 1720	8473 30069	290 921	2	1285 4426	68 281	7 19	1325 3850	27 105	5478 20338	245 855	48 170	1,4 7	30 84	0,1 0,5	0,4 1,1	15 46	
	min	82,4	38,4	1,0	1,2	5,5	1,3	3,0	10	84	1334	3	3	348	36	0	52	11	122	229	0,3	2	0,7	0,1	0,02	0,3	
	n	13	13	13	5	13	13	13	9	13	13	13	13	13	13	10	13	13	13	9	13	13	13	13	13	9	11
Carex (total)	x	89,5	96,4	3,8	44,0	9,3	7,8	4,99	112	2461	5043	170	14	891	140	6	256	27	8630	630	160	6	46	1,0	1,1	18	
	sd max	4,8 96	55,5 717	1,2 9	18,4 91,2	2,9 20,59	10,4 88,7	0,83 7,6	104 425	3088 35505	5543 40258	973 18666	19 257	813 6145	183 4360	9 74	484 4733	43 436	18401 228961	422 5162	209 2533	4 63	51 470	2 26	0,8 8	27 323	
	min	45,7	22	1	0,1	3,61	0,8	2,9	-195	35303 70	40238	18000	1	11	4300	0	4733	430	104	89	0,3	0,2	0,4	0,0	0,0	0,2	
6	n	897	894	908	437	895	898	905	620	872	863	859	870	871	862	859	872	871	871	618	858	862	862	868	862	616	71
Carex spp.	x sd	89,4 4,7	97,2 53,6	3,9 1,1	44,4 18,3	9,4 2,9	7,8 10,2	5,02 0,81	109 104	2558 3326	5050 5537	171 985	14 19	887 811	141 186	6 9	233 438	28 46	8914 18685	642 464	162 210	6 4	47 51	1,0 2	1,1 0,8	18 27	
	max	96,0	717,0	9,0	91,2	20,6	88,7	7,6	425	35505	40258	18666	257	6145	4360	74	438	436	228961	5162	2533	63	470	26	8	323	
	min	45,7	22,0	1,0	0,1	3,6	0,8	2,9	-195	70	89	1	1	11	4	0	7	1	104	89	0,6	0,2	0,4	0,0	0,0	0,2	
C. aquatilis	n	873	872 95,9	884	431	871	874 10,1	882 5,55	599	848 4192	838 5797	836 139	846 27	847 1121	838	836 7	848 222	846 48	848	605 784	835	837 5	837 67	843 2	838	604 22	69
c. aquatins	x sd	89,9 2,5	28,3	3,8 0,9	45,3 10,5	9,0 2,0	8,8	0,56	31 81	6330	4270	85	39	667	186 177	8	269	40 95	13120 12124	857	130 157	2	87	4	1,2 0,6	24	
	max	94,6	174,3	6,0	69,6	12,6	43,8	6,6	160	35505	17083	333	211	2491	736	35	1192	347	63861	5162	899	10	314	16	2	106	
	min	84,6	50,1	3,0	25,3	5,2	4,1	3,6	-160	224	1811	24	3	444	50	0	38	5	1944	240	20,6	2	4	0,06	0,26	3	
C. buxbaumii	n	30 86,7	30 129,6	30 4,3	23	30 13,0	30 4,2	30 4,93	27	30 3882	27 3580	30 22	30 13	30 633	30 91	30	30 85	30 24	30 3729	30	30 181	27 6	27 46	30 1,1	30 1,1	30	14
ci buxbuunni	sd	0,7	13,2	0,6		0,7	0,2	0,15		49	557	8	7	141	15		23	25	1048		41	0,4	22	0,8	0,3		
	max	87,5	142,9	5,0		13,7	4,3	5,1		3929	4222	27	21	796	108		102	53	4791		225	6	72	2	1,4		
	min n	86,1 3	116,6 3	4,0		12,3	4,0	4,8		3831	3230	12	9	550	82		59 3	5	2696		142	5 3	32	0,2 3	0,9		1
C. canescens	×	86,9	129,0	4,0	42,9	10,4	15,3	5,10	97	2926	5758	463	18	1298	206	12	651	42	14911	909	150	4	39	1,2	0,7	19	-
	sd	5,2	67,2	1,2	17,7	2,5	16,1	0,66	113	2661	4683	2366	16	871	192	12	1594	80	29263	567	244	2	69	2	0,5	32	
	max	94,5 61,1	489,4 48,7	9,0 2,0	76,3 8,7	15,6 5,3	78,6 1,4	6,4 3,5	315 -195	12022 158	18561 498	18666 6	99 2	3631 254	915 35	59 0	12154 49	593 3	208053 67	2485 4	1789 0,4	10 1	331 0,3	7 0,03	2 0,01	227 1,4	
	n	62	63	66	48	62	62	65	61	62	61	62	62	62	62	62	62	62	62	58	62	61	61	62	62	58	30
C. cespitosa	×	88,8	106,7	3,5	37,8	9,4	14,7	5,80	160	1940	12775	3343	18	2480	177	17	777	47	38492	892	28	6	36	1,0	0,7	48	
	sd max	3,2 94,9	32,3 145,3	1,2 5,0	17,3 55,1	2,6 11,8	13,5 41,6	0,97 6,8	60 230	1824 4723	5698 19424	7511 18666	7 29	1414 3856	108 335	15 41	730 1981	62 167	83200 208053	198 1225	35 94	2 10	37 108	0,8 2	0,9 2	100 227	
	min	86,4	54,7	2,0	17,8	4,9	6,1	4,1	76	293	2606	52	11	495	88	0	93	8	271	742	1,1	4	8	0,1	0,04	0	
	n	6	6	6	5	6	6	6	5	6	6	6	6	6	6	6	6	6	6	5	6	6	6	6	6	5	4
C. chordorrhiza	x sd	90,7 3,1	83,7 31,5	3,8 1,1	45,5 17,5	8,6 2,7	6,8 5,9	5,29 0,74	91 90	2462 2235	5181 4955	279 1580	13 10	771 643	150 94	6 10	202 276	23 25	9859 20614	711 302	121 107	7 5	50 49	1,0 1	1,3 0,9	18 24	
	max	95,6	201,9	9,0	84,2	17,7	51,4	6,8	260	15428	39737	14983	60	4426	450	56	1793	208	228961	1846	541	63	304	12	7	164	
	min	80,3	22,3	2,0	2,5	4,1	1,7	3,1	-195	84	179	2	3	26	14	0	27	2	253	228	4,6	2	0,7	0,1	0,0	0,5	
C. diandra	n	175	175 81,1	178 3,6	70	175 7,9	175	179 5,78	86 35	169 1888	168 7116	169 171	169 18	169 1109	167 193	167 3	169 199	169 19	169 9522	98 625	169 88	168 7	168 68	169 2	169 1,5	98 22	35
c. alanara	x sd	91,4 3,1	37,0	1,0	35,3 13.2	2,6	7,6 4,6	0,77	91	2254	4553	118	35	633	115	э 5	397	14	8629	181	76	3	61	4	0,8	16	
	max	95,6	229,9	7,0	63,2	15,0	24,3	6,8	280	9924	17083	394	211	2491	658	25	2632	58	30422	1009	250	12	237	16	3	56	
	min	82,2	39,7	2,0	9,1	4,1	3,4	3,6	-90	124	498	5	4	183	76	0	54	5	724	316	5	1	1	0,1	0,3	2	4.5
C. dioica	n	41 87,4	41 126,6	41 3,5	20 45,5	41 9,3	41 25,1	40 5,20	22 44	41 919	41 11810	41 9799	41 18	41 1854	41 223	41 29	41 697	41 100	41 109536	24 845	41 11	41 6	41 29	41 0,2	41 0,4	24 121	13
	sd	1,3	26,5	0,7	5,2	2,0	23,3	0,28	46	558	1278	12540	11	195	159	17	615	95	139324	99	0,48	1	28	0,1	0,1	151	
	max	88,3	145,3	4,0	49,1	10,7	41,6	5,4	76	1313	12714	18666	25	1992	335	41	1132	167	208053	915	12	7	49	0,3	0,4	227	
	min	86,4	107,8	3,0	41,8	8,0	8,6	5,0	11	524	10906	932	10	1716	110	17	262	33	11019	775	11	5	10	0,1	0,3	14	
	n	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1

C. echinata	x sd	86,2 1,5	126,3 18,8	3,5 1,0	60,1 10,9	11,7 1,3	14,7 7,2	5,58 0,56	43 92	6310 3603	10310 6110	254 152	67 76	1814 1054	181 89	16 13	263 206	35 33	22963 33778	817 312	84 87	6 1,1	95 108	6 8	1,0 0,5	37 61	
	max	88,9	141,1	5,0	71,1	13,0	28,3	6,3	130	11754	17083	464	211	2716	351	39	534	98	90044	1158	198	7	235	16	2	159	
	min n	84,8 6	93,8 6	2,0 6	43,2 6	10,2 6	8,1	5,1 6	-90 6	2301 6	2652	73 6	16 6	368 6	98	5	65 6	6 6	2692 6	488 6	14	4 6	6 6	0,2 6	0,3 6	2	3
C. elongata	n=1	91,9	65,2	2,0	0	7,3	20,9	5,10	Ū	519	5112	55	44	995	364	8	1636	55	787	Ŭ	14	5	3	0,8	0,2	0	1
C. flava	×	88,6	110,4	4,1	47,5	9,7	13,1	5,72	79	3889	11230 6694	1256	36	1681	128	8	627	66	25549	743	184	8	77	2	0,7	32	
	sd max	3,3 93,5	41,3 225,4	1,3 7,0	21,6 72,8	2,1 14,5	11,9 50,1	0,51 6,4	72 166	3385 11512	35081	4236 18666	39 184	1154 3988	67 335	11 41	1132 3850	96 436	67935 228045	406 1207	581 2533	3 12	84 331	2 7	0,4 2	79 227	
	min	79,6	40,5	1,0	17,4	6,0	5,5	4,1	-55	94	5656	1	4	610	35	0	56	4	580	215	2	3	1,5	0,1	0,0	2	
C. globularis	n ¥	19 87,7	19 105,0	19 3,5	7 41,8	19 10,4	19 8,9	19 3,99	8 168	19 2690	19 2933	19 87	19 10	19 697	18 116	18 11	19 871	19 29	19 5161	8 1096	19 176	19 5	19 12	19 0,6	19 0,4	8 5	6
	sd	6,5	87,6	1,7	19,0	2,6	13,8	0,47	77	2826	2324	103	10	317	97	7	974	23	7623	961	275	3	14	0,8	0,3	5	
	max min	93,6 56,0	544,8 29,1	7,0 1,0	65,9 1,2	17,1 6,0	72,8 1,5	4,9 2,9	305 0	12913 155	11262 535	467 2	49 2	1648 42	586 33	33 0	4733 45	105 4	35639 122	4583 229	1649 0,3	17 1,3	56 0,4	4 0,1	1,2 0,03	26 0,3	
	n	49	47	49	1,2	49	49	49	42	49	49	48	49	42	49	48	43	49	48	229	48	49	49	49	49	27	15
C. heleonastes	n=1	85,9	150,9	5,0	69,5	10,6	24,7	5,30	-110	12684	2195	24	97	731	256	4	243	14	195	716	8	3	9	7	1,1	0,3	1
C. lasiocarpa	x sd	89,2 3,2	99,3 32,3	4,1 1,2	56,4 17,2	10,1 2,9	6,4 5,2	5,00 0,79	149 95	2673	4657 4378	92 116	19 20	771 724	110 92	4 8	202 464	26 34	5714 9544	653 272	149 146	7 5	51 58	2 2	1,1 0,9	11 20	
	max	95,8	190,4	7,0	89,8	18,5	30,1	6,8	375	15428	23516	711	184	4282	552	55	3850	335	90044	1494	797	63	470	12	7	159	
	min n	80,4 172	35,0 171	1,0 179	7,6 64	3,6 171	0,9 173	3,5 180	-160 96	94 165	179 165	2 165	1 165	26 165	14 162	0 164	7 165	1 165	229 165	171 87	2 166	2 166	0,6 166	0,1 166	0,0 165	1,3 88	31
C. laxa	n=1	87,2	125,4	4,0	69,1	12,4	2,8	3,60	220	4063	1224	11	10	403	58	7	139	6	556	774	51	3	9	2	0,4	1	1
C. limosa	x	91,0	84,8	3,6	47,0	8,5	6,2	5,32	103 83	2302	5618	218	12	841	137	7	507	58	6860	537	135	7 3	51	1,0	1,3	17	
	sd max	3,3 95,6	32,5 229,6	0,9 6,0	17,0 84,2	2,8 15,2	5,4 39,0	0,80 6,8	390	2281 9924	6199 39737	1298 14983	11 50	835 6145	89 401	15 109	1635 9198	160 875	9739 92579	261 1211	245 2533	3 17	50 291	1,4 12	1,0 4	21 164	
	min	77,4	22,0	1,0	10,1	4,1	0,8	3,7	-85	124	352	1	1	25	13	0	27	2	75	3	0,8	2	0,3	0,0	0,0	0,4	
C. livida	n x	134 88,5	134 112,7	136 2,5	55 56,0	134 9,4	134 19,2	137 5,75	76 130	132 1534	132 6503	132 7540	132 17	132 949	132 162	130 40	132 584	132 119	132 51034	83 776	132 52	132 6	132 10	132 0,3	132 0,3	83 87	31
	sd	1,7	30,4	0,7	7,0	2,6	11,0	0,07	7	1225	4993	10526	1	171	35	7	309	127	58754	299	65	4	3	0,3	0,1	109	
	max min	89,7 87,3	134,2 91,2	3,0 2,0	60,9 51,0	11,3 7,6	26,9 11,4	5,8 5,7	135 125	2400 668	10033 2972	14983 97	18 16	1070 828	187 137	45 35	802 365	208 29	92579 9488	987 564	98	9 4	13 8	0,6 0,1	0,4 0,2	164 10	
	n	2	91,2	2,0	2	2	2	2	2	2	2972	2	2	2	2	2	2	29	2	2	2	2	2	2	2	2	2
C. Ioliacea	n=1	86,5	127,2	3,0	53,5	12,3	8,4	5,50	225	1496	19368	41	22	2992	95	19	307	9	3906	1034	95	6	63	2	0,3	4	1
C. magellanica	× sd	90,9 2,4	88,8 22,5	3,3 0,7	39,5 20,0	8,6 2,2	5,4 2,5	4,60 0,67	245 145	1642 1313	2595	32 45	9 6	539 200	90 52	7 6	154 187	25 41	3001 3463	640 180	201 129	6 4	44 38	1,0 1	0,9 0,5	5 4	
	max	94,5	128,5	5,0	76,3	13,0	10,1	5,9	425	4594	8660	124	19	966	232	20	733	162	12423	1029	409	14	120	3	2	14	
	min n	85,8 14	52,0 14	2,0 16	0,3 11	5,4 14	2,1 14	3,4 17	60 13	267 14	1170 14	4 14	3 14	236 14	48 14	0 14	24 14	4 14	878 14	481 10	16 14	3 14	4 14	0,02 14	0,3 14	2 10	6
C. nigra	×	86,9	131,7	3,6	44,4	10,4	12,9	5,31	95	2875	7117	896	21	1365	151	10	274	29	15429	675	108	8	76	2	0,8	20	0
	sd	6,5	91,7	0,7	19,1	1,8	17,9	0,68	72	2254	6067	3875	16	1108	175	12	360	63	42195	399	102	12	94	3	0,5	46	
	max min	92,1 57,4	542,9 66,2	5,0 3,0	83,1 10,1	14,9 7,6	82,1 1,0	6,7 4,1	225 -70	8589 323	19368 748	18666 7	56 2	3248 48	736 31	41 0	1192 27	280 4	208053 310	1652 187	358 11	63 2	271 3,0	9 0,1	2 0,1	227 0,7	
a	n	25	24	26	22	24	25	25	26	24	24	23	24	24	24	24	24	24	24	23	23	24	24	24	24	23	17
C. pauciflora	x sd	94,3 1,0	48,4 10,0	2,0 0,7		5,5 0,9	2,4 0,8	3,78 0,29		443 248	1795 477	25 26	5 2	483 278	157 105	10 6	338 328	37 35	1409 845	201	137 144	5 3	12 11	0,3 0,3	0,8 0,6	5	
	max	95,2	60,0	3,0		6,9	3,7	4,1		805	2592	68	8	877	330	21	864	96	2836	201	379	9	29	0,7	2		
	min n	93,0	36,2 5	1,0 5		4,7 5	1,6 5	3,4 4		193 5	1399 5	4 5	3 5	205 5	56	5 5	49 5	7	780 5	201	13	3 5	3 5	0,0 5	0,2 5	1,0	4
C. pseudocyperus	×	93,7	64,8	5,0		6,1	3,7	5,40	50	3044	5236	104	10	578	49	10	104	17	6125	618	2685	9	51	0,7	0,5	10	**
	sd	1,2	13,2	0,0		1,2	0,2	0,14	0	313	903	18	7	29	13	1	18	4	125	148	3704	1,1	0,0	0,6	0,2	2	
	max min	94,5 92,8	74,1 55,5	5,0 5,0		7,0 5,3	3,8 3,5	5,5 5,3	50 50	3265 2823	5874 4597	116 91	15 5	598 557	58 39	11 9	116 91	19 14	6213 6036	723 513	66 54	10 8	51 51	1,1 0,3	0,6 0,3	12 9	
	n	2	2	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	1
C. rariflora C. rhynchophysa	n=1	90,6 87,4	90,6 120,2	3,0 5,0	32,2	8,4 12,4	10,1 4,3	4,10 5,05		1011 1693	1685 5978	11 50	8 21	421 1173	174 83	11 3	314 68	42 14	1235 8610	596	112 60	4 9	5 51	0,2 0,7	0,6 0,5	2	1
el mynenopnysa	sd	0,1	3,9	0,0		0,1	0,4	0,07		333	865	8	4	155	13	1	0	1	1276		9	1,1	0,1	0,6	0,2		
	max	87,4	122,9	5,0			4,6	5,1		1928	6589	55	24	1282	92	3	68	14	9512		175	5	97	2	1,4		
	min n	87,3 2	117,4 2	5,0 2		2	4,0 2	5,0 2		1457 2	5366 2	44 2	18 2	1063 2	74 2	2	68 2	13 2	7707 2		173 2	5 2	79 2	1,4 2	1,1 2		1
C. rostrata	x	90,6	84,8	4,0	43,1	8,7	7,0	5,15	89	2391	4707	94	15	801	142	5	170	28	10566	573	198	6	45	1,0	1,2	25	
	sd max	2,9 95,8	30,1 229,9	1,0 7,0	16,3 89,8	2,5 18,5	7,0 43,8	0,67 6,8	113 390	3372 35505	3956 34929	96 464	19 184	522 3993	121 736	8 56	232 1636	48 347	14830 98418	465 5162	273 2510	4 22	36 237	1 12	0,8 6	39 323	
	min	80,4	22,0	1,0	0,3	3,6	1,3	3,5	-170	88	498	1	104	48	-36	0	7	2	540	89	2,4	0,0	0,0	0,0	-0,3	1	
C. vaginata	n	184	185	191	102	184	184	191 5 41	143	174	168	173 284	172	173	169	173 7	174 211	174	174 8066	142 847	173 68	173 6	173 59	174 2	172	142 7	33
c. vuginutu	x sd	86,7 5,3	121,9 31,2	3,3 0,6	54,5 10,4	11,2 2,4	11,3 11,1	5,41 0,92	88 108	2398 2398	7442 6064	284 573	24 23	1309 931	459 1230	10	211 176	26 44	8066	258	65	2	59 69	4	1,4 2	5	
	max	94,5	181,8	5,0	70,8	15,0	45,5	6,6	225	9624	19368	2085	96	2992	4360	35	667	163	28438	1056	209	10	233	15	7	15	
	min	72,0	53,7	3,0	39,8	5,4	3,1	4,1	-90	1119	1185	13	8	171	21	0	65	6	1768	436	11	2	7	0,1	0,1	2	0

C. vesicaria	x sd max min	89,2 3,8 95,8 72,0	99,4 34,0 210,8 35,0	4,2 1,2 8,0 1,0	46,2 24,3 91,2 0,3	9,9 2,9 17,5 3,6	7,5 7,1 45,5 1,2	5,14 0,80 6,8 3,7	103 93 355 -90	3267 3319 16061 124	4599 3415 14854 746	138 245 2085 3	20 22 103 1	831 513 2119 206	197 497 4360 20	3 6 40 0	228 439 3517 12	24 23 163 2	8936 8045 29188 716	628 387 1794 150	149 119 541 2	6 3 12 2	40 31 176 0,5	1,1 1,3 7 0,1	1,1 0,9 7 0,0	26 28 106 2	
Eleocharis spp. E. palustris	n n=1 x sd max min	82 84,6 86,8 4,6 91,3 82,2	82 174,3 139,5 79,7 229,9 79,5	81 3,0 4,0 1,0 5,0 3,0	21 69,6 38,9 11,8 46,1 25,3	82 8,7 10,1 3,1 13,6 8,2	82 43,8 21,9 14,6 35,6 6,6	82 5,10 5,75 0,35 6,0 5,5	44 107 0 99 70 -70	80 35505 3409 2404 5789 981	80 5686 5954 12240 609	80 71 125 82 175 30	80 40 21 12 35 13	80 1787 1610 1177 2368 254	77 691 377 329 736 91	80 14 99 157 280 6	80 714 5687 9660 16841 39	80 347 231 385 676 7	80 63861 2489 3222 6153 96	44 5162 306 293 587 2	80 899 26 22 41 0,5	80 0,0 3 2 6 2	80 0,0 106 180 314 0,2	80 0,1 1,2 1,0 2 0,1	79 1,0 1,3 1,2 2 0,0	44 12 15 12 25 2	25 1
Eriophorum spp. (total)	n x sd	3 89,4 4,2	3 92,1 45,9	3 3,8 1,3	3 39,9 23,7	3 9,8 3,2	3 5,0 7,7	2 4,33 0,73	2 166 83	3 2314 2982	3 2690 2419	3 71 192	3 10 16	3 597 447	3 115 235	3 6 9	3 242 517	3 23 28	3 5434 13024	3 527 343	3 208 193	3 5 4	3 29 27	3 0,9 1,7	3 1,1 1,2	3 15 35	3 33
E. angustifolium	max min n x	95,8 57,4 453 90,4	542,9 22,0 453 71,8	8,0 1,0 452 3,4	88,7 0,3 168 28,3	26,2 3,6 453 9,0	82,1 0,9 454 6,8	6,7 2,9 448 4,71	390 -110 299 126	27007 29 429 806	23354 89 429 3292	2085 1 428 173	257 1 428 8	3631 11 430 888	4360 9 425 199	63 0 429 17	4733 5 430 1208	309 1 430 109	217411 32 430 22486	2503 28 289 558	1649 0,3 428 185	25 0,2 429 4	220 0,4 429 23	26 0,01 428 0,4	16 0,0 425 0,9	485 0,2 289 32	13
	sd max min	3,4 95,4 80,0 21	36,5 185,6 32,0 21	1,4 6,0 1,0 21	14,4 52,1 8,3 13	3,3 19,4 4,4 21	7,5 33,4 1,0 21	0,81 6,3 3,2 21	89 260 -20 16	857 3542 94 18	1858 7114 810 18	217 736 2 18	7 31 2 18	549 1811 221 18	140 488 29 18	18 56 0 18	1987 6602 40 18	248 802 5 18	49724 217411 34 18	365 1170 2 16	182 777 0,2 18	3 14 2	25 82 0,4 18	0,3 0,8 0,01 18	0,9 4 0,02 18	44 186 4	13
E. latifolium	n x sd max	87,7 4,0 93,5	107,8 40,6 140,7	21 2,8 1,0 4,0	23,4 71,1	10,1 3,0 13,0	21 16,5 8,6 28,3	5,43 0,40 6,0	118 42 166	4913 11754	6138 14995	709 776 1852	18 17 8 26	1819 1610 3631	225 85 351	18 21 14 39	1213 1606 3611	52 31 98	30779 40698 90044	288 1119	102 109 198	18 5 1 7	18 11 8 23	0,4 0,3 0,7	0,5 0,4 0,9	16 48 74 159	12
E. vaginatum	min n x sd	84,8 4 90,2 3,4	48,7 4 75,8 33,9	2,0 4 3,4 1,2	17,4 4 32,4 22,0	6,0 4 9,4 3,1	7,8 4 3,1 3,2	5,1 4 3,94 0,60	65 4 197 75	255 4 1325 2754	2652 4 2482 2261	125 4 47 100	6 4 8 21	368 4 593 305	163 4 103 68	7 4 7 8	206 4 267 583	32 4 19 21	2963 4 3077 7067	566 4 439 300	2 4 199 168	4 4 5 4	4 4 30 29	0,2 4 0,8 2	0,1 4 1,3 2	5 4 9 15	3
2 1 - 1	max min n	95,8 74,8 206	190,4 22,0 206	7,0 1,0 206	79,7 0,3 102	18,5 4,2 206	28,3 0,9 207	6,6 2,9 201	390 -110 159	27007 29 183	12580 305 183	813 2 182	257 1 181	2243 39 183	495 9 183	56 0 182	4733 5 183	113 2 183	90044 32 183	2503 28 164	791 0,3 182	25 1 183	193 0,4 183	26 0,0 181	16 0,04 183	159 0,2 164	33
Rhynchospora alba	x sd max min	88,9 0,8 89,4 88,3	113,8 10,5 121,2 106,4	1,5 0,7 2,0 1,0	30,9 24,7 48,4 13,4	8,7 1,1 9,5 7,9	21,9 4,7 25,2 18,5	5,45 0,07 5,5 5,4	178 88 240 115	7121 7717 12577 1664	3229 665 3699 2758	1000 1306 1923 76	21 19 34 7	918 358 1171 665	243 74 295 190	30 6 34 26	562 42 591 532	44 4 46 41	17383 18664 30580 4185	244 256 425 63	35 28 55 16	4 0,7 4 3	6 0,8 6 5	0,5 0,4 0,7 0,2	0,4 0,1 0,5 0,4	248 336 485 10	
Scirpus spp. S. lacustris	n n=1 x	2 87,0 88,1	2 109,2 119,6	2 4,0 4,8	2 45,4	2 8,4 9,1	2 35,6 21,5 13.6	2 6,00 5,88	2 -70 125	2 5789 4855 1804	2 4210 9439 4866	2 175 193 77	2 35 61 27	2 2368 1030 405	2 736 226	2 280 1	2 16841 238	2 676 67 39	2 96 33810	2 2 686	2 0,5 168 110	2 2 9 4	2 0,2 44	2 0,1 1,3	2 0,04 1,0	2 25 13	2 1
	sd max min n	2,1 90,1 85,0 5	18,4 148,9 101,5 5	0,8 6,0 4,0 5		0,2 9,5 8,9 5	13,6 41,0 8,4 5	0,39 6,1 5,2 5	1	1804 7566 3358 5	4866 14718 3560 5	252 59 5	27 102 29 5	405 1699 696 5	127 427 102 5	1 2 0 5	116 412 110 5	39 109 11 5	29475 69732 6645 5	1	110 310 33 5	4 14 4 5	21 67 13 5	0,9 3 0,5 5	0,3 1,4 0,6 5	1	2
Trichophorum spp.	x sd max min	89,4 4,1 95,7 66,7	98,1 48,7 389,4 22,3	3,1 1,0 6,0 1,0	44,4 18,1 78,7 7,7	9,4 2,6 16,0 4,2	8,3 9,7 68,0 0,9	4,85 0,93 6,7 3,1	141 75 320 25	2406 2732 12577 94	4729 4319 22216 123	147 270 1923 3	15 13 54 1	815 709 4039 119	141 86 374 41	12 14 59 0	419 671 3850 40	31 26 103 2	6834 12565 90044 218	604 310 1348 63	122 138 541 0,4	7 7 63 0,2	37 47 271 0,6	1,0 1,4 7 0,0	0,8 0,6 3 0,0	19 63 485 0	
T. alpinum	n x sd	86 88,8 2,2	86 105,1 26,4	87 2,9 0,7	49 48,5 15,3	86 10,1 1,7	87 9,6 5,5	82 5,58 0,55	59 114 68	87 2652 3100	87 7425 5738	86 190 226	87 21 14	87 1131 1076	87 126 77	87 12 16	87 428 743	87 31 27	87 8798 16952	64 723 298	86 62 62	87 8 4	87 56 66	87 1,4 2	87 0,7 0,4	64 16 33	13
T. cespitosum	max min n x	93,8 84,8 29 91,3	160,0 40,5 29 68,8	5,0 1,0 29 2,5	78,7 26,8 22 32,0	13,0 5,8 29 8,1	28,3 3,5 29 5,6	6,7 4,1 29 3,97	320 45 22 216	11754 94 29 1266	22216 2389 29 2571	862 6 29 164	54 2 29 8	4039 304 29 675	364 42 29 168	59 0 29 17	3850 57 29 585	103 5 29 32	90044 502 29 4987	1179 215 22 403	234 7 29 167	16 3 29 4	271 1 29 12	7 0,1 29 0,3	1,4 0,02 29 0,7	159 1,4 22 28	7
·	sd max min	3,3 95,4 85,2	37,5 140,3 22,3	0,9 4,0 1,0	14,8 48,4 7,7	3,0 14,3 4,5	6,2 25,2 1,4	0,88 5,9 3,1	62 280 115	2619 12577 183	1270 5011 1116	434 1923 3	7 34 1	307 1305 221	96 330 41	13 59 2	729 2719 69	21 93 6 22	7408 30580 308	248 1034 63	152 449 2	2 8 2	12 46 0,6	0,2 0,7 0,04	0,7 3 0,04	113 485 0	
Poaceae (total)	n X sd max	21 87,9 4,5 94,0	21 111,7 50,4 444,4	22 3,8 1,2 8,0	12 47,5 16,8 79,7	21 10,4 2,8 22,1	22 11,6 10,7 57,8	18 5,43 0,72 6,7	14 62 104 310	22 4525 5798 35505	22 7644 5156 23516	21 413 1997 18666	22 34 44 257	22 1277 953 4164	22 211 529 5217	22 10 29 280	22 467 1779 16841	42 80 676	22 12165 26605 208053	18 761 626 5162	21 93 209 1789	22 8 7 63	22 78 86 470	22 2 4 26	22 1,0 0,6 3	18 18 34 227	11
Poaceae spp.	min n x	59,6 101 86,6	24,0 102 118,2	1,0 102 4,5	12,9 66 47,9	5,7 101 11,3	0,9 101 11,3	3,5 101 5,35	-170 71 30	94 97 4700	352 95 7331	3 97 331	1 97 37	61 97 1250	24 97 302	0 97 4	33 97 228	3 97 32	96 97 6636	2 71 822	0,5 97 51	1 95 9	0,2 95 61	0,1 97 2	0,0 97 1,0	0,2 71 18	26 12
	sd max min n	6,5 93,8 59,6 37	71,5 444,4 24,0 37	1,2 7,0 2,0 37	22,5 79,7 14,3 16	3,4 22,1 5,8 37	11,9 57,8 1,0 37	0,73 6,6 3,8 37	111 260 -150 17	6914 28862 131 33	4561 23354 352 33	1173 6843 3 33	55 257 2 33	1014 4164 101 33	888 5217 55 33	7 37 0 33	298 1583 50 33	28 127 5 33	9383 32774 260 33	295 1397 445 17	60 317 2 33	11 63 1 33	46 174 1,1 33	5 26 0,1 33	0,5 3 0,2 33	23 70 0 17	12

Hippuris vulgaris Lycopodium inundatum Lysimachia spp.	x sd max n n=1 x sd max min	87,9 3,7 93,6 82,2 7 87,4 87,4 87,2 0,3 87,4 87,0	128,6 52,3 229,9 60,5 7 40,5 38,8 2,5 40,5 37,0	4,1 0,9 5,0 3,0 7 1,0 3,5 3,5 6,0 1,0	44,7 11,5 55,4 32,6 3	9,2 2,2 13,6 6,2 7 11,9 12,1 0,3 12,3 11,9	22 5,77 14 0,45 41,04 6,1 4,4 5,2 7 6 5,5 4,10 0,1 0,42 5,5 4,7 5,4 4,4	-63 32 -40 -85 2	3929 1407 5776 1741 7 94 94	7113 5615 14718 609 7 5656 5656	145 102 252 30 7 711 711	47 32 102 10 7 4 4	784 470 1699 254 7 1792 1792	261 148 463 102 7 80 80	6 8 22 0 7 5 5 5	241 125 415 110 7 3850 3850	59 39 109 7 7 49 49	25443 28058 69732 1219 7 4983 4983	649 159 829 530 3	163 8 106 4 309,9 14,3 33,2 2,4 7 7 7 3 7 3 7 3 7 3	34 25 66,7 3,3 7 1,5 1,5	1,0 0,5 1,6 0,4 7 0,1 0,1	1,1 0,4 2 0,6 7 0,02 0,02	9 6 14 2 3	3 1
L. thyrsiflora	n x sd max min	2 88,6 2,1 90,7 84,0	2 106,5 18,6 142,2 85,0	2 4,9 0,6 6,0 4,0	40,4 10,5 54,6 30,1	2 10,4 1,4 12,3 8,9	2 2 8,8 5,66 6,3 0,48 24,3 6,5 4,0 5,1	-16 40 30 -70	1 3023 767 3831 1896	1 5328 1930 8871 2751	1 137 90 274 27	1 20 11 46 9	1 1168 405 1658 729	1 159 107 352 69	1 7 11 29 0	1 171 187 656 59	1 51 74 219 11	1 17091 8356 30945 4791	533 200 849 283	1 1 144 5 37 1,5 183 7 95 3	1 44 17 72 14	1 1,0 0,6 2 0,1	1 1,0 0,6 2 0,0	43 18 60 13	2
L. vulgaris	n x sd max min	9 90,4 0,5 90,7 90,0	9 93,6 8,1 99,3 87,8	9 5,5 0,7 6,0 5,0	4	9 9,3 0,5 9,6 8,9	9 9 4,4 5,15 0,3 0,07 4,6 5,2 4,1 5,1	7	9 5073 16 5084 5061	9 3513 33 3536 3490	9 14 0 14 14	9 17 1 17 16	9 321 5 324 317	8 74	9 0 0 0	9 87 18 99 74	9 33 6 37 28	9 4887 91 4951 4823	7	9 9 349 11 6 0,1 354 11 345 11	9 41 8 47 36	9 0,5 0,1 0,6 0,4	9 0,5 0,7 1,0 0,0	7	6
Menyanthes trifoliata	n x sd max min	2 90,6 3,1 96,0 67,7	2 86,8 30,9 294,7 22,0	2 3,8 0,9 9,0 1,0	42,1 16,5 91,2 8,3 339	2 8,7 2,5 18,2 3,9 536	2 2 6,7 5,25 5,8 0,67 51,2 6,8 0,8 3,5 538 542	65 92 390 -195 378	2 2171 2167 16061 88 530	2 5155 4293 35081 305	2 183 1042 18666 1	2 14 17 211 1	2 844 617 3993 47 530	1 142 92 628 4 525	2 6 63 0	2 177 406 7925 27 530	2 24 39 679 1 530	2 10713 19403 217411 98	607 292 1846 4 420	2 2 160 7 228 4 2533 63 1,2 1,5 538 533	2 51 52 470 0,3	2 1,1 2 16 0,0	2 1,2 0,8 7 0,0	22 30 323 1	1
<i>Myosotis</i> spp.	n x sd max min	538 87,6 2,6 89,4 85,7 2	536 117,7 29,5 138,5 96,8 2	540 5,5 0,7 6,0 5,0 2	45,3	536 10,4 2,7 12,3 8,4 2	538 542 17,2 5,90 4,1 0,99 20,1 6,6 14,3 5,2 2 2	-40	530 6099 2770 8057 4140 2	523 4948 917 5596 4299 2	529 167 187 299 35 2	529 26 5 29 22 2	530 1264 733 1782 745 2	525 234 175 358 110 2	529 1 1 1 0 2	530 235 13 244 225 2	530 57 35 82 32 2	530 3697 3040 5846 1547 2	420 642	528 522 86 4 114 2 167 6 5 3 2 2	522 21 5 25 18 2	530 0,5 0,2 0,7 0,4 2	528 1,0 0,7 1,5 0,5 2	419 2	46 2
Myriophyllum verticillatun	n x sd max min n	87,1 2,2 89,4 85,0	128,1 19,4 148,9 110,4 3	4,7 0,6 5,0 4,0	1	9,1 0,2 9,2 8,9 3	28,1 6,10 14,0 0,00 41,0 6,1 13,2 6,1 3 3	1	4451 1211 5776 3403 3	12107 4139 14718 7334 3	235 15 252 225 3	69 28 102 52 3	1151 499 1699 722	283 136 427 157 3	1 1 2 0 3	256 151 412 110 3	90 24 109 63 3	51069 24877 69732 22826 3	1	217 11 107 3 310 14 100 8 3 3	54 17 67 35 3	0,9 0,6 2 0,5 3	1,2 0,2 1,4 1,0 3		1
Nuphar luteum Pedicularis palustris	n=1 x sd max min	87,0 94,6 1,0 95,2 93,5	124,9 48,5 1,7 50,1 46,8	5,0 2,7 0,6 3,0 2,0	17,4	9,1 5,1 0,8 6,0 4,6	30,1 6,10 6,9 6,47 0,8 0,42 7,8 6,8 6,2 6,0	166	4173 1012 663 1488 255	14718 14152 1339 14995 12608	252 871 850 1852 372	52 18 17 38 6	1032 2173 1264 3631 1378	266 297 103 401 196	0 4 8 13 0	246 1296 2005 3611 103	98 27 12 39 15	60649 4856 1640 5842 2963	580	241 14 11 8 8 3 16 10 2 4	60 74 70 144 4	0,5 0,7 0,6 1,4 0,2	1,1 2 1,5 3 0,1	5	1
Potamogeton alpinus	n x sd max min n	3	3 112,6	3 4,0 0,0 4,0 4,0 2	1 66,0 14,6 76,3 66,0 2	3	3 3 5,20 0,28 5,4 5,2 2	1 90 90 90 2	3	3	3	3	3	3	3	3	3	3	1	3 3	3	3	3	1	2
P. berchtoldii P. gramineus	n=1 x sd max min	82,2 89,5 2,6 91,7 85,0 7	229,9 106,7 23,5 148,9 86,8 7	5,0 4,7 1,3 7,0 3,0 7	46,1	13,6 8,5 0,7 9,2 7,6 7	23,5 16,7 5,97 13,4 0,14 41,0 6,1 6,3 5,8	_	3456 3561 1641 5776 321	609 9592 3381 14718 7086	30 191 47 252 131	16 45 34 102 7 7	254 875 389 1699 585	304 187 122 427 78 7	10 2 3 8 0 7	182 179 116 412 73	10 71 23 109 54 7	1219 23869 29257 69732 2122	587	41 2 105 11 122 2 310 14 15 8	3 62 20 97 35 7	2 0,7 0,6 2 0,1 7	2 1,1 0,2 1,4 0,6 7	2	1
P. natans	n x sd max min n	7 94,3 2,2 95,8 91,1 4	7 50,3 15,5 73,3 40,1 4	2,7 0,6 3,0 2,0 3		4,3 0,7 5,2 3,6 4	29,6 6,45 21,3 0,30 61,5 6,7 18,3 6,1 4 4		2562 662 3520 2052 4	11019 1168 11834 9293 4	440 49 507 396 4	34 9 45 24 4	7 1598 78 1675 1526 4	643 228 984 514 4	4 8 15 0 4	482 322 955 277 4	58 28 100 39 4	1024 69 1103 940 4		2 7 0,19 0,56 2 7 2 6 4 4	30 15 43 10 4	0,6 0,2 0,9 0,5 4	2 0,4 2 1,0 4		1
P. pusillus	x sd max min n	86,0 1,4 87,0 85,0 2	136,9 17,0 148,9 124,9 2	4,6 0,5 5,0 4,0 5	59,6 12,5 76,3 46,5 4	9,0 0,2 9,1 8,9 2	35,6 5,50 7,7 0,50 41,0 6,1 30,1 4,9 2 6	100 15 115 85 4	4975 1133 5776 4173 2	14493 318 14718 14268 2	239 19 252 225 2	53 1 54 52 2	1366 472 1699 1032 2	347 114 427 266 2	0 0 0 2	329 117 412 246 2	104 8 109 98 2	65191 6423 69732 60649 2		275 11 49 4 310 14 241 8 2 2	47 18 60 35 2	0,5 0,0 0,5 0,5 2	1,1 0,03 1,1 1,0 2		2
Potentilla erecta	x sd max min n	83,9 5,0 87,4 80,3 2	119,7 111,9 198,8 40,5 2	2,0 1,4 3,0 1,0 2		10,7 1,6 11,9 9,6 2	28,5 4,85 32,4 1,06 51,4 5,6 5,5 4,1 2 2		669 812 1243 94 2	6776 1583 7895 5656 2	7510 9615 14308 711 2	10 8 16 4 2	1510 400 1792 1227 2	80 1	7 3 9 5 2	2319 2165 3850 788 2	104 77 158 49 2	116972 158376 228961 4983 2		12 5 6 2 16 6 7 3 2 2	6 10 1,5 2	0,1 0,01 0,1 0,1 2	0,01 0,02 0,0 2		1

P. palustris	×	90,5 2,9	85,4 32,0	4,0 1,0	42,1 15,3	8,5 2,2	8,4 8,4	5,32 0,63	40 99	2662 3320	4144 2374	129 123	14 12	891 540	175 140	12 25	1406 3570	96 205	14023 22785	598 539	165 260	5 2	31 28	0,82	1,0 0,8	28 38	
	sd max	2,9 95,5	279,7	9,0	85,2	15,6	68,8	6,6	350	35505	14245	804	102	3763	915	280	16841	821	217411	5162	2510	16	149	1,0 12	3,8	323	
	min	75,7	36,0	1,0	8,7	3,9	1,2	3,5	-195	124	357	4	2	133	39	0	27	3	63	2	0,3	0,0	0,0	0,0	0,0	2	
Ranunculus spp.	n x	177 95,4	177 43,8	185 3,0	126	176 4,0	177 19,3	184 6,50	142	170 2337	163 11474	169 405	169 33	169 1595	166 538	170 0,0	170 348	169 45	170 973	149	169 2	169 7	169 34	169 0,76	170 2	149	29
Nunanculus spp.	sd	0,6	2,0	0,0		0,6	0,6	0,28		187	192	12	1	85	21	0,0	93	8	47		0,04	0,3	10	0,2	0,4		
	max	95,8	45,2	3,0		4,4	19,7	6,7		2469	11609	413	34	1655	552		413	50	1006		2	7	41	0,9	2		
	min n	95,0 2	42,4	3,0 2		3,6 2	18,8	6,3 2		2205 2	11338 2	396 2	32 2	1535 2	523	2	282 2	39 2	940 2		2	7	27 2	0,6 2	1,3 2		1
R. sceleratus	n=1	91,1 ⁻	73,3	2		5,2	61,5	6,70		3520	9293	507	45	1526	984	Ó	955	100	1048		2	6	10	0,5	1,0		1
Rubus chamaemorus	x	89,2	48,3	1,6	9,7	10,3	4,1	3,50	245	472	2582	252	8	931	85	12	1578	34	4418	576	27	3	2	0,4	0,1	6	
	sd	2,4	13,0	0,8		2,4	4,2	0,62	51	504	342	184	6	201	27	11	804 2555	14	10090	276 1040	62	0,6	1,2	0,5	0,04	11	
	max min	91,2 84,2	64,2 34,6	3,0 1,0		15,5 8,4	13,5 1,9	4,8 3,0	320 180	1588 164	3218 2212	467 35	22 3	1254 672	142 64	31 0	620	49 4	27254 259	326	167 0,6	4	4 0,9	2 0,1	0,1 0,03	26 1	
	n	7	7	7	1	7	7	7	5	7	7	7	7	7	7	7	7	7	7	5	7	7	7	7	7	5	6
R. saxatilis	n=1	88,9	93,8	3,0	43,2	10,2	8,1	6,30	-90	2301	15286	221	96	2362	98	5	65	6	7150	488	32	6	235	16	2	15	1
Rumex spp. Scheuchzeria palustris	n=1 ×	88,9 91,1	112,1 83,5	6,0 3,8	34,8	9,5 8,5	14,9 4,0	5,20 4,85	125 128	7566 1597	3560 4488	59 81	29 8	1001 667	178 116	2	267 95	11 22	9198 4872	686 444	156 193	4 6	13 50	3 0,7	0,7 1,5	13 15	1
Seneuenzena parasens	sd	3,7	33,3	1,1	17,1	3,4	3,7	0,94	72	1808	6186	109	8	689	91	6	83	33	8423	210	232	3	44	0,7	1,0	17	
	max	96,5	230,4	9,0	84,1	20,6	32,2	6,8	260	13563	40258	583	60	4174	552	74	855	309	117506	1319	2533	24	291	5	8	94	
	min	74,8 303	36,6 303	2,0 304	6,9 80	3,5 303	0,8 304	3,1 303	-30 170	29 303	89 302	1 298	1 300	11 302	4 302	0 297	7 303	0 304	32,0 303	28 171	2,4 297	1,71 301	1,31 301	0,0 303	0,0 302	0,4 170	27
Selaginella selaginoides	n x	86,9	120.1	4,0	52,2	10,4	16,4	5.69	93	4241	17462	962	18	2235	132	14	445	504 60	26551	814	234	7	85	1,3	0,5	12	21
5	sd	3,5	42,1	1,4	16,3	2,2	13,9	0,79	82	4816	15767	2791	10	1712	146	17	683	112	59426	193	488	3	89	1,2	0,4	32	
	max	95,8	225,4	7,0	71,1	13,9	51,4	6,7	240	18849	40258	14308	40	5116	552	74	3850	436	228961	1179	2533	14	291	4	1,4	159	
	min n	79,6 34	40,5 34	1,0 34	19,2 16	3,6 34	5,5 34	3,9 34	-90 26	94 34	1353 32	1 28	4 34	368 34	29 31	0 24	64 34	4 34	361 34	463 24	2 28	0,0 34	0,0 34	0,05 34	0,0 34	0,4 24	10
Solidago virgaurea	n=1	87,4	40,5	1,0	10	11,9	5,5	4,10	20	94	5656	711	4	1792	80	5	3850	49	4983		7	3	1,5	0,1	0,0	2.4	1
Sparganium minimum	x	92,6	77,2	3,5		6,7	14,1	6,25		3324	9594	296	32	1166	349	1	264	41	1658		7	9	48	0,8	1,3		
	sd max	4,6 95,8	49,2 112,0	0,7 4,0		4,3 9,8	7,9 19,7	0,64 6,7		1583 4443	2466 11338	141 396	3 34	522 1535	287 552	1	211 413	3 43	1015 2375		7	2 10	29 69	0,1 0,9	0,04 1,3		
	min	95,8 89,3	42,4	3,0		3,6	8,5	5,8		2205	7850	196	30	797	146	0	415	45 39	940		2	7	27	0,9	1,3		
															-		-	-									1
	n	2	2	2		2	2	2		2	2	2	2	2	2	2	2	2	2		2	2	2	2	2		1
S. simplex	×	2 86,0	2 136,9	5,0		9,0	2 35,6	2 6,10		4975	14493	239	53	1366	347	0	2 329	104	65191		2 275	11	47	0,5	1,1		1
S. simplex		2 86,0 1,4	2 136,9 17,0				2 35,6 7,7	2 6,10 0,00		-					2 347 114		2 329 117	-	2 65191 6423		2 275 49	-		-			1
S. simplex	x sd			5,0		9,0				4975	14493	239	53	1366		0		104				11	47	0,5	1,1 0,0		1
·	x sd max min n	1,4	17,0	5,0 0,0	48.4	9,0 0,2	7,7	0,00	115	4975 1133 2	14493 318 2	239 19 2	53 1	1366 472	114	0 0 2	117	104 8 2	6423	425	49 2	11 4	47 18 2	0,5 0,0	1,1 0,0 2	10	1
Utricularia spp.	x sd max min n n=1	1,4 2 88,3	17,0 2 121,2	5,0 0,0 2 2,0	48,4	9,0 0,2 2 9,5	7,7 2 18,5	0,00 2 5,40	115 138	4975 1133 2 1664	14493 318 2 2758	239 19 2 76	53 1 2 7	1366 472	114 2 190	0 0 2 26	117 2 532	104 8 2 41	6423 2 4185	425	49 2 55	11 4 2 4	47 18 2 5	0,5 0,0 2 0,2	1,1 0,0 2 0,4	10 17	_
·	x sd max min n	1,4	17,0	5,0 0,0	48,4 37,5 ^{19,8}	9,0 0,2	7,7	0,00	115 138 111	4975 1133 2	14493 318 2	239 19 2	53 1	1366 472	114	0 0 2	117	104 8 2	6423	425 611 692	49 2	11 4	47 18 2	0,5 0,0	1,1 0,0 2	10 17 33	1
Utricularia spp.	x sd max n n=1 X	1,4 2 88,3 89,9	17,0 2 121,2 88,8	5,0 0,0 2 2,0 3,6	37,5	9,0 0,2 9,5 9,1	2 18,5 6,5	0,00 2 5,40 4,75	138	4975 1133 2 1664 1906	14493 318 2758 4618	239 19 2 76 177	53 1 2 7 12	1366 472 665 878	114 2 190 146	0 0 2 26 7	² 532 295	104 8 2 41 25	6423 2 4185 7196	611	49 2 55 154	11 4 2 4 6	47 18 2 5 43	0,5 0,0 2 0,2 0,9	1,1 0,0 2 0,4 1,4	17	1
Utricularia spp.	x sd max n n=1 X sd max min	1,4 88,3 89,9 4,7 96,5 45,7	17,0 2 121,2 88,8 53,6 717,0 22,0	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0	37,5 19,8 89,8 0,1	9,0 0,2 9,5 9,1 3,0 26,2 3,5	7,7 2 18,5 6,5 9,5 88,7 0,7	0,00 2 5,40 4,75 0,95 6,8 2,9	138 111 425 -195	4975 1133 1664 1906 2550 28862 29	14493 318 2 2758 4618 5409 40258 1	239 19 2 76 177 993 18666 1	53 1 2 7 12 19 257 1	1366 472 665 878 784 6145 6	114 2 190 146 255 5217 4	0 0 2 26 7 11 125 0	117 2 532 295 550 4733 4	104 8 2 41 25 29 309 1	6423 4185 7196 15967 228961 21	611 692 8632 28	49 25 154 185 2533 0,3	11 4 2 4 6 10 191 0,0	47 18 2 5 43 52 470 0,0	0,5 0,0 2 0,2 0,9 1,6 26 0,0	1,1 0,0 2 0,4 1,4 6 140 0,0	17 33 485 0,0	1 1
<i>Utricularia</i> spp. Sphagnales (total)	x sd max n n=1 X sd max min n	1,4 88,3 89,9 4,7 96,5 45,7 903	17,0 2 121,2 88,8 53,6 717,0 22,0 901	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911	37,5 19,8 89,8 0,1 439	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902	7,7 2 18,5 6,5 9,5 88,7 0,7 904	0,00 2 5,40 4,75 0,95 6,8 2,9 907	138 111 425 -195 638	4975 1133 1664 1906 2550 28862 29 875	14493 318 2758 4618 5409 40258 1 875	239 19 2 76 177 993 18666 1 866	53 1 2 7 12 19 257 1 874	1366 472 665 878 784 6145 6 875	114 190 146 255 5217 4 867	0 0 26 7 11 125	117 532 295 550 4733 4 876	104 8 41 25 29 309 1 875	6423 2 4185 7196 15967 228961 21 875	611 692 8632 28 640	49 255 154 185 2533 0,3 865	11 4 2 4 6 10 191	47 18 2 5 43 52 470 0,0 875	0,5 0,0 0,2 0,9 1,6 26 0,0 874	1,1 0,0 2 0,4 1,4 6 140 0,0 867	33 485 0,0 639	1
Utricularia spp.	x sd max n n=1 X sd max min	1,4 88,3 89,9 4,7 96,5 45,7	17,0 2 121,2 88,8 53,6 717,0 22,0	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0	37,5 19,8 89,8 0,1	9,0 0,2 9,5 9,1 3,0 26,2 3,5	7,7 2 18,5 6,5 9,5 88,7 0,7	0,00 2 5,40 4,75 0,95 6,8 2,9	138 111 425 -195	4975 1133 1664 1906 2550 28862 29	14493 318 2 2758 4618 5409 40258 1	239 19 2 76 177 993 18666 1	53 1 2 7 12 19 257 1	1366 472 665 878 784 6145 6	114 2 190 146 255 5217 4	0 0 2 26 7 11 125 0 862	117 2 532 295 550 4733 4	104 8 2 41 25 29 309 1	6423 4185 7196 15967 228961 21	611 692 8632 28	49 25 154 185 2533 0,3	11 4 2 4 6 10 191 0,0 875	47 18 2 5 43 52 470 0,0	0,5 0,0 2 0,2 0,9 1,6 26 0,0	1,1 0,0 2 0,4 1,4 6 140 0,0	17 33 485 0,0	1 1
<i>Utricularia</i> spp. Sphagnales (total)	x sd max min n=1 X sd max min x sd max	1,4 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7	9,0 0,2 9,5 9,1 3,0 26,2 3,5 92 905,1 14,6 89,7	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3	138 111 425 -195 638 61 70 190	4975 1133 2 1664 1906 2550 28862 2892 875 3430 2728 9243	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638	239 19 2 76 177 993 1866 11 866 115 111 297	53 1 2 7 12 19 257 1 874 14 12 42	1366 472 2 665 878 784 6145 6 875 683 606 1822	114 2 190 146 255 5217 4 867 109 72 304	0 0 2 26 7 11 125 0 862 5 6 18	117 2 532 295 550 4733 4 876 350 830 2973	104 8 2 41 25 29 309 1 875 23 30 105	6423 2 4185 7196 15967 228961 21 875 9848 11026 31269	611 692 8632 28 640 604 298 1265	49 255 154 185 2533 0,3 865 123 90 326	11 4 2 4 6 10 191 0,0 875 5 2 8	47 18 2 5 43 52 470 0,0 875 33 31 111	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3	17 33 485 0,0 639 24,8 29 83	1 1
<i>Utricularia</i> spp. Sphagnales (total)	x sd max min n=1 X sd max min x sd max min	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0 1,0	37,5 19,8 89,8 0,1 439 51,6 23,6	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2	138 111 425 -195 638 61 70	4975 1133 2 1664 1906 2550 28862 29 875 3430 278 9243 276	14493 318 2758 4618 5409 40258 1 875 2976 2976 29254 6638 352	239 19 2 76 177 993 18666 11 8666 115 111 297 2	53 1 2 7 12 19 257 1 874 14 12 42 3	1366 472 665 878 784 6145 6 875 683 606 1822 101	114 2 190 146 255 5217 4 867 109 72 304 28	0 0 2 26 7 11 125 0 862 5 6 18 0	117 2 532 295 550 4733 4 876 350 830 2973 48	104 8 2 41 25 29 309 1 875 23 30 105 4	6423 2 4185 7196 15967 228961 21 875 9848 11026 31269 461	611 692 8632 28 640 604 298	49 2 55 154 185 2533 0,3 865 123 90 326 2	11 4 2 4 6 10 191 0,0 875 5 2 8 2 8 2	47 18 2 5 43 52 470 0,0 875 33 31 1111 1,1	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1	1,1 0,0 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0	17 33 485 0,0 639 24,8 29	1 1
<i>Utricularia</i> spp. Sphagnales (total)	x sd max min n=1 X sd max min x sd max	1,4 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7	9,0 0,2 9,5 9,1 3,0 26,2 3,5 92 905,1 14,6 89,7	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3	138 111 425 -195 638 61 70 190	4975 1133 2 1664 1906 2550 28862 2892 875 3430 2728 9243	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638	239 19 276 177 993 18666 115 111 297	53 1 2 7 12 19 257 1 874 14 12 42	1366 472 2 665 878 784 6145 6 875 683 606 1822	114 2 190 146 255 5217 4 867 109 72 304	0 0 2 26 7 11 125 0 862 5 6 18	117 2 532 295 550 4733 4 876 350 830 2973	104 8 2 41 25 29 309 1 875 23 30 105	6423 2 4185 7196 15967 228961 21 875 9848 11026 31269	611 692 8632 28 640 604 298 1265 346	49 255 154 185 2533 0,3 865 123 90 326	11 4 2 4 6 10 191 0,0 875 5 2 8	47 18 2 5 43 52 470 0,0 875 33 31 111	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3	17 33 485 0,0 639 24,8 29 83 0,7	1 1
Utricularia spp. Sphagnales (total) Sphagnum spp.	x sd max n n=1 X sd max min x sd max min n x sd	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 29,0 29,0 29,0 29,0 51,8	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0 1,0 29 3,7 1,4	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2	0,00 2 5,40 4,75 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92	138 111 425 -195 638 61 70 190 -30 8 174 96	4975 1133 1664 1906 2550 28862 29 875 3430 2728 9243 2768 9243 2762 1272 1872 2142	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2290 2813	239 19 276 177 993 18666 11 8666 115 111 297 2 12 161 984	53 1 2 7 12 19 257 1 874 14 12 42 3 12 8 8 8	1366 472 665 878 784 6145 6 875 683 606 1822 101 12 707 536	114 2 190 146 255 5217 4 867 109 72 304 28 12 103 86	0 0 2 26 7 11 125 0 862 5 6 18 0 12 8 9	117 2 532 295 550 4733 4 876 350 830 2973 48 2973 48 12 2414 700	104 8 2 41 25 29 309 1 5 23 30 105 4 12 25 27	6423 2 4185 7196 15967 228961 21 875 9848 11026 31269 461 12 6295 17070	611 692 8632 28 640 604 298 1265 346 9 584 512	49 2 55 154 185 2533 0,3 865 123 90 326 2 2 12 136 122	11 4 2 4 6 10 191 0,0 875 5 2 8 2 12 4 2	47 18 5 43 52 470 0,0 875 33 31 1111 1,1 12 24 29	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25	1 1
Utricularia spp. Sphagnales (total) Sphagnum spp.	x sd max min n=1 X sd max min n x sd max	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 229,9 29,0 29 96,7 51,8 544,8	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0 1,0 29 3,7 1,4 9,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 19,1	7,7 2 18,5 6,5 9,5 88,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 6,6	138 111 425 -195 638 61 70 190 -30 8 174 96 380	4975 1133 2 1664 1906 2550 28802 2882 2885 3430 2728 9243 276 12 1872 2142 2142 12913	14493 318 2758 4618 5409 40258 1 875 2976 2256 2976 2256 352 12 2790 2813 22216	239 19 2 76 177 993 18666 115 111 297 2 12 12 1984 984 14308	53 1 7 12 19 257 1 874 14 12 42 3 12 8 8 8 49	1366 472 665 878 784 6145 6 875 683 606 1822 101 12 707 536 4282	114 2 190 146 255 5217 4 867 109 72 304 28 12 103 86 658	0 0 2 26 7 11 125 0 862 5 6 18 8 0 12 8 9 59	117 532 295 550 4733 4 876 350 830 2973 48 12 414 700 4733	104 8 2 41 25 29 309 1 875 23 30 105 4 125 27 219	6423 2 4185 7196 15967 228967 228967 31269 461 122 6295 17070 228961	611 692 8632 28 640 604 298 1265 346 9 584 512 4583	49 2 55 154 185 2533 0,3 865 123 90 326 2 12 126 122 668	11 4 2 4 6 10 191 0,0 875 5 2 8 2 12 4 2 17	47 18 5 43 52 470 0,0 875 33 31 111 1,1 1,2 24 29 193	2 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203	1 1
Utricularia spp. Sphagnales (total) Sphagnum spp.	x sd max n n=1 X sd max min x sd max min n x sd	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 29,0 29,0 29,0 29,0 51,8	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0 1,0 29 3,7 1,4	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2	0,00 2 5,40 4,75 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92	138 111 425 -195 638 61 70 190 -30 8 174 96	4975 1133 1664 1906 2550 28862 29 875 3430 2728 9243 2768 9243 2762 1272 1872 2142	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2290 2813	239 19 276 177 993 18666 11 8666 115 111 297 2 12 161 984	53 1 2 7 12 19 257 1 874 14 12 42 3 12 8 8 8	1366 472 665 878 784 6145 6 875 683 606 1822 101 12 707 536	114 2 190 146 255 5217 4 867 109 72 304 28 12 103 86	0 0 2 26 7 11 125 0 862 5 6 18 0 12 8 9	117 2 532 295 550 4733 4 876 350 830 2973 48 2973 48 12 2414 700	104 8 2 41 25 29 309 1 5 23 30 105 4 12 25 27	6423 2 4185 7196 15967 228961 21 875 9848 11026 31269 461 12 6295 17070	611 692 8632 28 640 604 298 1265 346 9 584 512	49 2 55 154 185 2533 0,3 865 123 90 326 2 2 12 136 122	11 4 2 4 6 10 191 0,0 875 5 2 8 2 12 4 2	47 18 5 43 52 470 0,0 875 33 31 1111 1,1 12 24 29	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203 0,0	1 1 69 11
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii	x sd max min n=1 X sd max min n x sd max min n x sd max min	1,4 2 88,3 89,9 4,7 90,3 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 2,14 86,9	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 29 96,7 51,8 544,8 29,1 214 412,1	5,0 0,0 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 6,0 1,0 29 3,7 1,4 9,0 1,4 9,0 1,4 4,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 19,1 4,9 19,1 4,9 2,14	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8 0,4 214 4,7,3	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 6,6 2,99 0,92 6,6 2,99 2,14 4,10	138 111 425 -195 638 61 70 190 -30 8 174 96 380 -50 176	4975 1133 2 1664 1906 2550 28862 29 875 3430 2728 9243 276 12 1872 2142 12913 48 213 9924	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 2213 22216 89 2334	239 19 2 76 177 993 18666 115 111 297 2 12 161 984 14308 2 213 21	53 1 2 7 12 19 257 1 874 14 12 42 3 12 8 8 8 49 9 1 214 23	1366 472 665 878 665 878 68 875 683 606 1822 101 12 707 536 4282 11 212 290	114 2 190 146 255 5217 4 867 109 72 304 28 12 103 86 658 9 209 283	0 0 226 7 11 125 0 862 5 6 8 8 0 12 8 9 59 9 0 0 212 0	117 532 295 550 4733 4 876 350 2973 48 12 414 700 4733 5 213 258	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 219 22 14 48	6423 2 4185 7196 15967 228961 1026 31269 461 12 6295 17070 228961 76 228961 76 222 228951 7070	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153	49 255 154 185 2533 865 123 90 326 2 122 136 122 668 0,3 212 2 88	11 4 2 4 6 10 191 0,0 875 5 2 8 2 12 4 2 12 4 2 17 0,8 212 8	47 18 2 5 43 52 470 0,0 875 33 31 1111 1,1 1,2 24 29 193 0,4 212 9	0,5 0,0 2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,0 8 5 0,0 1,2 2 5 0,1 1,2 5 0,1 1,2 5 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203 0,0 152	1 1
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium	x max min n n=1 X sd max min n x sd max min n n x st max min x x sd max	1,4 2 88,3 89,9 4,7 96,57 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 214 89,19 91,9	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 229,9 29,0 29 96,7 51,8 544,8 29,1 214 112,1 65,5	5,0 0,0 2,0 3,6 1,2 9,0 911 4,8 1,0 1,0 29 3,7 1,4 9,0 1,0 29 3,4 9,0 1,0 2,9 3,2 3,4 9,0 2,4 3,2 3,4 2,2 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4 3,4	37,5 19,8 89,8 0,1 4399 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3	9,0 0,2 9,5 9,5 9,5 3,0 26,2 3,5 9002 15,1 14,6 89,7 7,2 9 10,1 2,9 10,1 4,9 2,14 4,9 2,14 10,8 7,7	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,55 1,0 29 5,4 8,2 72,8 0,4 214 17,3 2,7	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 6,6 2,9 214 4,10 3,71	138 111 425 -195 638 61 700 190 -300 8 174 96 380 -500 176 222	4975 1133 2 1664 1906 2550 28862 29 83430 2728 9243 2728 9243 12 1872 2142 12913 48 213 924 503	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 213 22216 89 213 2234 42158	239 19 276 177 993 18666 115 111 297 2 12 168 14308 2 213 213 213 213 247	53 1 2 7 19 257 1 874 14 12 42 3 12 42 3 12 8 8 8 49 1 214 23 4	1366 472 665 878 784 6145 6878 878 606 1822 101 12 707 536 4282 11 212 290 635	114 2 190 146 255 5217 4 867 109 72 304 28 103 86 658 9209 283 209 283 117	0 0 2 26 7 11 125 0 8 62 5 6 18 0 12 2 8 9 9 59 0 2 12 8 0 0 10	117 532 295 550 4733 4 830 2973 48 12 414 700 4733 5 213 258 300	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 219 2 214 4 8 21	6423 2 4185 7196 15967 228961 31269 461 12 6295 17070 228961 76 212 792 2217	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367	49 255 154 185 2533 865 123 90 326 2 2 12 136 122 668 0,3 212 2 688 0,3 212 2 88 80	11 4 6 10 191 0,0 875 5 2 8 2 2 2 8 2 12 4 2 17 0,8 2 12 8 4 2 12 8 4	47 18 5 43 52 470 0,0 875 33 111 1,1 1,1 1,2 24 9 24	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,04 214 0,5 0,3	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1 1,2	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203 0,0 152 7	1 1 69 11
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii	x max min n=1 X sd max min n x sd max min n n=1 x sd	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 55,0 214 86,9 91,9 3,0	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 29,0 29,0 29,0 29,0 29,1 21,2 4,2 24,4 112,1 65,5 25,3	5,0 0,0 2 2,0 3,6 1,2 9,00 911 4,8 1,1 1,6,0 29 3,7 1,4 4,0 2,8 0,9	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3 17,7	9,0 0,2 9,5 9,5 9,5 9,5 9,5 9,0 15,1 14,6 89,7 7,2 29 10,1 2,9 10,1 4,9 2,14 10,8 7,7 2,2	7,7 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8 0,4 21,4 17,3 2 ,7 1 ,7	0,00 2 5,40 4,75 6,8 2,9 907 4,61 0,62 6,3 3,22 28 4,25 0,92 6,6 2,9 214 4,10 3,71 0,60	138 111 425 -195 638 61 70 190 -30 8 8 174 96 380 -50 176 222 47	4975 1133 2 1664 1906 2550 28862 29 875 3430 2728 9243 276 122 1872 2142 1242 1243 48 213 9924 512	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 213 2213 2234 89 213 2234 81 572	239 19 276 177 993 18666 115 111 297 2 12 161 984 14308 2 213 21 47 90	53 1 2 7 12 19 257 1 874 14 12 8 8 8 8 49 1 244 23 1 244 23 1 244 23 3 244 23 3 24 25 25 25 25 25 25 25 25 25 25	1366 472 2 665 878 784 6145 6 875 683 606 1822 101 12 707 536 4282 11 212 290 635 272	114 190 146 255 5217 4 867 109 72 304 28 103 86 658 9 209 283 117 71	0 0 2 2 6 7 11 125 0 862 5 6 18 0 12 8 9 9 0 212 0 12 12 12 12 12 12 12 12 12 12	117 532 295 550 4733 4 876 350 2973 48 830 2973 48 12 414 700 4733 5 213 258 300 527	104 8 2 41 29 309 1 875 23 30 105 4 12 25 27 219 2 214 48 21 18	24185 71967 228961 21 875 9848 11026 31269 461 22895 17070 228961 228961 22975 7070 228961 22975 7070 228976 7070 228976 7070 228976 7070 228976 7070 228976 7070 228977 7070 228977 7070 228977 7070 7070 7070 7070 7070 7070 7070	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367 202	49 2 55 154 185 2533 0,3 865 123 90 326 2 136 122 668 0,3 212 38 180 155	11 4 2 4 6 10 1911 0,0 5 2 8 2 2 8 2 2 12 4 2 17 0,8 212 8 4 3	47 18 43 52 470 0,0 875 33 31 111 1,1 24 29 193 0,4 212 9 24 23	0,5 0,0 2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,0 8 5 0,0 1,2 2 5 0,1 1,2 5 0,1 1,2 5 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2 0,2	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4	1 1 69 11
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii	x max min n n=1 X sd max min n x sd max min n n x st max min x x sd max	1,4 2 88,3 89,9 4,7 90,3 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 214 86,9 91,9 3,0 95,58 74,8	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 20,0 20,1 20,2 2	5,0 0,0 2 2,0 3,6 1,2 9,0 9,10 1,0 1,0 1,0 1,0 29 9,0 1,0 1,0 2,7 1,4 9,0 0,0 2,7 3,7 4,4 9,0 0,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3 17,7 71,6 3,1	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 19,1 4,9 2,14 4,9 2,2 10,8 7,7 2,2 2 10,1 4,9 4,2	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8 0,4 214 17,3 2,7 1,7 7,9 1,0	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 6,6 2,9 214 4,10 3,71	138 111 425 -195 638 61 70 190 -30 8 174 96 380 -50 176 222 47 320 105	4975 1133 2 1664 1906 2550 28862 29 83430 2728 9243 2728 9243 12 1872 2142 12913 48 213 924 503	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 213 2234 2234 2158 1572 12580 386	239 19 2 76 177 993 18666 115 111 297 2 12 161 984 14308 2 213 21 47 90 0 476 2	53 1 2 7 12 19 257 1 874 12 42 3 12 8 8 8 49 1 12 12 8 8 49 1 12 12 3 12 8 12 12 12 12 12 12 12 12 12 12	1366 472 2 665 878 784 6145 6 875 683 606 1822 101 12 707 536 4282 111 212 290 635 272 290 635 272 1232 201	114 2 190 146 255 5217 4 867 109 72 304 28 103 86 658 9 209 283 117 71 330 28	0 0 2 26 7 11 125 0 862 5 6 18 0 12 8 9 9 0 12 2 0 10 10 5 0 0 10 10 10 10 10 10 10 10	117 532 295 550 4733 4 876 350 2973 48 12 414 700 4733 5 213 258 300 527 2719 8	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 219 214 48 21 18 83 3	24185 7196 15967 228961 31269 31269 461 12 6295 17070 228961 76 212 792 2217 1387 7981 32	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367	49 255 154 185 2533 865 123 90 326 2 126 122 668 0,3 212 2 668 0,3 212 38 180 155 669 0,6	11 4 6 10 191 0,0 875 5 2 8 2 2 2 8 2 12 4 2 17 0,8 2 12 8 4 2 12 8 4	47 18 2 5 43 52 470 0,0 875 33 1111 1,1 1,2 24 29 193 0,4 212 9 24 23 127 0,6	0,5 0,0 2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,0 8 5 0,0 12 2 5 0,1 12 0,6 0,8 5 0,0 8 7 4 1,3 2 0,0 0,0 10 10 10 10 10 10 10 10 10 10 10 10 10	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1 1,2 1,0 4 0,04	17 33 485 0,0 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4 16 0,4	1 1 69 11 34 1
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii S. balticum	x sd min n n=1 X sd max min n x sd max min n n n s x sd max min n n n n n n n n n n n n n n n n n n	1,4 2 88,3 89,9 4,7 90,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 214 89,1 91,9 91,9 3,0 95,8 74,8 74,8 74,8 77,0	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 229,9 29,0 29,9 67,7 51,8 544,8 29,1 214 112,1 65,5 25,3 127,6 22,0 0,70	5,0 0,0 2,0 3,6 1,2 9,0 1,0 9,01 1,0 9,01 1,0 0,0 1,0 0,0 2,9 3,7 1,4 9,0 0,1,0 0,0 1,0 0,0 1,0 1,0 1,0 1,0 1,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 37,3 23,7 90,7 0,1 89 25,3 17,7 71,6	9,0 0,2 9,5 9,5 9,5 9,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 10,1 2,9 19,1 4,9 2,14 10,8 7,7 2,2 13,8 4,2 70	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,55 1,0 29 5,4 8,2 72,8 0,4 214 17,3 27,7 1,7 7,9 1,0 7,0 7,0 7,1 7,1 7,1 7,1 7,1 7,1 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 214 4,25 6,6 2,9 214 4,10 3,71 0,60 6,6 6,6 3,0 0,66	138 111 425 -195 638 0 190 -30 8 174 96 380 -50 176 222 47 320	4975 1133 1664 1906 2550 28862 29 8430 2728 9243 2768 122 1872 2142 1242 1242 1243 48 213 9924 48 213 9924 2834 299 70	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 213 2213 2213 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 213 2215 89 225 89 225 89 225 80 225 225 80 25 25 80 25 80 25 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 25 80 25 80 25 80 25 25 80 25 80 80 22 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 80 25 25 25 25 25 25 25 25 25 25 25 25 25	239 19 2 76 177 993 18666 115 111 297 2 12 161 94808 2 213 21 47 90 476 2 90	53 1 2 7 12 19 257 1 12 42 23 12 14 12 42 8 8 49 1 12 14 23 12 14 3 12 12 42 3 12 12 12 12 12 12 12 12 12 12	1366 472 2 6655 8784 6145 6 875 683 606 1822 101 12 707 536 4282 11 212 290 635 272 1232 201 70	114 2 190 146 255 5217 4 867 109 72 304 28 103 86 658 9 209 283 117 71 330 28 8 209 203 283 117 71	0 0 2 2 6 7 11 125 6 8 8 0 12 8 9 9 0 212 0 10 10 5 6 0 212 0 9 9 0 216 0 0 0 0 0 0 0 0 0 0 0 0 0	117 2 532 295 550 4733 4 830 2973 48 12 414 700 4733 5 213 258 300 527 2719 8 300 527 2719 8 300	104 8 2 41 29 309 1 875 23 30 105 4 12 25 27 219 2 214 48 8 3 3 0 105 5 7 7 219 2 214 8 8 3 3 70	24185 71967 228961 21 875 9848 11026 31269 461 12 6295 17070 228961 12 6295 17070 228961 76 212 792 7927 1387 7981 322 70	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367 202 1060	49 255 154 185 2533 865 123 90 326 2 2 12 136 122 668 0,3 212 2 88 180 155 60,6 69	11 4 2 4 6 10 191 191 0,0 875 5 2 8 2 2 2 2 2 2 2 2 2 12 4 2 2 17 0,8 2 212 8 4 3 255 5 2 70	47 18 2 5 43 52 470 0,0 875 33 31 1111 1,1 12 24 29 193 0,4 212 9 24 23 127 0,6 70	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,3 5 0,04 214 0,3 0,3 2 0,0 69	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1 1,2 1,0 4 0,0 4 0,0 4 0,0 4 0,0 1,2	17 33 485 0,0 639 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4 16	1 1 69 11
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii	x sd max min n=1 X sd max min n x sd max min n=1 x sd max min n x x	1,4 2 88,3 89,9 4,7 96,5 45,7 903 87,0 2,7 92,3 82,2 89,1 4,3 94,9 56,0 214 86,9 91,9 55,8 74,9 74,9 75,9 74,9 75,	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 50,1 229,9 29,0 29,0 29,0 54,8 544,8 29,1 214 112,1 65,5 22,3 127,6 22,0 70 104,4	5,0 0,0 2,0 3,6 1,2 9,0 1,0 911 4,8 1,1 1,0 29 3,7 1,4 9,0 0,10 214 4,0 2,14 4,0 2,14 5,0 0,9 5,0 1,0 3,7 5,0 1,0 9,0 9,15 1,0 9,0 9,15 1,0 9,0 9,15 1,0 9,0 9,10 1,0 9,0 9,10 1,0 9,0 9,10 1,0 9,0 9,10 1,0 9,0 1,0 9,0 9,10 1,0 9,0 9,0 1,0 9,0 9,10 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 1,0 9,0 9,0 9,0 1,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9,0 9	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3 17,7 71,6 3,1	9,0 0,2 9,5 9,5 9,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 10,1 2,9 10,1 4,9 214 10,8 7,7 2,2 13,8 4,2 700 11,5	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8 0,4 214 17,3 2,7 1,7 7,9 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 1,0 2,1 1,0 1,0 2,1 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,1 1,7 7,9 1,0 2,1 1,0 2,1 1,0 2,1 1,1 7,9 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 1,0 2,1 2,1 2,1 3,1 2,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 3,1 	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,22 28 4,25 0,92 6,6 2,9 214 4,10 3,71 0,60 6,6 3,80	138 111 425 -195 638 61 70 190 -30 8 174 96 380 -50 176 222 47 320 105	4975 1133 1664 1906 2550 28862 29 875 3430 2728 9243 276 12913 48 2142 12913 48 213 9924 503 512 2834 29	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 12 2790 2813 22216 89 213 2234 2234 2158 1572 12580 386	239 19 276 177 993 18666 115 111 297 2 12 161 984 14308 2 213 21 47 90 476 29 90 23	53 1 2 7 12 19 257 1 874 12 42 3 12 8 8 8 49 1 12 12 8 8 49 1 12 12 3 12 8 12 12 12 12 12 12 12 12 12 12	1366 472 2 665 878 784 6145 6 875 683 606 1822 101 12 707 536 4282 11 212 290 635 272 1232 201 70 431	114 2 190 146 255 5217 4 867 109 72 304 28 12 103 86 658 9 209 283 117 71 330 28 71 71 330 28 71 71 71 71 71 71 72 70 75 75 75 75 75 75 75 75 75 75	0 0 2 26 7 11 125 0 862 5 6 18 0 12 8 9 9 0 12 2 0 10 10 5 0 0 10 10 10 10 10 10 10 10	117 532 295 550 4733 4 876 350 2973 48 12 414 700 4733 5 213 258 300 527 2719 8	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 219 214 48 21 18 83 3	24185 7196 15967 228961 31269 31269 461 12 6295 17070 228961 76 212 792 2217 1387 7981 32	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367 202 1060 28	49 255 154 185 2533 865 123 90 326 2 126 122 668 0,3 212 2 668 0,3 212 38 180 155 669 0,6	11 4 2 4 6 10 10 191 0,0 875 5 2 8 2 2 8 2 12 4 2 2 2 8 4 3 25 2 2 70 4	47 18 2 5 43 52 470 0,0 875 33 1111 1,1 1,2 24 29 193 0,4 212 9 24 23 127 0,6	0,5 0,0 1,6 26 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,04 214 0,5 0,04 214 0,5 0,0 0,3 2 0,0 9 0,2	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1 1,2 1,0 4 0,0 9 9,1,2 1,0 9,2 0,9	17 33 485 0,0 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4 16 0,4	1 1 69 11 34 1
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii S. balticum	x sd min n n=1 X sd max min n x sd max min n n n s x sd max min n n n n n n n n n n n n n n n n n n	1,4 2 88,3 89,9 4,7 90,5 45,7 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 214 89,1 91,9 91,9 3,0 95,8 74,8 74,8 74,8 77,0	17,0 2 121,2 88,8 53,6 717,0 22,0 901 71,1 229,9 29,0 20,0 20,1 21,1 21,4 21,4 21,4 21,4 21,2 2	5,0 0,0 2,0 3,6 1,2 9,0 1,0 9,01 1,0 9,01 1,0 0,0 1,0 0,0 2,9 3,7 1,4 9,0 0,1,0 0,0 1,0 0,0 1,0 1,0 1,0 1,0 1,0	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3 17,7 71,6 3,1	9,0 0,2 9,5 9,5 9,5 9,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 10,1 2,9 19,1 4,9 2,14 10,8 7,7 2,2 13,8 4,2 70	7,7 2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,55 1,0 29 5,4 8,2 72,8 0,4 214 17,3 27,7 1,7 7,9 1,0 7,0 7,0 7,1 7,1 7,1 7,1 7,1 7,1 7,2 7,2 7,2 7,2 7,2 7,2 7,2 7,2	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 28 4,25 0,92 214 4,25 6,6 2,9 214 4,10 3,71 0,60 6,6 6,6 3,0 0,66	138 111 425 -195 638 61 70 190 -30 8 174 96 380 -50 176 222 47 320 105	4975 1133 1664 1906 2550 28862 29 8430 2728 9243 2728 9243 2728 12 1872 2142 12913 48 213 9224 48 203 512 2850 292 12 12 1872 2950 207 12 12 12 12 12 12 12 12 12 12	14493 318 2758 4618 5409 40258 1 875 2976 2254 6638 352 22790 2813 22216 89 213 22216 89 213 2234 2158 1572 12580 386 70 13445 2334	239 19 2 76 177 993 18666 115 111 297 2 12 161 94808 2 213 213 213 213 47 90 476 29	53 1 2 7 12 19 257 1 874 12 42 42 3 12 12 8 8 8 49 1 214 23 4 3 12 13 12 5 7 12 19 19 19 19 19 19 19 19 19 19	1366 472 665 878 784 6145 6 878 687 878 606 1822 101 12 707 536 4282 11 212 290 635 272 1232 201 70 431 313 1079	114 2 190 146 255 5217 4 867 109 72 304 28 103 86 658 9 209 283 117 71 3300 28 70 97 81 1250	0 0 2 2 6 7 1 125 0 8 8 9 5 9 0 212 0 10 5 6 0 2 125 8 9 0 2 125 8 9 0 2 8 0 125 1 1 125 1 1 125 1 1 125 1 1 125 1 1 125 1 1 125 1 1 125 1 1 125 1 1 1 1 1 1 1 1 1 1 1 1 1	117 2 532 295 550 4733 4 876 350 2973 48 2973 48 2973 48 200 4733 527 213 258 300 527 2719 8 70 444	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 214 48 214 48 214 83 3 7 0 28	24185 7196 15967 228961 31269 461 12 6295 17070 228961 76 228961 76 2217 1387 792 2217 1387 792 2217 1387 792 2217 1387 792 2217	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367 202 1060 28	49 2 55 154 185 2533 865 123 90 326 2 2 12 136 22 12 136 8 8 122 668 0,3 212 2 668 0,3 215 5 669 0,6 69 174 112 361	11 4 2 4 6 10 191 191 0,0 875 5 2 8 2 2 2 2 2 2 2 2 2 12 4 2 2 17 0,8 2 212 8 4 3 255 5 2 70	47 18 2 5 43 52 470 0,0 8755 33 31 1111 1,1 24 29 193 0,4 212 9 24 23 127 0,6 0 15	0,5 0,0 0,2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,3 5 0,04 214 0,3 0,3 2 0,0 69	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 12 0,8 1,3 16 0,0 209 1,1 1,2 1,0 4 0,04 70 0,9 1,1 4	17 33 485 0,0 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4 16 0,4	1 1 69 11 34 1
Utricularia spp. Sphagnales (total) Sphagnum spp. S. angustifolium S. aongstroemii S. balticum	<pre>x sd max min n =1 X sd max min n x sd max min n =1 x sd max min n =1 x sd max min n x sd max min m m x sd max min m m m m m m m m m m m m m m m m m m</pre>	1,4 2 88,3 89,9 4,7 96,57 903 87,0 2,7 92,3 82,2 29 89,1 4,3 94,9 56,0 214 86,9 91,9 3,00 95,8 74,8 74,8 70 88,2 2 3,6	17,0 2 121,2 88,8 53,6 71,70 22,0 901 71,1 209,9 29,0 29 96,7 51,8 544,8 29,1 214 112,1 65,5 22,0 70 104,4 43,3	5,0 0,0 2 2,0 3,6 1,2 9,0 1,0 911 1,1 6,0 1,0 1,0 9,0 1,1 4,8 3,7 1,4 9,0 1,0 2,14 4,0 2,14 4,0 2,14 4,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	37,5 19,8 89,8 0,1 439 51,6 23,6 87,7 22,8 7 37,3 23,7 90,7 0,1 89 25,3 17,7 71,6 3,1	9,0 0,2 9,5 9,1 3,0 26,2 3,5 902 15,1 14,6 89,7 7,2 29 10,1 2,9 10,1 2,9 19,1 4,9 2,14 10,8 7,7 2,2 13,8 4,2 700 11,5 3,5	2 18,5 6,5 9,5 88,7 0,7 904 4,4 4,3 23,5 1,0 29 5,4 8,2 72,8 0,4 214 17,3 2,7 1,0 7,9 1,0 7,2 8 0,4 2,1 5 5 5 5 5 5 5 5	0,00 2 5,40 4,75 0,95 6,8 2,9 907 4,61 0,62 6,3 3,2 2 8 4,25 0,92 6,6 2,9 214 4,10 3,71 0,60 6,6 3,00 6,6 3,80 0,21	138 111 425 -195 638 61 70 190 -30 8 174 96 380 -50 176 222 47 320 105	4975 1133 1664 1906 2550 28862 29 875 3430 2728 9243 2728 9243 2742 12913 48 2142 12913 48 213 9924 503 512 2834 29 2017 1467	14493 318 22758 4618 5409 40258 1 875 2976 6638 352 122 2790 2813 22216 889 9213 2334 2135 2334 21572 12580 386 70 1344 485	239 19 276 177 993 18666 115 111 297 2 12 161 984 14308 2 213 21 470 900 476 2 69 23 29	53 1 2 7 12 19 257 1 874 12 42 3 12 24 8 8 8 8 9 1 214 23 4 9 1 214 3 13 1 1 69 5 3	1366 472 2 665 878 784 6145 6 875 683 606 1822 101 12 707 536 4282 11 212 290 635 272 1232 201 700 431 313	114 2 190 146 255 5217 4 867 109 72 304 28 103 86 658 9 209 283 117 71 330 28 70 97 81	0 0 2 2 6 7 11 125 0 8 6 18 0 125 6 18 0 125 5 6 18 0 125 5 6 18 0 125 5 6 18 0 125 5 6 18 0 125 5 6 18 10 5 6 18 18 125 5 6 18 18 125 5 6 18 18 125 5 6 18 18 125 5 6 18 18 18 18 18 18 18 18 18 18	117 2 532 295 550 4733 4 876 350 2973 48 12 2973 48 12 213 258 300 527 2119 8 70 444 994	104 8 2 41 25 29 309 1 875 23 30 105 4 12 25 27 219 2 214 48 21 83 3 70 28 815	6423 2 4185 7196 15967 228961 11026 31269 461 122 6295 17070 228961 766 212 792 21187 7981 32 709 1779 646	611 692 8632 28 640 604 298 1265 346 9 584 512 4583 77 153 367 202 1060 28	49 255 154 185 2533 865 123 90 326 2 122 668 0,3 212 38 180 155 669 0,6 69 0,6 69 174	11 4 2 4 6 10 1911 0,0 875 5 2 8 2 12 4 2 17 0,8 2 12 4 2 17 0,8 2 12 4 3 25 2 70 6 4 1,1	47 18 2 5 43 52 470 0,0 875 33 111 1,1 1,2 24 29 193 0,4 212 9 24 23 127 0,6 70 15 11	0,5 0,0 2 0,2 0,9 1,6 26 0,0 874 1,3 2 5 0,1 12 0,6 0,8 5 0,04 214 0,5 0,3 0,3 2 0,0 6 9 0,2 0,1	1,1 0,0 2 0,4 1,4 6 140 0,0 867 1,1 0,7 3 0,0 1,0 1,3 16 0,0 209 1,1 1,2 1,0 4 0,04 70 0,9 1,1	17 33 485 0,0 24,8 29 83 0,7 9 15 25 203 0,0 152 7 4 16 0,4	1 1 69 11 34 1

S. centrale	x sd	86,4 9,0	135,3 120,8 544,8	3,3 1,7	43,6 16,9	10,5 3,2	12,7 17,7	4,35 0,89	178 63	2163 1516	2906 1215	225 239	12 9	1079 543 1866	162 132 586	14 15 59	1149 1064	44 29	7811 10629	1240 1065	72 104	3 0,9	10 13 41	0,4 0,3	0,4 0,3	9 12	
	max min n	94,1 56,0 15	544,8 38,4 15	6,0 1,0 15	69,5 22,5 10	19,4 5,7 15	72,8 1,5 15	6,1 2,9 15	260 20 14	5128 345 15	4506 810 15	753 2 14	36 3 15	221 15	29 15	59 0 15	2973 38 15	105 3 14	31877 218 15	4583 425 14	353 0,4 14	5 1,3 15	41 1,3 15	1,0 0,1 14	1,0 0,0 15	36 0,3 14	10
S. compactum	×	93,4	66,8	4,0	10	6,5	2,3	3,90	14	1562	1792	24	7	375	102	9	136	69	1130	14	47	5	16	0,1	0,8	14	10
	sd	1,6	19,0	0,8		1,5	1,3	0,47		335	406	4	2	127	69	13	98	38	94		7	0,5	6	0,04	0,1		
	max	94,7	92,3	5,0		8,4	4,1	4,2		1812	2362	28	9	560	205	29	282	122	1237		57	5	23	0,2	0,9		
	min	91,3 4	50,8 4	3,0 4		5,2 4	1,4	3,2 4		1086 4	1415 4	20 4	5	277	63 4	1	76	36 4	1007		41	4	8	0,1 4	0,7 4		1
S. contortum	n ×	94,5	55,4	3,0		5,3	5,9	6,55		1495	10813	312	11	1202	286	ő	124	16	6254		20	9	89	0,7	2		1
	sd	0,6	8,1	0,0		0,6	0,6	0,21		238	2172	42	2	207	45	1	21	3	738		2	1,0	20	0,2	0,3		
	max	95,1	64,9	3,0		6,1	6,4	6,8		1763	13580	356	13	1458	333	1	144	19	6964		22	10	110	0,9	3		
	min	93,8	45,4	3,0		4,7	5,0	6,3		1292	8981	256	9	953	230	0	95	13	5290		17	8	62	0,5	2		
C. auguidatum	n	4	4	4		4	4	4	105	4	4	4	4	4	4	4	4	4	4	272	4	4	4	4	4	•	1
S. cuspidatum	x sd	91,6 2,5	77,5 31.5	3,5 0,7		8,2 2,4	2,1 0.8	3,45 0.07	165 78	182 10	1176 361	27	3	441 21	109 13	10 1	175 54	13 11	3085 2505	373 6	108 72	3 0,7	7	0,4 0.5	1,1 0,9	8 7	
	max	93,4	99,8	4,0		10,0	2,6	3,5	220	189	1431	30	4	456	118	10	213	21	4856	377	158	3	11	0,5	2	13	
	min	89,8	55,2	3,0		6,5	1,5	3,4	110	175	921	23	2	426	99	9	136	5	1314	369	57	2	4	0,1	0,5	3	
	n	2	2	2		2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2
S. cuspidatum coll.	x	91,9	72,6	3,5	23,3	7,8	3,4	4,53	122	861	2948	65	7	666	100	4	365	28	6382	343	169	6	36	0,7	1,3	21	
	sd	2,3	19,8	1,0	11,5	2,2	2,3	0,76	103	1517	1798	76	8	326	48	8	1758	106	6604	174	110	7	22	0,8	0,8	22	
	max min	95,4 82,3	141,0 38,0	6,0 2,0	47,2 3,4	17,3 4,5	14,8 0,8	5,9 3,3	390 -90	9910 85	11922 429	365 2	46 2	1635 25	219 -36	58 0	11873 16	705 2	24027 68	1211 5	511 0,4	63 1,3	128 0,3	5 0,02	4 0,01	86 0,4	
	n	86	86	85	46	86	86	86	82	84	84	84	84	84	-30	84	84	84	84	83	84	84	84	84	83	83	12
S. fallax	x	91,0	85,6	3,8	38,1	8,4	4,7	4,42	165	1984	2148	55	9	544	93	6	227	37	7443	732	238	5	28	0,6	1,0	21	
	sd	3,3	34,3	1,2	21,7	2,8	7,2	0,62	100	1925	1345	99	12	439	74	11	484	45	20642	1076	252	3	30	0,7	0,6	30	
	max	96,5	279,0	8,0	80,3	20,4	64,8	5,7	425	10152	8332	736	115	2317	448	63	3166	309	217411	8540	1649	17	220	3	4	186	
	min n	75,3 118	34,6 118	1,0 118	0,3 22	3,5 118	0,9 118	3,2 119	0 62	133 118	123 118	1 119	1 119	48 119	24 116	0 119	12 119	2 119	706 119	174 62	4,4 119	0,2 118	0,7 118	0,0 119	0,0 116	2 62	14
S. fimbriatum	n=1	89,3	64,2	3,0	22	9,3	13,5	4,80	180	1588	3218	163	22	1254	142	0	1789	37	27254	1040	167	3	2	0,6	0,1	26	1
S. fuscum	x	90,1	68,0	3,0	19,9	9,6	3,2	3,86	216	627	5297	62	5	965	110	9	526	23	2628	415	156	5	28	0,4	0,7	9	_
	sd	2,6	29,7	1,2	17,4	2,5	2,6	0,96	92	785	9315	120	3	963	68	6	768	17	4744	226	158	4	47	0,5	1,5	16	
	max	94,8	146,4	6,0	69,1	17,3	12,3	6,8	400	4063	40258	921	27	4517	398	31	4733	80	26588	984	791	24	235	3	16	82	
	min n	82,3 130	24,0 128	1,0 129	0,3 58	5,2 130	0,4 130	2,9 129	-30 109	48 123	419 123	2 118	1 123	140 123	31 123	0 112	5 123	3 123	52 123	77 103	0,6 118	1,0 123	0,4 123	0,04 123	0,03 123	0,2 103	19
S. girgensohnii	×	85,4	123,4	3,9	35,1	11,7	15,0	5,23	115	1884	13975	398	123	2162	411	112	684	22	8016	839	218	5	97	2	0,7	13	19
5 5	sd	6,9	75,8	1,5	16,4	3,8	14,8	1,00	98	1788	14888	1241	10	1363	1093	15	824	22	11270	444	449	3	123	2	1,1	23	
	max	94,1	489,4	7,0	71,0	26,2	78,6	6,5	315	7910	40258	6843	46	4283	5217	74	2973	105	46128	2112	2533	10	470	8	7	91	
	min	61,1 38	38,4	1,0	10,1	5,7	3,2	3,6	-40 34	345	692	1	7	106 38	29	0 30	50 38	1	218	204	0,4	2	1,0 38	0,1	0,0	0,3	
S. jensenii	n x	91,8	38 79,5	38 2,8	19 27,7	38 7,8	38 5,1	38 4,32	34 188	38 1844	38 2124	32 125	38 9	522	38 122	30 6	149	38 13	37 4865	33 861	32 190	38 4	38 33	38 0,8	38 1,4	32 33	14
5. jensenn	sd	2,1	23,4	1,2	17,4	1,8	5,4	0,58	78	3102	720	436	9	212	63	8	213	12	7136	1927	136	2	28	0,6	0,7	113	
	max	94,8	130,3	6,0	69,9	12,0	25,2	5,5	350	12577	3699	1923	34	1171	295	34	855	46	30580	8540	444	10	120	2	2	485	
	min	87,3	48,4	1,0	3,4	5,1	1,0	3,6	20	85	1228	5	2	212	50	0	24	3	735	63	16	3	2	0,2	0,3	2	
C. lindhaanii	n	19	19	19	16	19	19	19	18	19	19	19	19	19	19	19 5	19	19	19	18	19	19 5	19	19	19	18	77
S. lindbergii	x sd	91,7 3,2	76,5 29,1	3,4 1,0	45,6 26,0	8,1 3,1	3,0 1,8	4,14 0,41	188 38	1830 2294	2264 1164	21 37	6 6	441 188	116 82	3 6	227 702	36 45	2012 1255	442 196	190 125	2	28 13	0,6 0,9	1,3 0,7	6 3	
	max	95,4	127,2	5,0	73,2	14,0	8,9	5,0	250	9712	4847	183	21	931	348	24	3517	162	6056	758	510	8	58	4	3	13	
	min	85,5	35,0	1,0	10,7	4,5	1,2	3,6	126	108	1170	3	1	227	39	0	39	3	870	200	12	2	0,5	0,02	0,1	2	
	n	23	23	24	6	23	24	21	10	24	24	23	24	24	24	24	24	24	24	13	23	24	24	24	24	13	7
S. magellanicum	×	91,2	79,3	3,5	27,4	8,6	2,6	3,98	196	1225	2142	37	6	534 400	91	6 9	210 406	27	2519	429	176	5	26	0,4	1,1	7	
	sd max	3,1 96,5	31,5 174,4	1,3 9,0	18,9 78,7	3,0 18,9	1,8 11,7	0,62 6,5	75 390	1306 7188	2108 22216	69 586	6 42	400	62 495	56	3076	27 162	3454 30422	306 2503	162 744	3 23	26 166	0,6 5	1,5 16	39	
	min	80,1	29,1	1,0	1,8	3,5	0,7	3,0	-80	29	123	2	1	25		0	5070	2	32	2303	2,0	0,19	0,56	0,0	0.04	0,4	
	n	155	155	155	62	155	155	155	106	154	154	155	154	154	154	154	154	155	154	97	154	153	153	155	154	96	24
S. majus	x	92,1	75,6	3,7	59,8	7,7	3,0	4,19	161	1801	1763	287	7	321	85	3	118	60	3663	409	235	6	24	0,3	1,1	26	
	sd	3,0	27,3	1,0	2,4	2,8	4,2	0,48	39	1968	1662	2000	6	202	73	7	228	59	12199	197	234	3	16	0,5	0,6	46	
	max min	96,5 82,2	164,8 30,0	5,0 1,0	61,4 57,0	17,5 3,5	26,9 0,9	6,0 3,3	230 90	9924 133	10033 123	14983 1	31 1	1070 48	495 24	45 0	1592 12	309 4	92579 673	762 174	971 6	17 0,19	73 0,85	3 0,01	3 0,2	164 2	
	n	82,2	50,0	56	37,0	56	56	56	12	56	55	56	56	48 56	24 56	56	56	56	56	174	56	55	55	56	56	12	9
S. obtusum	x	91,4	66,4	2,6	31,5	8,1	5,6	4,89	4	993	2927	83	6	713	135	11	301	41	7262	702	562	4	26	0,4	1,1	11	-
	sd	2,1	12,6	0,8	9,2	2,0	0,8	0,53	79	494	858	26	2	292	43	8	523	33	1204	81	290	1,5	15	0,6	0,5	3	
	max	92,9	80,7	3,0	42,1	12,3	6,6	5,4	110	1631	4567	104	9	1305	228	25	1484	109	8632	784	784	6	43	2	2	13	
	min n	86,8 7	42,4	1,0 7	18,5 7	6,7 7	4,5 7	3,9 7	-80 4	359 7	2009 7	31 7	3	479	103 7	4	71 7	5	5157	570 6	67 7	2	3,1 7	0,1 7	0,2 7	6,6 6	3
	1	/	/	/	/	'		'	4		/	/	/	/	/		/	/		0	/	1	/	1	1	0	3

S. papillosum	x sd	91,1 3,9	79,8 42,3	3,3 1,1	36,1 21,5	8,2 2,7	4,7 7,9	4,19 0,54	197 86	1601 1739	2247 1507	32 51	9 12	532 353	110 76	7 9	208 425	31 41	3019 2754	580 863	215 192	5 3	28 25	0,7 1,0	1,1 0,7	8 7	
	max	96,5	389,4	8,0	76,3	17,5	68,0	5,4	425	9910	11922	365	115	2317	495	56	3517	309	15398	8540	971	17	157	6	4	58	
	min	66,7 149	22,0	1,0	0,3 54	3,5	0,8 150	3,2 149	20 95	85 144	123 144	1 144	1 145	47 145	24 144	0	16 145	2 145	297 145	139 96	12 144	0,2 144	0,5 144	0,0	0,1 144	0,7 96	20
S. platyphyllum	n x	86,6	149 136,8	152 3,7	61,1	149 10,0	24,5	5,50	- 41	15447	4335	411	145 114	1156	306	145 9	367	145 30	5599	756	12	4	144	145 7	0,9	96 98	20
	sd	5,3	58,9	1,6	27,4	3,4	7,4	0,40	159	10377	3609	756	95	501	124	12	172	16	12245	426	8	2	14	9	0,5	217	
	max min	95,0 78,8	224,0 45,2	5,0 1,0	79,7 13,4	14,0 4,4	34,0 13,8	6,3 5,2	240 -150	28862 2469	11609 2195	1923 24	257 32	1867 731	523 150	34 0	591 205	50 10	30580 195	1198 63	24 2	7	41 6	26 0,6	2 0,5	485 0	
	n	6	6	6	5	6	6	6	5	6	6	6	6	6	6	6	6	6	6	5	6	6	6	6	6	5	2
S. recurvum coll.	x sd	92,0 1,5	68,8 13,3	3,2 0,7	30,3 13,4	7,7 1,4	3,4 1,8	4,65 0,70	126 90	552 541	2578 2578	39 43	5 3	667 422	126 43	12 20	2852	118 266	4198 4972	249 249	221 190	7 5	42 28	0,5 0,4	2 1,1	11 6	
	max	94,4	94,9	5,0	61,3	10,8	9,1	6,8	350	2575	15263	154	16	3577	319	109	9432	958	20872	1265	791	25	118	2	4	37	
	min	88,8	37,4	2,0	2,8	5,4	1,0	2,9	-90	29	386	2	1	201	28	1	8	3 87	32 87	3	0,6	1,3	0,3	0,0	0,0	0	9
S. riparium	n x	87 90,3	87 89,0	86 3,6	77 41,4	87 8,7	87 8,1	86 5,08	77 75	87 1635	87 3447	87 125	85 11	87 785	87 171	86 17	87 1662	146	11629	87 599	87 117	87 5	87 28	87 0,9	87 1,0	86 17	9
	sd	3,4	40,2	1,0	16,6	2,5	9,5	0,60	113	1461	2320	108	9	500	139	21	2965	287	24214	436	134	6	41	2	0,9	23	
	max min	95,4 75,7	279,7 31,4	6,0 1,0	85,2 8,3	16,4 4,4	68,8 1,4	6,4 3,4	315 -195	6518 100	18561 609	736 3	46 2	3117 119	915 35	109 0	9962 38	958 3	217411 34	1846 2	697 0,2	63 2	331 0,3	12 0,0	4 0,0	186 2	
	n	89	90	91	83	89	89	90	78	89	89	88	89	89	89	89	89	88	89	89	88	89	89	88	89	89	21
S. rubellum	x sd	91,4 2,9	78,7 30,2	3,3 1,1	22,7 10,2	8,2 2,7	3,9 3,0	4,17 0,68	174 69	1469 1908	3285 3047	41 55	9	793 617	139 65	6 7	192 421	21 21	2510 2170	353 188	161 133	4 2	36 30	0,8 1,4	2 0,91	7 4	
	max	95,4	164,8	6,0	42,7	17,5	14,9	6,2	280	7566	19672	240	36	4282	330	38	2719	97	10991	753	511	10	139	6	4	22	
	min	82,2	36,2	1,0	7,6	4,5	1,2	3,1	45	29	123	2	1	201	26	0	8	2	32	28	2	0,2	1,1	0,0	0,0	0,4	
S. russowii	n x	43 87,9	43 102,9	43 3,6	19 43,8	43 10,9	44 6,8	38 4,39	31 178	44 2165	44 5682	43 144	43 9	44 1025	44 83	42 9	44 539	44 26	44 5054	37 674	43 167	44 5	44 31	44 0,6	44 0,5	37 11	9
	sd	5,0	58,6	1,5	26,9	3,0	10,2	0,93	75	2885	10120	217	10	1175	68	9	834	20	7166	499	284	3	46	0,6	0,5	20	
	max min	93,6 67,9	311,4 29,1	7,0 1,0	89,7 1,2	19,4 6,0	58,8 1,3	6,8 3,3	280 0	17717 84	40226 305	813 2	49 2	4517 42	438 29	33 0	4733 32	85 2	35639 122	2503 150	1649 0,3	17 2	208 0,4	2 0,1	2 0,0	94 0,3	
	n	49	49	49	18	49	49	49	35	49	49	47	49	49	49	43	49	49	49	23	47	49	49	49	49	23	15
S. squarrosum	x sd	89,4 4,8	99,5	3,9 1,0	42 15	8,8	11,4 13,6	5,31 0,63	40 117	2607 2089	4028 1864	154 114	15 10	1015 624	195 168	7	362 617	39 48	15953 16871	731 389	125 88	4 2	30 21	0,6 0,5	1,1 0,7	33 51	
	max	4,8 94,2	62,7 489,4	7,0	88	1,7 15,0	78,6	6,5	315	2089 9924	11366	583	53	3763	915	26	3736	280	117506	1846	528	8	78	3	2,8	323	
	min	61,1	31,4	1,0	9	5,6	3,4	3,6	-195	145	457	6	2	209	58	0	49	6	792	89	13	1	0,8	0,12	0	1,4	
S. subfulvum	n X	58 88,7	59 111,6	58 3,5	54 51,2	58 10,0	58 9,9	59 5,52	47 176	58 2829	58 9142	58 873	58 27	58 1142	56 102	58 8	58 192	58 34	58 14477	56 559	58 47	58 9	58 88	58 2	58 1,0	56 72	16
,	sd	3,4	34,4	1,0	28,6	2,6	10,9	0,76	139	6399	5715	3190	56	1066	59	14	234	36	50905	369	51	4	58	5	0,6	182	
	max min	93,8 80,3	198,8 57,2	5,0 1,0	79,7 13,4	16,3 5,8	51,4 1,4	6,7 3,4	320 -110	27007 226	22216 1084	14308 8	257 4	4039 350	295 40	55 0	788 22	158 4	228961 260	1198 63	173 7	14 3	194 6	24 0,1	3 0,0	485 0,2	
	n	20	20	20	6	20	20	20	-110	20	20	20	20	20	19	20	20	20	200	7	20	20	20	20	20	7	6
S. subsecundum	x sd	92,2 2,2	73,5 21,1	3,3 0,7	41,5 15,9	7,4 2,0	5,5 4,2	5,16 0,76	173 136	1743 1491	4180 3297	97 108	10 9	591 335	149 88	5 9	157 223	30 41	5297 9914	665 196	158 214	7 4	46 39	0,7 0,8	1,5 0,9	13 22	
	max	2,2 95,4	134,2	6,0	89,8	13,1	28,3	6,7	425	9910	19211	753	60	1724	450	59	1636	309	90044	1211	1076	24	227	5	7	159	
	min	85,2	44,5	2,0	0,3	4,1	0,8	3,8	-85	197	421	1	1	47	24	0	24	3	297	189	4,6	2	1,3	0,01	0,21	0,9	
S. tenellum	n x	110 88,9	110 88,0	114 3,0	56	110 10,8	110 2,7	115 3,56	54 253	110 896	110 1756	110 23	110 4	110 662	110 99	110 5	110 345	110 18	110 2700	56 214	110 248	110 3	110 11	110 0,3	110 0,6	56 7	16
	sd	2,9	40,8	1,2		2,8	2,0	0,65	5	1498	1488	36	3	324	61	6	532	12	2093	50	168	1	10	0,2	0,4	2	
	max min	92,4 84,8	144,3 42,4	4,0 1,0		15,0 7,4	6,6 0,9	4,9 3,1	260 250	4288 169	4567 685	102 3	11 1	1305 375	228 50	14 0	1484 13	34 5	6864 1083	272 174	477 67	5 2	29 3	0,5 0,1	1,1 0,2	8 4	
	n	7	7	7		7	7	7	4	7	7	7	7	7	7	7	7	7	7	5	6	6	6	6	6	4	2
S. teres	x sd	92,0 2,6	73,8 23,2	3,6 0,9	40,5 15,9	7,5 2,1	6,4 5,3	5,51 0,66	87 124	1710 1642	5512 3756	149 122	11 10	909 490	163 112	10 17	1239 3110	101 230	10079 19658	492 280	96 89	6 3	51 40	0,7 0,7	1,3 0,9	23 24	
	max	96,0	227,2	9,0	89,8	20,6	47,1	6,8	375	13563	19211	736	60	3763	658	109	15306	958	217411	1319	527	24	207	5	4	186	
	min	77,0	38,3 180	2,0	9,1	3,6 180	2,2 180	3,8	-90	114 180	357	0 180	3 179	90	4	0 180	24 180	0 180	63 180	2 138	0,3 179	2	0,3 179	0,0	0,0 180	0,6 138	17
S. warnstorfii	n x	180 86,3	136,6	185 3,5	113 41,5	10,1	16,1	186 5,70	119 117	2881	179 12805	670	29	179 2202	178 165	11	444	30	12297	728	75	179 7	109 109	179 2	0,8	150	17
-	sd	8,2	110,0	1,1	16,1	2,4	18,7	0,54	102	3382	8323	2752	30	1320	160	14	741	30	36494	371	112	3	106	3	0,6	36	
	max min	94,1 45,7	717,0 38,4	7,0 1,0	72,8 10,1	17,1 5,7	88,7 4,0	6,8 3,7	315 -90	17421 94	40226 1949	18666 6	211 4	6145 368	812 35	74 0	3850 39	167 5	228961 218	1764 215	618 0,4	13 1	470 1,4	16 0,1	2 0,0	227 0,3	
	n	77	75	76	59	75	76	75	61	75	75	71	75	75	74	72	75	75	75	56	71	75	75	75	75	57	15
S. acutifolia-t ype	x sd	88,2 9,0	114,7 9,0	4,7 9,0	43,3 5,0	10,4 9,0	10,5 9,0	4,57 9,00	121 8	4472 9	3449 9	55 8	41 9	551 9	145 9	6	190 9	16 9	2595	611 7	120 8	6 9	35 9	2 9	1,0 9	5 6	
	max	91,9	174,4	7,0	69,5	18,9	35,3	6,0	250	12684	9039	224	184	1122	365	14	417	40	6194	, 917	269	12	128	7	3	16	
	min	80,1	78,7	3,0	20,6	7,9	2,8	3,8	-110	569	481	7	4	82	16	0	28	6	195	378	8	2	3	0,3	0,4	0,3	7
S. cuspidata-type	n x	9 90,0	9 91,3	9 4,1	5 41,5	9 8,8	9 10,4	9 5,50	8 0,7	9 2541	9 4196	8 183	9 15	9 1156	9 167	9 33	9 4593	9 261	8 17054	7 365	8 90	9 4	9 24	9 0,4	9 0,6	6 34	7
,	sd	2,3	23,7	0,8	18,4	1,3	12,2	0,59	57	2765	2490	137	16	906	173	69	6044	305	30092	413	88	2	29	0,3	0,7	24	
	max min	92,4 83,4	166,8 65,5	6,0 3,0	85,2 19,7	11,7 7,2	36,2 2,2	6,3 4,1	128 -70	10711 210	11366 0	583 2	53 2	3763 317	736 40	280 0	16841 39	785 5	117506 64	1319 2	295 0,4	7 0,0	97 0,0	0,9 0,0	2 0,0	89 9	
		16	16	16	10,7	16	16	16	-70	16	16	16	16	16	-40	16	16	16	16	15	16	16	16	16	16	15	7

Bryidae (total)	x	90,4	88,0	3,6	38,8	8,7		5,05	111	1951	5053	256	16	930	161	10	284	33	8467	867	162	10	59	0,9	6	21	
	sd	4,0	45,2	1,1	18,1	2,6	9,4	0,90	113 425	2848 35505	4581 35839	1083 18666	26 216	790	161 1811	27 407	539 4733	131	13849	1582 15306	214	24	151	1	57	36 485	
	max min	96,0 56,0	544,8 24,0	9,0 1,0	91,7 0,1	19,4 3,6	78,6 0,8	6,8 2,9	-180	35505 84	35839	18666	216	6145 4	1811	407	4/33	3166 2	208053 13	15306	2533 0,3	205 0,5	2368 0,1	16 0,01	888 0,0	485	
	n	628	628	627	332	627	628	630	446	624	620	624	624	624	621	621	625	625	624	453	623	619	618	623	618	451	70
Bryidae spp.	x	90,4	80,2	3,6	36,1	8,9	6,9	5,11	128	1608	9113	79	10	1202	119	12	405	24	7390	638	155	9	65	0,9	0,9	11	
	sd	1,8	22,6	1,1	16,6	1,6	4,1	1,00	150	1257	6574	77	5	1034	61	14	634	32	10569	297	206	6	56	0,6	0,6	14	
	max	93,8	119,1	6,0	56,6	11,3	17,9	6,8	355	4231	22410	270	22	3941	324	53	1981	127	35639	1325	849	18	161	2	2	48	
	min	87,7	32,0	2,0	12,9	5,8	1,0	3,2	-50	237	1226	5	4	527	55	0	41	3	271	135	2	1,8	0,7	0,1	0,0	0,4	
Aulacompium paluetro	n	17	17	17	7	17	17	17	12	16	15	16 135	16 7	16 1100	16	16	16	16	16 7306	13 550	16	15	15	16	16	13	12
Aulacomnium palustre	x sd	89,6 2,9	79,1 32,9	3,2 1,3	37,3 20,5	9,7 2,4	6,2 5,5	4,73 0,93	150 98	1401 1613	5500 4442	183	4	815	127 80	10 9	841 1157	25 19	9228	231	217 339	6 6	37 43	0,6 0,8	0,9 1,1	16 15	
	max	2,9 95,3	187,4	6,0	70,3	14,7	25,5	6,8	280	7411	19368	792	22	3577	362	33	4733	70	35639	1034	1649	24	149	4	4	46	
	min	80,6	29,9	1,0	1,2	4,1	2,5	3,3	-80	94	1248	3	2	235	40	0	35	3	122	298	0,3	2	0,4	0,1	0,0	0,3	
	n	35	35	35	15	35	35	35	26	35	35	35	35	35	35	35	35	35	35	18	35	35	35	35	35	18	20
Bryum spp.	n=1	90,0	103,7	3,0	40,0	9,6	3,9	4,00	225	3945	1302	11	8	291	106	12	171	6	3653	1013	332	4	8	1	0,6	4	1
B. pseudotriquetrum	×	89,7	85,5	3,0	7,5	9,5	7,8	4,83	295	2295	11317	284	17	1855	161	27	1383	36	3513	782	21	7	35	0,5	0,4	4	
	sd	1,5	45,0	1,0	7,6	0,9	4,9	1,42	21,2	2480	10014	193	10	1809	37	37	1869	16	4060	351	26	4	30	0,2	0,5	5	
	max	90,8	119,1	4,0	12,9	10,6	12,3	5,7	310	5106	22410	507	24	3941	202	53	3534	53	8070	1030	50	12	55	0,7	1,0	8	
	min n	88,0 3	34,4	2,0	2,1	8,9 3	2,5	3,2	280 2	414	2945	161 3	5	728	130 3	0	156 3	22	282	533 2	0,6	3	0,8 3	0,2 3	0,1 3	0,5 2	3
B. weigelii	n=1	94,3	51,2	4,0	2	5,6	2,5	5,10	140	1740	2947	67	10	532	76	ó	67	28	4089	524	61	6	44	0,4	1,1	8	1
Calliergon spp.	×	90,1	92,5	4,0	32,5	9,4	4,6	4,79	46	1975	2743	72	9	595	104	7	107	25	8361	780	244	5	30	0,8	1,1	14	1
5	sd	2,6	28,8	0,6	13,0	2,5	2,5	0,71	84	1324	1864	81	з	440	49	9	81	18	6776	178	241	1,1	18	0,9	0,5	10	
	max	93,6	140,3	5,0	46,7	14,3	9,1	6,0	180	5556	6994	277	13	1579	193	28	312	58	25100	1070	782	6	60	3	2	40	
	min	85,2	59,6	3,0	11,2	6,1	1,3	3,5	-50	141	323	4	3	71	37	0	39	4	494	570	22,4	3	4,7	0,1	0,27	1,2	
	n	13	13	13	9	13	13	13	9	13	13	13	12	13	13	13	13	13	13	10	13	13	12	12	12	10	10
C. cordifolium	×.	90,9	83,6	3,7	37,1	8,4	7,2	5,33	75	1783	4304	120	14	970	132	5	213	26	13454	587	148	5	44	1,1	1,1	29	
	sd max	2,5 94,7	24,6 187,4	1,0	14,4	2,0 15,6	5,1 32,2	0,70	138 425	1502 9924	3008 17214	103 583	15 102	662 3763	79 403	6 25	424 3736	34 241	15274 117506	275 1764	118 971	2 14	48 304	1,3 9	0,6 3	39 323	
	max min	94,7 80,6	31,4	9,0 2,0	76,3 0,3	5,1	52,2 1,2	6,7 3,9	-180	9924 124	692	565	102	48	405	25	12	241	584	1764	5,1	2	1,5	0,0	0,1	525 1,4	
	n	109	108	110	79	108	109	110	-100	108	108	108	108	108	107	108	108	108	108	100	108	108	1,5	108	106	100	27
C. giganteum	n=1	85,0	148,9	5,0		8,9	41,0	6,10		5776	14268	225	54	1699	427	0	412	109	69732		310	8	35	0,5	1,0		1
C. megalophyllum	x	93,4	60,3	2,7		4,8	36,9	6,52		2742	10450	451	32	1578	702	3	501	62	987		2	7	27	0,6	2		
	sd	2,8	26,1	0,6		1,3	24,7	0,30		701	1625	50	8	80	237	7	282	26	102		0,3	0,8	15	0,2	0,4		
	max	95,8	100,4	3,0		6,9	66,4	6,8		3520	11834	507	45	1675	984	15	955	100	1103		2	7	43	0,9	2		
	min	89,7	40,1	2,0		3,6	18,3	6,1		2052	8176	396	24	1501	514	0	277	39	838		2	5	10	0,4	1,0		
C. richardsonii	n	5 89,5	5 91,5	3 3,3	12,9	5 9,7	5 8,5	5,23	157	576	5 10940	5 35	5 12	5 1062	5 164	5 17	5 373	5 15	5 3195	623	5 146	5 13	5 52	5 0,8	5 0,6	5	1
C. Incharasonin	× sd	1,0	14.3	0,5	12,9	1,1	5,3	0.24	96	367	5374	48	10	1083	97	14	347	11	2197	202	91	5	46	0,8	0,3	1,5	
	max	90,9	119,1	4,0	12,9	1,1	19,6	5,6	310	1365	22410	161	33	3941	388	53	1225	32	8070	1030	297	18	161	1,4	1,3	8	
	min	88,0	68,8	3,0	12,9	7,4	4,3	4,8	50	243	5398	10	4	623	102	9	97	5	1733	466	50	6	4	0,4	0,3	3	
	n	9	9	9	1	9	9	9	6	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	2
Campylium stellatum	x	86,5	127,5	3,0	52,3	9,9	21,2	5,48	177	4705	10544	2114	22	2497	223	38	657	74	25972	855	47	5	20	0,4	0,4	48	
	sd	2,8	32,4	1,0	19,8	2,2	13,8	0,49	85	4706	6976	4278	10	1716	145	15	352	51	31770	265	54	3	20	0,4	0,2	66	
	max	89,7	190,2	5,0	78,7	12,9	47,7	6,5	320	13074	22410	14983	42	5116	500	59	1318	208	92579	1158	194	9	63	2	0,8	164	
	min n	81,1 12	90,3 12	2,0 12	12,9 11	6,2 12	9,3 12	4,8 12	93 11	605 12	3095 10	73 12	8 12	562 12	95 12	17 12	195 12	20 12	2150 12	564 9	4 12	0,0 12	0,0 12	0,1 12	0,1 12	2 9	9
Cinclidium stygium		87,5	116,7	3,5	58,1	10,9	13,0	5,60	91	3715	14203	2702	28	2458	121	26	381	60	18796	770	41	6	67	2	0,5	32	9
emenarani seygiani	sd	3,1	33,8	1,4	20,9	2,8	7,2	0.55	129	4689	4595	6026	12	1070	45	19	311	76	36325	364	47	2	64	2	0,3	65	
	max	91,9	169,9	5,0	78,7	14,5	26,9	6,5	320	11215	22216	14983	42	4039	187	55	802	208	92579	1207	133	9	193	6	0,8	164	
	min	83,3	77,4	2,0	24,6	7,6	6,7	5,0	-55	475	10033	6	10	1070	57	6	88	6	800	255	6	5	13	0,1	0,1	2	
-	n	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	6	4
Dicranum spp.	n=1	91,4	81,2	4,0	17.0	8,4	2,9	4,40	145	1266	1807	82	6	565	58	0	105	5	10149	174	124	3	17	1,2	0,6	58	1
D. majus D. polysotum	n=1	89,1	85,7	2,0	17,8	10,0 9,3	7,6	6,80	230 309	293 471	15263 1439	154 39	11 3	3577	88 186	13 9	1981 584	13 29	271 986	761 349	2 148	4 2	8 12	0,8	0,04	0,4 3	1
D. polysetum	x sd	90,6 2,3	62,9 14,6	2,6 0,6	13,3 9,5	9,3 2,3	1,7 0,5	3,34 0,40	309	4/1 401	1439 594	39 67	3 1	676 179	109	4	584 1163	16	409	349 165	185	1	11	0,1 0,1	1,3 1,0	3	
	su max	2,5 94,8	99,2	3,0	30,4	12,1	3,0	3,9	350	1582	2918	244	6	979	398	19	4733	53	2083	747	676	5	30	0,1	3	6	
	min	87,6	29,9	1,0	0,4	5,2	1,1	2,9	250	197	837	2	1	376	48	3	48	8	280	185	4	1	0,4	0,05	0,04	0,6	
	n	16	16	15	10	16	16	15	10	16	16	16	16	16	16	16	16	16	16	11	16	16	16	16	16	11	2

Hamatocaulis lapponicus	x	92,0	70,1	3,0	43,3	7,6	5,2	5,61	41	1132	2372	119	8	490	99	9	64	14	17292	730	149	5	39	0,6	2	24	
	sd max	1,3 93,5	7,2 86,7	0,0 3,0	3,6 49,6	1,1 10,2	1,1 8,1	0,17 5,7	12 50	101 1239	255 2628	15 129	2 13	71 603	16 138	6 25	18 106	7 31	1525 18883	137 1009	34 231	0,26 5	11 59	0,1 0,8	0,3	4 29	
	max	93,5 88,9	61,3	3,0	49,6 39,7	6,2	4,6	5,7	20	968	1972	81	15	399	85	25	44		14552	573	116	4	59 19	0,8	1,3	19	
	n	9	9	9	9	9	9	9	5	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	9	1
H. vernicosus	×	90,8	87,1	3,7	40,5	8,6	6,3	5,16	176	1837	5025	127	11	540	102	5	91	29	7431	775	63	10	53	0,5	1,1	13	
	sd max	2,5 93,5	19,4 125,1	1,6 8,0	9,4 51,0	2,6 14,4	3,8 14,8	0,86 6,0	103 250	2876 9910	3731 11922	94 365	13 46	343 1303	55 196	5 16	52 193	21 66	8122 20779	428 1265	70 195	4 17	32 106	0,7 3	0,4 2	11 29	
	min	85,5	61,3	3,0	28,1	6,2	0,8	3,9	30	267	429	305	40	25	20	0	32	4	124	295	195	4	13	0,1	0,6	0,4	
	n	11	11	11	6	11	11	11	4	11	11	11	11	11	11	11	11	11	11	6	11	11	11	11	11	6	3
Helodium blandowii	×	89,8	88,1	3,8	35,4	9,5	6,3	4,99	44	1537	4474	77	9	791	115	17	2528	159	11573	624	188	5	28	0,7	0,7	19	
	sd	1,6 92,3	17,6	0,8	15,2	1,3	2,4	0,56	77	838	3372 9876	53	3	458	28	16 48	4630	269	9390	485 1285	119 304	1,2	29	0,6 2	0,5 2	6	
	max min	92,3 87,5	124,0 69,1	6,0 3,0	57,4 8,7	11,6 7,2	13,5 4,1	6,1 4,2	140 -85	3114 428	9876 1476	186 24	15 5	1515 294	173 79	48	12603 57	749	31877	1285	304 0,4	8	71 0,3	0,01	0,01	36 10	
	n	13	13	13	13	13	13	13	11	13	13	12	13	13	13	13	13	12	13	13	12	13	13	12	13	13	5
Hylocomium splendens	×	83,3	172,5	4,5	49,1	11,2	24,6	5,10	178	5317	8260	953	22	2301	312	18	542	32	10765	1150	39	4	28	0,9	0,8	15	
	sd	4,8	58,7	0,8	21,7	2,9	23,3	0,43	100	4131	8116	1448	12	1807	266	20	452	26	6031	744	29	2	28	0,5	0,6	15	
	max min	88,0 74,8	281,3 119.1	5,0 3.0	65,3 12,9	14,4 6,2	60,5 6,8	5,6 4,4	310 80	13074 1365	22410 1699	3820 59	41 10	5116 822	772 130	53 1	1318 82	81 8	16826 3446	2327 451	80 4	6 0.0	67 0.0	1,4 0.4	2 0,3	35 2	
	n	6	6	6	5	6	6	6	6	6	5	6	6	6	6	6	6	6	6	5	6	6	6	6	6	5	5
Loeskypnum badium	x	86,1	127,0	3,0	50,8	11,7	15,1	5,54	127	7546	9933	285	59	2035	178	18	519	38	5794	587	60	4	43	2	0,5	82	
	sd	3,1	50,5	1,6	28,3	1,8	11,1	0,91	202	10093	9041	664	65	1334	113	19	457	21	10248	322	55	2	64	3	0,3	198	
	max min	89,4 78,8	224,0 42,4	5,0 1,0	78,7 13,4	14,0 7,9	34,0 4,3	6,7 3,9	320 -150	28862 395	22216 2195	1923 8	203 3	4039 553	339 64	55 0	1484 95	75 12	30580 195	951 63	142 8	6 2	194 3	7 0,1	1,1 0,1	485 0,3	
	n	, 0, 8	42,4	8	13,4	,,5	4,5	3,5	-150	8	2155	8	8	8	8	8	8	8	8	6	8	8	8	8	8	6	3
Meesia triquetra	×	91,8	72,2	3,1	46,4	7,8	5,2	5,54	37	1134	2777	116	8	500	102	9	74	14	15655	756	139	5	39	0,6	2	21	
	sd	1,4	9,0	0,3	5,8	1,3	1,1	0,22	11	286	1781	30	2	79	17	5	41	7	6049	202	48	2	11	0,2	0,4	8	
	max min	93,6 88,1	97,4 61,3	4,0 3,0	61,3 39,7	11,4 6,1	8,1 4,1	5,7 5,1	50 20	1611 332	9819 1916	151 12	13 5	664 397	151 82	25 5	222 44	31 6	20872 1800	1265 499	231 28	15 4	59 17	1,0 0,3	2 0,5	33 4	
	n	18	18	18	17	18	4,1	18	20	18	1916	12	18	18	18	18	18	18	1800	499	18	18	18	18	18	18	2
Mnium spp.	n=1	88,0	119,1	3,0	12,9	10,6	12,3	5,60	310	1365	22410	161	22	3941	130	53	459	32	8070	1030	50	6	49	0,7	0,3	8	1
Paludella squarrosa	×	90,7	84,2	3,9	28,4	8,7	6,9	5,85	20	660	6868	170	9	1423	124	4	133	20	15121	420	102	5	77	0,9	1,1	49	
	sd max	1,7 93,8	17,0 172,1	1,0 8,0	12,4 62,4	1,5	2,4 14,9	0,42 6,6	57 170	879 3999	3570 17505	92 305	8 34	672 3291	83 628	6 29	124 897	21 131	10698 32774	175 923	68,8 346	3,2 13	74,0 314	1,5 7	0,6 4	47 323	
	min	93,8 82,7	52.6	3.0	10.1	16,3 5,8	3.2	4,7	-80	124	2475	505	2	483	42	29	39	151	501	923 89	546	3	6	0,0	0.0	3	
	n	58	57	57	33	57	58	57	48	57	57	57	55	57	56	57	57	57	57	47	57	57	57	57	57	47	9
Phleurozium schreberi	x	88,9	70,7	2,7	18,7	10,5	4,4	4,04	205	1204	4968	58	7	1045	81	16	848	33	1755	512	151	4	29	0,4	0,3	2	
	sd	2,8	28,4	1,4	13,9	2,6	5,9	0,86	84	1265	8545	72	8	1145	55	16 74	1209	21	1870	205	210	4	66	1,0	0,3	2	
	max min	93,4 82,4	144,4 29,9	6,0 1,0	40,7 7,6	17,1 6,3	28,1 1,0	6,4 3,1	290 0	5186 164	35839 726	244 2	40 2	4282 66	263 31	0	4733 41	80 6	6774 259	855 216	676 2	17 2	291 0,4	4 0,1	0,9 0,03	0,6	
	n	19	19	19	5	19	19	19	13	19	19	19	19	19	19	18	19	19	19	9	19	19	19	19	19	9	8
Pohlia nutans	×	89,2	64,7	2,3	8,1	10,4	3,8	4,25	187	747	6605	102	5	1348	78	10	1132	35	1238	507	199	4	24	0,3	0,2	2	
	sd	2,7 93,6	33,6 170,3	1,1 5,0	6,8 17,8	2,6 17,1	2,6 11,6	1,10 6,8	72 290	594 2077	9382 35081	125 448	3 13	1302 4426	34 175	6 19	1195 4733	18 80	1089 4638	215 855	532 2533	2 9	50 226	0,7 3	0,2 0,8	2 5	
	max min	82,4	29,9	1,0	1,2	6,0	1,7	3,3	10	84	934	440	2	236	34	19	4755	4	122	278	0,3	2	0,4	0,1	0,03	0,3	
	n	23	23	23	5	23	23	23	13	23	23	23	23	23	23	20	23	23	23	7	23	23	23	23	23	7	8
Polytrichum spp.	×	88,5	104,4	4,5	57,6	10,9	5,0	4,53	113	4317	2996	94	10	637	83	6	132	17	7443	525	211	5	30	1,0	0,8	26	
	sd max	2,4 91,6	27,3 143,4	0,9 7,0	9,6 70,1	2,2 15,7	3,2 16,3	0,70 5,6	88 260	4102 15428	1667 6426	171 813	8 26	344 1260	40 209	7 24	92 414	13 61	7666 26381	232 1034	337 1649	2 8	24 111	1,2 4	0,5 3	23 56	
	min	83,6	24,0	3,0	46,7	8,0	1,8	3,6	-10	240	869	2	2	197	40	0	51	4	683	324	19	3	6	0,05	0,3	1,2	
	n	23	23	23	4	23	23	23	11	22	22	22	22	22	22	22	22	22	22	9	22	22	22	22	22	9	12
P. commune	×	86,8	127,2	3,7	31,5	9,9	13,8	4,04	172	3250	2920	148	12	1018	195	14	1172	41	3865	1522	79	3	5	0,5	0,3	2	
	sd max	9,1 94,1	122,8 544,8	1,8 6,0	15,6 49,7	2,5 14,4	18,5 72,8	0,44 4,7	85 305	2621 7955	1813 8050	194 591	9 36	515 1866	132 586	23	962 2917	27 105	3831 13990	1156 4583	77 222	3 12	7 27	0,4 2	0,3 0,9	2	
	min	56,0	38,4	1,0	0,1	5,7	2,3	3,2	0	333	726	6	3	302	64	5	117	6	218	501	0,4	1,3	0,7	0,1	0,1	0,3	
	n	15	15	15	8	15	15	15	14	15	15	14	15	15	15	15	15	15	14	13	14	15	15	15	15	12	7
P. strictum	×	88,9	91,5	3,0	37,1	10,3	5,7	3,94	183	2000	4029	85	8	687	105	10	722	21	3687	747	189	7	24	0,8	0,5	5	
	sd max	3,7 94,4	47,9 250,7	1,4 7,0	21,4 72,0	2,7 17,1	6,4 32,4	0,54 5,3	64 320	2735 12913	3363 11460	140 711	8 44	393 1893	67 317	8 40	1021 3850	21 80	4384 22367	444 2180	195 791	6 24	26 82	0,9 4	0,3 1,2	3 10	
	min	74,7	31,4	1,0	0,3	5,0	1,9	3,0	40	94	535	3	3	1055	33	0	45	4	259	266	0,6	1,6	0,6	0,1	0,02	0,8	
	n	33	33	33	17	33	33	33	29	33	33	33	33	33	33	33	33	33	33	24	33	33	33	33	33	24	13
P. swartzii	n=1	85,2	145,0	5,0	65,3	13,4	9,4	5,30	80	3646	5142	804	17	981	177	1	130	12	15707	610	20	5	40	1,4	1,4	26	1
Pseudobryum cinclidioides	x sd	89,8 5,0	95,1 66,3	3,8 0,9	41,3 14,3	8,7 1,7	9,6 12,1	5,34 0,59	52 142	2252 974	4187 2022	121 109	15 16	970 618	165 127	16 18	3168 5004	203 290	12430 20048	530 439	135 114	5 1,4	25 24	0,8 0,8	0,8 0,7	23 21	
	sa max	5,0 93,9	489,4	0,9 6,0	14,3 85,2	1,7	12,1 78,6	6,5	355	6182	11366	583	99	3763	812	18 77	15306	290 811	20048 117506	439 1764	528	1,4	24 78	3	3	89	
	min	61,1	59,5	2,0	9,1	5,9	3,0	4,3	-90	1047	1018	4	5	294	48	0	29	3	63	4	0,3	2	0,3	0,01	0,01	1,4	
	n	41	41	41	39	41	41	41	34	41	41	40	41	41	41	41	41	40	41	41	40	41	41	40	41	41	10

Pseudo-calliergon trifariur	n x	93,0	68,6	3,3	37,2	6,6	6,4	5,88	80	1820	8736	171	14	1102	205	3	126	25	3076	361	25	9	92	0,9	2	12	
	sd	2,4	22,4	0,9	11,9	2,1	3,7	0,54	87	1468	3597	103	12	686	101	7	74	19	4178	138	33	3	67	1,3	1,0	13	
	max	96,0 86,9	113,2 38,3	8,0 2,0	57,1 20,2	11,9 3,9	24,3 0,9	6,8 4,1	250 -90	9924 306	19211 1127	442 6	60 2	3291 61	523 24	53 0	428 29	109 5	33319 437	674 189	158 2	24 3	314 9	6	7 0,3	57	
	min n	86,9	56,5 86	2,0	20,2	5,9 86	86	4,1	-90	86	86	86	86	86	24 86	86	29 86	86	437	189	86	86	86	0,1 86	86	18	7
Rhizomnium spp.	n=1	88,0	119,1	3,0	12,9	10,6	12,3	5,60	310	1365	22410	161	22	3941	130	53	459	32	8070	1030	50	6	49	0,7	0,3	8	1
R. magnifolium	×	75,1	300,1	3,0	57,4	9,0	45,0	5,05	308	1805	7244	136	29	1657	552	11	741	53	2679	1354	19	4	10	0,7	1,0	2	
	sd	19,7	267,8	0,0	6,9	1,0	47,6	0,07	11	732	2582	83	25	428	368	14	392	21	1928	581	3	0,4	2	0,7	1,0	0,6	
	max	89,0	489,4	3,0	62,3	9,7	79	5	315	2322	9070	195	46	1959	812	21	1018	68	4042	1764	21	5	12	1,2	2	2	
	min n	61,1 2	110,7	3,0	52,5	8,3	11	5	300 2	1287	5418 2	77	11 2	1354	291	1	464 2	38 2	1315	943 2	17 2	4	9	0,2 2	0,3 2	1,4 2	1
R. pseudopunctatum	×	84,8	149,0	2,7	45,5	8,7	30,6	5,73	273	1416	12023	338	17	2827	404	18	1540	35	1270	862	10	4	8	0,6	0,6	1,1	
	sd	7,9	113,2	1,2	26,4	1,2	33,3	0,95	43	1219	5715	396	9	1132	447	9	866	20	867	142	15	0,5	1,4	0,3	0,9	1,1	
	max	89,5	279,7	4,0	70,3	10,0	68,8	6,8	315	2712	15382	792	27	3577	915	29	2097	51	1830	962	27	5	10	0,8	2	2	
	min	75,7	81,5	2,0	17,8	7,6	7,6	5,0	230	293	5424	67	11	1525	88	13	542	13	271	761	2	4	7	0,3	0,04	0,4	
R. punctatum	n	3	3	3	3	3	3	3	3	3	3 5197	3 2047	3 21	3 3454	3 329	3 16	3 725	3 49	3 21404	2	3 50	3	3 20	3	3 0,8	2 49	3
R. punctatum	× sd	86,4 6,1	133,6 65,5	4,0 0,0	45,8 21,8	6,9 0,8	28,2 22,5	5,55 0,87	113 147	7062 6944	180	2047	12	1920	198	18	685	37	5340	534 52	53	1,5 2	23	0,5 0,1	0,5	2	
	max	92,0	190.2	4,0	64,6	7,8	47,7	6,3	240	13074	5324	3820	31	5116	500	31	1318	81	26916	570	102	3	42	0,6	1,3	50	
	min	81,1	72,6	4,0	25,0	6,2	8,4	4,8	-20	858	5069	264	10	1738	150	0	120	16	16826	497	4	0,0	0,0	0,4	0,4	47	
	n	4	4	4	4	4	4	4	4	4	2	4	4	4	4	4	4	4	4	2	4	4	4	4	4	2	2
Rhytidiadelphus triquetrus		81,1	190,2	4,0	64,6	6,2	47,7	4,80		13074	2120	3820	31	5116	500	31	1318	81 9	16826	504	4	0,0	0,0	0,4	0,4	10	1
Sanioinia uncinata Scorpidium cossoni	n=1 x	90,0 86,6	95,0 128,1	4,0 3,8	34,3 58,0	9,2 12,2	7,6 9,0	4,90 5,56	30 149	2137 3701	3129 12520	91 103	14 30	610 2360	129 104	13 17	137 285	27	16256 3930	594 806	179 73	5 5	23 58	2 2	0,9 0,5	12 5	1
Scorphanan Cosson	sd	2,4	25,2	1,0	20,7	2,1	4,7	0,80	113	3983	8046	126	15	1315	40	18	230	22	3141	317	56	1.1	59	1,3	0,3	6	
	max	91,2	169,9	5,0	78,7	15,3	15,1	6,7	320	11215	22216	396	54	4039	163	55	747	75	10150	1207	141	6	194	5	0,9	18	
	min	83,3	86,2	2,0	28,1	8,5	1,9	4,3	-55	605	1134	8	6	361	62	0	71	10	510	356	14	3	12	0,5	0,1	1,4	
	n	8	8	8	6	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	8	3
S. revolvens	×	91,9	76,1	3,3	46,6	7,3	8,0	5,84	95	1334	9056	819	12	1126	217	7 9	280	21	13400	723	67	8	64	0,7	2	25	
	sd max	3,8 96,0	35,7 195.8	0,7 5,0	16,9 82,9	3,0 15,1	7,5 41,6	0,75 6,8	75 230	1453 8776	4515 15263	3211 18666	8 42	624 3577	112 438	41	413 1981	27 167	35314 208053	319 1504	77 290	3 16	41 144	0,4 2	1,0 3	53 227	
	min	80,8	38,3	2,0	17,8	3,9	1,7	4,5	0	88	2096	10000	4	415	33	0	46	5	271	256	230	4	4	0,2	0,04	0,4	
	n	33	33	33	11	33	33	33	15	33	33	33	33	33	33	33	33	33	33	17	33	33	33	33	33	17	10
S. revolvens coll.	x	90,9	87,3	3,0	37,0	8,1	9,3	5,87	63	1807	11012	170	17	1806	156	9	157	24	9526	475	68	8	64	0,7	2	20	
	sd	3,3	32,4	0,7	13,1	2,3	7,2	0,39	81	1598	4529	154	12	902	98	15	184	27	17373	339	80	3	41	0,4	1,0	33	
	max min	95,6	201,9 45,8	6,0 2.0	59,1 10.1	12,5 4.1	34,1 4.1	6,6 4,8	160 -155	8089 387	19211 1949	753 6	51 5	3291 562	389 35	59 0	724 39	109 5	90044 580	1541 215	297 2	16 4	144 4	2 0.1	3 0.04	159 2	
	n	81,0 33	45,6	33	23	4,1	4,1	4,0	-135	33	33	33	33	33	33	33	33	33	33	213	33	33	33	33	33	23	7
Scorpidium scorpioides	×	89,4	104,3	3,5	42,6	9,4	10,5	5,72	102	2586	10186	488	32	1495	123	8	174	43	11354	557	65	8	107	2	0,9	21	
	sd	1,9	18,9	1,3	14,1	1,4	7,5	0,55	92	2462	5242	2241	33	1069	80	13	160	41	22703	368	71	3	104	3	0,4	42	
	max	92,3	162,0	8,0	78,6	13,8	41,0	6,7	240	12000	23516	14983	184	3569	427	53	802	208	92579	1494	310	17	470	16	2	164	
	min	84,3 44	71,6 44	2,0 44	24,4	7,2 44	1,0 44	4,3 44	-90 27	267 44	1136 44	6 44	2 44	66 44	31 44	0 44	41 44	5 44	437 44	215	6 44	3 44	6 44	0,1 44	0,2 44	1,4	8
Straminergon stramineum	n Iv	90,9	84,2	3,7	27 36,3	8,6	5,2	5.05	88	1188	3754	105	44 9	838	120	44 6	209	21	10083	27 536	167	5	44 40	0,8	1,2	27 25	8
otraninergen otraninean.	sd	3,2	38,5	0,9	15,6	2,1	5,3	0,78	97	1344	2537	95	16	527	84	8	470	32	8924	418	148	3	33	2	0,9	24	
	max	95,4	544,8	7,0	76,3	17,0	72,8	6,8	390	7955	17083	517	211	3577	628	63	3736	335	58005	4583	777	25	237	16	8	122	
	min	56,0	31,4	1,0	7,7	4,4	1,2	2,9	-160	88	421	2	1	63	4	0	7	3	271	150	1,8	1,3	0,5	0,0	0,0	0,4	
Tomentypnum nitens	n	239 89,6	240 94,8	241 3,5	143 30,2	239 9,3	239 9,0	242 6,04	213 49	238 1015	237 9101	239 202	238 21	237 2032	235 128	239 8	238 217	239 13	238 16972	221 559	238 91	236 5	236 92	239 2	237 1,2	220 33	32
romentyphum mens	x sd	3,0	33,5	3,3 0,6	12,6	9,5 1,7	6,4	0,31	92	1435	5589	92	42	1227	54	12	381	15	10355	205	48	0.9	93	3	0,6	23	
	max	92,4	229,6	4,0	63,2	13,8	39	6,8	310	7023	22410	305	211	6145	331	53	1981	42	32774	1030	234	7	314	16	2	83	
	min	77,4	66,9	2,0	12,9	7,2	4,9	5,5	-55	131	2377	7	2	465	42	0	39	5	271	228	2	3	8	0,0	0,0	0,4	
	n	26	26	26	26	26	26	26	24	26	26	26	24	26	26	26	26	26	26	26	26	26	26	26	26	26	7
Warnstorfia spp.	×	92,0	73,1	3,2	45,9	7,7	4,0	5,16	91	1125	2574	73	7	550	99	6 7	398	59	9833	531	188	6	43	0,7	1,4	22	
	sd max	1,5 94,6	17,8 123,4	0,8 6,0	14,2 75,7	1,4 11,4	1,7 8,1	0,57 6	75 230	1182 4946	989 5667	59 153	5 22	356 1610	40 193	25	1491 6903	150 680	7835 20872	280 1009	118 436	3 17	32 157	0,6 2	0,6 2	17 71	
	min	88,2	37,4	3,0	16,0	5,2	1,7	4	-30	144	865	2	2	61	38	0	36	5	75	3	0,8	3	0,4	0,01	0,03	2	
	n	21	21	21	13	21	21	20	12	21	21	21	21	21	21	21	21	21	21	18	20	20	20	20	20	18	8
W. exannulata	x	91,8	75,8	3,4	41,2	7,6	6,3	5,16	132	1858	4500	96	11	624	168	9	694	72	4637	561	122	7	39	0,7	1,3	14	
	sd	3,1	28,9	0,9	16,0	2,5	6,0	0,79	139	1865	2973	75	11	330	99	18	1934	192	7173	328	194	3	37	1,2	1,0	13	
	max min	95,6 80,6	187,4 30,0	7,0 1,0	76,3 0,3	15,6 4,4	47,5 0,8	6,6 3,3	425 -90	9924 158	11922 1	365 2	60 1	1658 47	592 24	109 0	9198 29	875 4	29002 84	1235 3	1076 1	18 0,01	227 0,01	12 0,01	7 0,01	60 1	
	min n	80,6 94	30,0 94	1,0	34	4,4 94	0,8 94	3,3 98	-90	158 94	94	2 94	1 94	47 94	24 94	94	29 94	4 94	84 94	45	1 95	0,01 95	95	95	95	45	20
W. fluitans	x	89,5	103,5	3,9	49,4	9,7	5,3	4,25	167	2654	1661	27	10	477	95	4	114	31	4683	608	194	4	32	0,8	1,4	11	
-	sd	4,0	42,8	1,0	22,4	3,2	11,1	0,52	48	5517	738	26	18	370	105	8	169	59	9296	874	154	2	31	0,9	1,2	10	
	max	94,9	279,0	8,0	91,7	19,4	64,8	5,3	280	35505	3174	130	115	2317	691	48	855	347	63861	5162	899	14	193	4	8	58	
	min n	75,3 46	48,4 47	2,0 47	15,1 17	5,0 46	1,1 46	3,2 47	70 35	112 45	498 45	2 46	1 46	72 46	0 46	0 46	7	2 46	706 46	152 34	14 46	0,5 45	2,3 45	0,02 46	0,3 45	2 34	15
		40	47	47	17	40	40	47	22	45	45	40	40	40	40	40	40	40	40	54	40	43	40	40	40	34	12

W. sarmentosa	×	85,0	149,9	3,8	48,9	11,4	18,6	5,25	38	5962	10635	1838	32	2180	186	17	371	37	23346	769	59	5	82	2	0,7	62	
	sd	7,7	92,3	1,3	19,1	2,8	15,2	0,35	91	5422	4435	5087	27	882	122	14	335	44	56103	416	94	2	100	2	0,3	141	
	max	90,4	444,4	6,0	72,8	17,1	57,8	6,1	240	17421	17214	18666	108	4051	459	41	1132	167	208053	1387	346	8	304	6	2	485	
	min	59,6	94,0	1,0	10,1	7,9	5,9	4,7	-85	524	2574	6	9	757	35	1	51	5	333	63	11	1,3	6	0,1	0,3	0,4	
	n	14	13	14	14	13	14	13	14	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	5
W. trichophylla	x	93,9	56,6	2,8		4,7	28,7	6,56		2446	11214	425	37	1537	623	3	418	53	2515	11	7	7	38	0,9	2		
	sd	2,5	22,3	0,4		1,1	24,6	0,26		773	1885	62	12	102	236	6	271	26	2627	1,0	8	1,4	22	0,5	0,4		
	max	95,8	100,4	3,0		6,9	66,4	6,8		3520	13641	507	60	1675	984	15	955	100	6830	12	20	9	72	2	2		
	min	89,7	40,1	2,0		3,6	6,6	6,1		1488	8176	343	24	1378	401	0	174	28	838	9	2	5	10	0,4	1,0		
	n	7	7	5		7	7	7		7	7	7	7	7	7	7	7	7	7	7	7	7	7	7	7		1
Hepaticae	x	87,7	64,6	2,3	7,7	11,7	,	3,97	255	1816	4674	173	7	1050	119	9	1286	61	5341	565	93	4	13	0,1	0,2	0,7	
	sd	3,7	42,2	1,4	7,8	3,2	4,3	1,12	27	3466	3491	215	7	489	72	7	1334	49	10466	275	90	1	18	0,1	0,2	0,2	
	max	90,8	152,6	5,0	13,2	17,1	13,3	6,4	280	9624	12064	507	23	2010	228	19	3534	163	28438	855	209	7	41	0,2	0,6	0,8	
	min	82,4	34,4	1,0	2,1	9,0	1,2	3,1	226	282	1729	3	2	467	21	2	143	22	261	308	0,6	3	0,8	0,1	0,0	0,5	_
Marchantia	n	~ ~ ~		~ ~	2	~ ~			3	101	11500	7		2502	20	6	262	7	454	3	10			~~~	~	3	6
Marchantia	×	89,8	48,9	2,5	7,6	9,7	3,9	4,85	260	191	11532 11512	110	4	2682 2263	38		363	16	451	254	10	4	41	0,2	0,1	2	
	sd	2,3 91.4	14,4 59,0	0,7	0,0	1,8 11,0	3,4 6,3	1,91	28 280	51 227	11512	115 191	1	4282	3 40		135 458	3 18	120 535	35 278	12 18	1,0	47 74	0,1 0,3	0,1	0,2	
	max min	88,2	39,0	3,0	7,6 7,6	8,4	0,5 1,5	6,2 3,5	240	155	3391	29	4	4282	36		267	10	366	278	10	2	74	0,5	0,1 0,1	1,9 1,6	
	n	00,2	38,7	2,0 2	2	8,4 2	1,5	3,5	240	155	2221	29	2	1081	20		207	2	2	229	2	2	2	0,2	2	2	1
		4	2	2	-	-	2	2	-	-			-		-		1100	-	-	-	-	2	~	~	-	-	1
Lichanos	~	00 E	E/ 2	20	E 2	11 1	2 1	1 02	200			E.2									12		17	0.2		17	
Lichenes	X	88,5	54,3	2,0	5,3	11,1	3,1	4,03	290	282	6086	52	6	1433	182	14	1106	37	554	509	43	4	17	0,2	0,2	1,7	
Lichenes	sd	4,6	12,1	1,0	3,1	4,4	1,8	1,48	50	74	7624	49	6 3 9	1606	122	6	899	17	228	286	71	4 0,8	31,9	0,1	0,1	1,7	
Lichenes	sd max	4,6 95,2	12,1 64,2	1,0 3,0	3,1 7,6	4,4 17,1	1,8 6,3	1,48 6,2	50 350	74 404	7624 19672	49 130	6 3 9 3	1606 4282	122 330	6 19	899 2644	17 60	228 915	286 855		4 0,8 5 3	31,9 74	0,1 0,3	0,1 0,4	1,7 4,6	
Lichenes	sd max min	4,6	12,1	1,0	3,1	4,4	1,8	1,48	50	74	7624	49 130 3	6 3 9 3 5	1606	122	6	899	17 60 14	228	286	71	4 0,8 5 3 5	31,9	0,1	0,1	1,7 4,6 0,6	2
Lichenes Cladonia spp.	sd max	4,6 95,2	12,1 64,2 36,2	1,0 3,0 1,0	3,1 7,6	4,4 17,1 4,7	1,8 6,3 1,6	1,48 6,2	50 350	74 404	7624 19672	49 130	6 3 9 3 5 8	1606 4282	122 330	6 19	899 2644	17 60	228 915 280	286 855	71	4 0,8 5 3 5 3 3	31,9 74 1,3	0,1 0,3	0,1 0,4	1,7 4,6	2 1
	sd max min n	4,6 95,2 82,4 5	12,1 64,2 36,2 5	1,0 3,0 1,0 5	3,1 7,6	4,4 17,1 4,7 5	1,8 6,3 1,6 5	1,48 6,2	50 350	74 404 227 5	7624 19672 1705 5 2592	49 130 3 5	3 5	1606 4282 437 5	122 330 40 5 330	6 19	899 2644 267 5	17 60 14 5	228 915 280 5	286 855 201 5	71 170 4 5	5 3 5	31,9 74 1,3 5	0,1 0,3 0,1 5	0,1 0,4 0,0 5	1,7 4,6 0,6 5	2 1
	sd max min n n=1 x	4,6 95,2 82,4 5 95,2 84,7	12,1 64,2 36,2 5 36,2 149,0	1,0 3,0 1,0 5	3,1 7,6 1,0 4 49,4	4,4 17,1 4,7 5 4,7 11,9	1,8 6,3 1,6 5 2,4 14,4	1,48 6,2 2,9 4 4,89	50 350 240 4 120	74 404 227 5 228 4528	7624 19672 1705 5 2592 6532	49 130 3 5 68 153	3 5 8 22	1606 4282 437 5 877 1289	122 330 40 5 330 172	6 19	899 2644 267 5 864 316	17 60 14 5 32 35	228 915 280 5 915 7699	286 855 201 5 201 1018	71 170 4 5 13 155	5 3 5	31,9 74 1,3 5 3 43	0,1 0,3 0,1 5	0,1 0,4 0,0 5 0,4 0,8	1,7 4,6 0,6 5 5 5 11	2 1
Cladonia spp.	sd max min n n=1	4,6 95,2 82,4 5 95,2 84,7 7,3	12,1 64,2 36,2 5 36,2	1,0 3,0 1,0 5 1,0	3,1 7,6 1,0 4	4,4 17,1 4,7 5 4,7 11,9 3,1	1,8 6,3 1,6 5 2,4	1,48 6,2 2,9 4	50 350 240 4	74 404 227 5 228 4528 4536	7624 19672 1705 5 2592 6532 8526	49 130 3 5 68 153 397	3 5 8	1606 4282 437 5 877 1289 1277	122 330 40 5 330 172 391	6 19	899 2644 267 5 864	17 60 14 5 32	228 915 280 5 915 7699 14787	286 855 201 5 201 1018 1013	71 170 4 5 13 155 272	5 3 5 3	31,9 74 1,3 5 3	0,1 0,3 0,1 5 0,3	0,1 0,4 0,0 5 0,4	1,7 4,6 0,6 5 5 11 16	2 1
Cladonia spp.	sd max min n n=1 x	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0	3,1 7,6 1,0 4 49,4	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4	1,8 6,3 1,6 5 2,4 14,4	1,48 6,2 2,9 4 4,89 0,90 6,5	50 350 240 4 120 104 315	74 404 227 5 228 4528 4536 28862	7624 19672 1705 5 2592 6532 8526 40258	49 130 3 5 68 153	3 5 8 22	1606 4282 437 5 877 1289	122 330 40 5 330 172	6 19 6 4 6 9	899 2644 267 5 864 316 377 2973	17 60 14 5 32 35 54 430	228 915 280 5 915 7699 14787 155070	286 855 201 5 201 1018 1013 8540	71 170 4 5 13 155	5 3 5 3	31,9 74 1,3 5 3 43	0,1 0,3 0,1 5 0,3 1,4 2 26	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5	1,7 4,6 0,6 5 5 11 16 91	2 1
Cladonia spp.	sd max min n n=1 x sd	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3	50 350 240 4 120 104 315 -155	74 404 227 5 228 4528 4536 28862 115	7624 19672 1705 5 2592 6532 8526 40258 89	49 130 3 5 68 153 397 3820 1	3 5 8 22 31 257 2	1606 4282 437 5 877 1289 1277 6145 11	122 330 40 5 330 172 391 4360 9	6 19 6 4 6 9 12 74 0	899 2644 267 5 864 316 377 2973 18	17 60 14 5 32 35 54 430 3	228 915 280 5 915 7 699 14787 155070 104	286 855 201 5 201 1018 1013 8540 204	71 170 4 5 13 155 272 2533 1	5 3 5 3 6 6 6 3 1	31,9 74 1,3 5 3 43 63 470 1	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5 0,05	1,7 4,6 0,6 5 5 11 16 91 0,2	1
Cladonia spp. Cenococcum graniforme	sd max n n=1 x sd max min n	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143	50 350 240 4 120 104 315 -155 103	74 404 227 5 228 4528 4536 28862 115 139	7624 19672 1705 5 2592 6532 8526 40258 89 139	49 130 3 5 68 153 397 3820 1 136	3 5 8 22 31 257 2 140	1606 4282 437 5 877 1289 1277 6145 11 140	122 330 40 5 330 172 391 4360 9 137	6 19 6 4 6 9 12 74 0 140	899 2644 267 5 864 316 377 2973 18 140	17 60 14 5 32 35 54 430 3 140	228 915 280 5 915 7 699 14787 155070 104 139	286 855 201 5 201 1018 1013 8540 204 91	71 170 4 5 13 155 272 2533 1 136	5 3 5 3 6	31,9 74 1,3 5 3 43 63 470 1 139	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5 0,05 137	1,7 4,6 0,6 5 5 11 16 91 0,2 90	2 1 51
Cladonia spp. Cenococcum graniforme Cristatella mucedo	sd max n n=1 x sd max min n n=1	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141 82,2	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141 229,9	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142 5,0	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116 46,1	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141 13,6	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141 23,5	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143 3,80	50 350 240 4 120 104 315 -155 103 200	74 404 227 5 228 4528 4536 28862 115 139 3456	7624 19672 1705 5 2592 6532 8526 40258 89 139 609	49 130 3 5 68 153 397 3820 1 136 30	3 5 8 22 31 257 2 140 16	1606 4282 437 5 877 1289 1277 6145 11 140 254	122 330 40 5 330 172 391 4360 9 137 304	6 19 6 4 6 9 12 74 0	899 2644 267 5 864 316 377 2973 18 140 182	17 60 14 5 32 35 54 430 3 140 10	228 915 280 5 915 7699 14787 15070 104 139 1219	286 855 201 5 201 1018 1013 8540 204 91 587	71 170 4 5 13 155 272 2533 1 136 41	5 3 5 3 6 6 6 6 3 1 139 2	31,9 74 1,3 5 3 43 63 470 1 139 3	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140 2	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5 0,05 137 2	1,7 4,6 0,6 5 5 11 16 91 0,2 90 2	1
Cladonia spp. Cenococcum graniforme	sd max n n=1 x sd max min n n=1 x	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141 82,2 89,0	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141 229,9 103,5	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142 5,0 3,9	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116 46,1 47,0	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141 13,6 9,7	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141 23,5 9,0	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143 3,80 5,20	50 350 240 4 104 315 -155 103 200 90,0	74 404 227 5 228 4528 4536 28862 115 139 3456 3406	7624 19672 1705 5 2592 6532 8526 40258 89 139 609 4657	49 130 3 5 68 153 397 3820 1 136 30 115	3 5 8 22 31 257 2 140 16 17	1606 4282 437 5 877 1289 1277 6145 11 140 254 875	122 330 40 5 330 172 391 4360 9 137 304 176	6 19 6 4 6 9 12 74 0 140	899 2644 267 5 864 316 377 2973 18 140 182 764	17 60 14 5 32 35 54 430 3 140 10 57	228 915 280 5 915 7699 14787 155070 104 139 1219 10833	286 855 201 5 201 1018 1013 8540 204 91 587 982	71 170 4 5 13 155 272 2533 1 136 41 134	5 3 5 3 6 6 6 3 1	31,9 74 1,3 5 3 43 63 470 1 139 3 43	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140 2 1,0	0,1 0,4 0,0 5 0,4 0,8 6,5 0,05 137 2 1,2	1,7 4,6 0,6 5 5 11 16 91 0,2 90 2 17	1
Cladonia spp. Cenococcum graniforme Cristatella mucedo	sd max n n=1 x sd max min n n=1 x sd	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141 82,2 89,0 4,6	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141 229,9 103,5 49,1	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142 5,0 3,9 0,9	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116 46,1 47,0 16,2	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141 13,6 9,7 3,1	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141 23,5 9,0 9,6	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143 3,80 5,20 0,54	50 350 240 4 120 104 315 -155 103 200 90,0 85,5	74 404 227 5 228 4528 4536 28862 115 139 3456 3406 7098	7624 19672 1705 5 2592 6532 8526 40258 89 139 609 4657 2571	49 130 3 5 68 153 397 3820 1 136 30 115 75	3 5 8 22 31 257 2 140 16 17 23	1606 4282 437 5 877 1289 1277 6145 11 140 254 875 437	122 330 40 5 330 172 391 4360 9 137 304 176 159	6 19 6 4 6 9 12 74 0 140 10 8 9	899 2644 267 5 864 316 377 2973 18 140 182 764 2361	17 60 14 5 32 35 54 430 3 140 10 57 129	228 915 280 5 915 7699 14787 155070 104 139 1219 10833 13095	286 855 201 5 201 1018 1013 8540 204 91 587 982 1132	71 170 4 5 13 155 272 2533 1 136 41 134 179	5 3 5 3 6 6 6 3 1 139 2 6 3	31,9 74 1,3 5 3 43 63 470 1 139 3 43 35	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140 2	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5 0,05 137 2	1,7 4,6 0,6 5 5 5 11 16 91 0,2 90 2 17 15	1
Cladonia spp. Cenococcum graniforme Cristatella mucedo	sd max min n n=1 x sd max min n n=1 x sd max	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141 82,2 89,0 4,6 93,8	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141 229,9 103,5 49,1 269,0	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142 5,0 3,9 0,9 6,0	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116 46,1 47,0 16,2 78,6	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141 13,6 9,7 3,1 18,2	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141 23,5 9,0 9,6 43,8	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143 3,80 5,20	50 350 240 4 104 315 -155 103 200 90,0 85,5 300	74 404 227 5 228 4536 28862 115 139 3456 3406 7098 35505	7624 19672 1705 5 2592 6532 8526 40258 89 139 609 4657 2571 9566	49 130 3 5 68 153 397 3820 1 136 30 115	3 5 8 22 31 257 2 140 16 17	1606 4282 437 5 877 1289 1277 6145 11 140 254 875 437 1959	122 330 40 5 330 172 391 4360 9 137 304 137 304 159 691	6 19 6 4 6 9 12 74 0 140	899 2644 267 5 864 316 377 2973 18 140 182 764 2361 12154	17 60 14 5 32 35 54 430 3 140 10 57 129 593	228 915 280 5 915 7699 14787 155070 104 139 1219 10833 13095 63861	286 855 201 5 201 1018 1013 8540 204 91 587 982	71 170 4 5 13 155 272 2533 1 136 41 134 179 899	5 3 5 3 6 6 6 6 3 1 139 2	31,9 74 1,3 5 3 43 63 470 1 139 3 43 35 118	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140 2 1,0 1,4 7	0,1 0,4 0,0 5 0,4 0,8 0,8 6,5 0,05 137 2 1,2 0,9 4	1,7 4,6 0,6 5 5 11 16 91 0,2 90 2 17	1
Cladonia spp. Cenococcum graniforme Cristatella mucedo	sd max n n=1 x sd max min n n=1 x sd	4,6 95,2 82,4 5 95,2 84,7 7,3 95,6 45,7 141 82,2 89,0 4,6	12,1 64,2 36,2 5 36,2 149,0 92,5 717,0 30,0 141 229,9 103,5 49,1	1,0 3,0 1,0 5 1,0 4,6 1,3 8,0 1,0 142 5,0 3,9 0,9	3,1 7,6 1,0 4 49,4 18,0 89,8 0,9 116 46,1 47,0 16,2	4,4 17,1 4,7 5 4,7 11,9 3,1 19,4 4,4 141 13,6 9,7 3,1	1,8 6,3 1,6 5 2,4 14,4 17,8 88,7 1,1 141 23,5 9,0 9,6	1,48 6,2 2,9 4 4,89 0,90 6,5 3,3 143 3,80 5,20 0,54	50 350 240 4 120 104 315 -155 103 200 90,0 85,5	74 404 227 5 228 4528 4536 28862 115 139 3456 3406 7098	7624 19672 1705 5 2592 6532 8526 40258 89 139 609 4657 2571	49 130 3 5 68 153 397 3820 1 136 30 115 75	3 5 8 22 31 257 2 140 16 17 23	1606 4282 437 5 877 1289 1277 6145 11 140 254 875 437	122 330 40 5 330 172 391 4360 9 137 304 176 159	6 19 6 4 6 9 12 74 0 140 10 8 9	899 2644 267 5 864 316 377 2973 18 140 182 764 2361	17 60 14 5 32 35 54 430 3 140 10 57 129	228 915 280 5 915 7699 14787 155070 104 139 1219 10833 13095	286 855 201 5 201 1018 1013 8540 204 91 587 982 1132	71 170 4 5 13 155 272 2533 1 136 41 134 179	5 3 5 3 6 6 6 3 1 139 2 6 3	31,9 74 1,3 5 3 43 63 470 1 139 3 43 35	0,1 0,3 0,1 5 0,3 1,4 2 26 0,04 140 2 1,0	0,1 0,4 0,0 5 0,4 0,8 6,5 0,05 137 2 1,2	1,7 4,6 0,6 5 5 5 11 16 91 0,2 90 2 17 15	1

RES TERRAE Publications in Geosciences, University of Oulu, Oulun yliopiston geotieteiden julkaisuja. Ser. A, Contributions.

 Ser. A
 ISSN 0358-2477 (print)

 Ser. A
 ISSN 2489-7957 (online)

 Ser. A, No. 40
 ISBN 978-952-62-2905-8 (online)

