Approximate Identities, Factorization, and Amenability in Algebras of Random Elements

Bertram Schreiber

Wayne State University
Detroit, MI

E-mail: bert@math.wayne.edu
URL: http://www.math.wayne.edu/~bert

Twenty-third Conference on Banach Algebras and Applications
Oulu, Finland
July 6, 2017
Outline of the Talk

1. The Algebra of Random Elements
2. Approximate Identities
3. Factorization
4. Amenability
Probability space \((\Omega, \mathcal{F}, \mu)\) complete, no atoms, Banach space \(X\)

\[L_0(\Omega; X) = L_0(\Omega, \mathcal{F}, \mu; X) = \text{all } X\text{-valued Bochner-measurable functions on } \Omega, \text{ topology of convergence in probability.} \]

\[L_0(\Omega) = L_0(\Omega; \mathbb{C}) \]

Consider \(L_0(\Omega; X)\) as a module over \(L_0(\Omega)\).

Write \(x \in L_0(\Omega; X)\), \(x \in X\), identify \(x\) with the constant element in \(L_0(\Omega; X)\).

Convergence in probability is metrizable. A complete metric:

\[d_0(x, y) = \mathbb{E}(\min\{\|x - y\|, 1\}) \]
Recall that a subset E of $L_0(\Omega; X)$ is bounded in the topological vector space sense if and only if for every $\varepsilon > 0$ there exists $M_\varepsilon > 0$ such that

$$\mu[\|x\| \geq M_\varepsilon] < \varepsilon, \quad x \in E.$$

Such sets are usually called \textit{stochastically bounded}.

A map $T : L_0(\Omega; X) \to L_0(\Omega; Y)$ is called \textit{modular} if

$$T(\varphi x) = \varphi T x, \quad \varphi \in L_0, \ x \in L_0(\Omega; X).$$

\textbf{Proposition}

\textit{If $T : L_0(\Omega; X) \to L_0(\Omega; Y)$ is continuous and modular, then for all $x \in L_0(\Omega; X)$,

$$ (Tx)(\omega) = T(x(\omega))(\omega) \ a.s. \quad (1) $$}
Proof.

If

\[x = \sum_{i=1}^{n} x_i \chi_{E_i} \]

is a simple element of \(L_0(\Omega; X) \), then

\[Tx = \sum_{i=1}^{n} (Tx_i) \chi_{E_i} , \]

so (1) holds for such \(x \). Since every element of \(L_0(\Omega; X) \) is a limit a.s. of simple elements and convergence in probability implies convergence a.s. of a subsequence, (1) follows for all \(x \) by continuity. \(\square \)
A a Banach algebra with e. $L_0(\Omega; A)$ is a Fréchet algebra which is not locally convex (F-algebra). We study its properties as a topological algebra and its relationship to A.

Motivation:
Early work with Leon Brown on stochastic continuity algebras

Theorem (Random Johnson-Sinclair Theorem, Velasco/Villena, 1995))

Let A be semisimple. Then every derivation from A to $L_0(\Omega; A)$ is continuous.

In earlier work with M.V. Velasco, we studied such topics as the appropriate notion of spectrum in $L_0(\Omega; A)$, the radical, ideal theory, and automatic continuity of homomorphisms. Here we go into some other topics.
For X a Banach left A-module, assume $\|a \cdot x\| \leq \|a\| \|x\|$, $a \in A$, $x \in X$. One can check easily that $L_0(\Omega; X)$ becomes a left topological $L_0(\Omega; A)$- and $L_0(\Omega)$-module under the natural pointwise almost everywhere operations, meaning that the the map $(a, x) \mapsto a \cdot x$ is jointly continuous. Similarly for right modules and bimodules X.
Assume A is nonunital, fixed for the remainder of this and the next section.

We shall call a subset E of $L_0(\Omega; A)$ \textit{dominated} if for some $m \in L_0(\Omega)$, $\|a\| \leq m$ a.s. for all $a \in E$.

\textbf{Theorem}

\textit{The following are equivalent:}

(i) $L_0(\Omega; A)$ has a (stochastically) bounded left [right, two-sided] approximate identity.

(ii) $L_0(\Omega; A)$ has a dominated left [right, two-sided] approximate identity.

(iii) A has a bounded left [right, two-sided] approximate identity.
Proof.

It suffices to deal with left approximate identities. If \(\{u_\alpha\} \) is a bounded left approximate identity for \(A \), then the corresponding set of constants is a left approximate identity for \(L_0(\Omega; A) \). Indeed, suppose that \(\|u_\alpha\| \leq M \) for all \(\alpha \) and some \(M \geq 1 \). Given \(a \in L_0(\Omega; A) \) and \(0 < \varepsilon < 1 \), choose a simple element \(b \in L_0(\Omega; A) \) with \(\mu[\|a - b\| \geq \varepsilon/M] < \varepsilon \). Clearly there exists \(\alpha_0 \) such that \(\|u_\alpha b - b\| < \varepsilon \) a.s. for all \(\alpha \geq \alpha_0 \). And \(\|u_\alpha(a - b)\| < \varepsilon \) wherever \(\|a - b\| < \varepsilon/M \). Hence for all \(\alpha \geq \alpha_0 \), \(\|u_\alpha a - a\| < 3\varepsilon \) outside of a set of measure at most \(2\varepsilon \). Of course, the set \(\{u_\alpha\} \) is dominated, so (iii) implies (ii), which clearly implies (i).

Suppose that \(\{u_\alpha\} \) is a bounded left approximate identity in \(L_0(\Omega; A) \). Then there exists \(M > 0 \) such that \(\mu[\|u_\alpha\| \geq M] < 1/4 \) for all \(\alpha \). For each \(\alpha \) choose \(E_\alpha \in \mathcal{F} \) such that \(\|u_\alpha\| < M \) a.s. on \(E_\alpha \) and \(\mu(E_\alpha) = 1/2 \).
Define u_α by the vector integral

$$
u_\alpha = 2 \int_{E_\alpha} u_\alpha \, d\mu,$$

so $\|u_\alpha\| \leq M$. Note that for $a \in A$ and $b \in L_0(\Omega; A)$ with $E\|b\| < \infty$,

$$\left(\int_{\Omega} b \, d\mu\right) a = \int_{\Omega} ba \, d\mu.$$

This is clear when b is a simple function, and one can pass to limits of uniformly bounded sequences in the Bochner integral. Thus if $\varepsilon > 0$ and $a \in A$, choose α_0 so that $\mu(A_{\alpha,\varepsilon}) < \varepsilon$ for all $\alpha \geq \alpha_0$, where

$$A_{\alpha,\varepsilon} = \{\omega: \|u_\alpha(\omega)a - a\| \geq \varepsilon\}.$$
If $\alpha \geq \alpha_0$, then

$$
\|u_\alpha a - a\| = \left\| 2 \int_{E_\alpha} u_\alpha a \ d\mu - 2 \int_{E_\alpha} a \ d\mu \right\| \\
\leq 2 \int_{E_\alpha} \|u_\alpha a - a\| \ d\mu \\
= 2 \int_{E_\alpha \cap A_{\alpha, \varepsilon}} \|u_\alpha a - a\| \ d\mu + 2 \int_{E_\alpha \setminus A_{\alpha, \varepsilon}} \|u_\alpha a - a\| \ d\mu \\
< 2\left[(M + 1)\|a\| + 1 \right]\varepsilon.
$$

So (i) implies (iii).
X a left Banach A-module, so $L_0(\Omega; X)$ is a topological left module over $L_0(\Omega; A)$.

Let $\Sigma(A, X) = \text{closure in } L_0(\Omega; X)$ of all sums of the form $\sum_{i=1}^{n} a_i \cdot x_i$.

The celebrated factorization theorem of Cohen, Hewitt, Allan, and Sinclair has a version in the present context.
Theorem (Stochastic Factorization Theorem)

Suppose that A has no identity, but $L_0(\Omega; A)$ has a stochastically bounded left approximate identity, and that X is a left Banach A-module. Let $x \in \Sigma(A, X)$, and let X_0 be a closed, separable subset of X such that $x \in X_0$ a.s. and the values of x outside of some null set are dense in X_0. Then there is a separable, closed subalgebra A_0 of A with a bounded sequential left approximate identity $\{u_n\}$ such that $x \in \Sigma(A_0, X_0)$ a.s. and $u_ny \to y$, $y \in X_0$.

Bertram Schreiber
Approximate Identities, Factorization, and Amenability 13/ 26
Let $1 \leq \alpha_1 \leq \alpha_2 \leq \cdots \to \infty$. Then for some $M > 0$ and any $N \geq 1$ and $\varepsilon > 0$, there exist $a \in L_0(\Omega; A)$ with $\|a\| \leq M$ a.s. and $y_n \in L_0(\Omega; A) \cdot x$, $n = 1, 2, \ldots$ such that:

(i) $y_n \in \Sigma(A_0, X_0)$ a.s., $n \geq 1$;

(ii) $x = a^n \cdot y_n$ a.s., $n \geq 1$;

(iii) $\|x - y_n\| \leq \varepsilon$ a.s., $n = 1, \ldots, N$;

(iv) $\|y_n\| \leq \alpha_n^n \|x\|$ a.s., $n \geq 1$.

Bertram Schreiber
Approximate Identities, Factorization, and Amenability 14/26
The proof of this theorem rests on its well-known version for Banach algebras and an appropriately applied selection theorem.

Lemma

Suppose that A has a bounded left approximate identity $\{u_\alpha\}$ and $x \in \Sigma(A, X)$. Then $u_\alpha \cdot x \to x$ in $L_0(\Omega; X)$.

Bertram Schreiber

Approximate Identities, Factorization, and Amenability
Proof.

Assume $\|u_\alpha\| \leq M$ for all α. Given $\varepsilon > 0$, choose

$$a_1, \ldots, a_n \in L_0(\Omega; A), \quad y_1, \ldots, y_n \in L_0(\Omega; X)$$

such that

$$\mu \left[\|x - \sum_{i=1}^{n} a_i \cdot y_i\| \geq \varepsilon \right] < \varepsilon.$$

Set $y = \sum_{i=1}^{n} a_i \cdot y_i$ and $\delta = \varepsilon/n$. Since the indices α are directed, for all sufficiently large α and each i, outside of a set E_i of measure at most δ, we can get

$$\mu[\|u_\alpha a_i \cdot y_i - a_i \cdot y_i\| \geq \delta] < \delta.$$

Then for such α and outside of the set $E_1 \cup \ldots \cup E_n$ of measure at most ε,

$$\mu[\|u_\alpha \cdot y - y\| \geq \varepsilon] \leq \sum_{i=1}^{n} \mu[\|u_\alpha a_i \cdot y_i - a_i \cdot y_i\| \geq \delta] < \varepsilon,$$

A standard 3ε argument finishes the proof. \square
Lemma

Let \(x \in \Sigma(A, X) \), and let \(X_0 \) be a closed, separable subset of \(X \) such that \(x \in X_0 \) a.s. and the values of \(x \) outside of some null set are dense in \(X_0 \). If \(A \) has a left approximate identity bounded by \(M \), then there exists a separable, closed subalgebra \(A_0 \) of \(A \) with a sequential left approximate identity \(\{u_n\} \) bounded by \(M \) such that \(x \in \Sigma(A_0, X_0) \) a.s. and \(u_n y \to y, \ y \in X_0 \).

Proof.

Let \(\{u_\alpha\} \) be a bounded left approximate identity for \(A \), so \(u_\alpha \cdot x \to x \) by the lemma above. Since \(L_0(\Omega; X) \) is metrizable, there is a countable subnet \(\{u_{\alpha_m}\}_{m=1}^\infty \) of \(\{u_\alpha\} \) such that \(u_{\alpha_m} \cdot x \to x \) in \(L_0(\Omega; X) \), and by passing to a subsequence we may assume that \(u_{\alpha_m} \cdot x \to x \) a.s. By considering the complement of some null set in \(\Omega \), assume that the values of \(x \) are dense in \(X_0 \) and \(u_{\alpha_m} \cdot x \to x \) everywhere.
If x_1, x_2, \ldots is a dense subset of X_0 consisting of values of x, then
$u_{\alpha_m}x_j \to x_j$ for all j. Hence $u_n y \to y$, $y \in X_0$. Finally, apply a
well-known argument to conclude that there is a closed, separable
subalgebra A_0 of A with a sequential left approximate identity containing
$\{u_n : n = 1, 2, \ldots\}$. □

Proof of the Theorem.

We have $X_0 \subset \Sigma(A_0, X_0)$ and $\Sigma(A_0, X_0)$ is separable. Let

$$A_M = \{a \in A_0 : \|a\| \leq M\},$$

and let Π be the complete, separable metric space

$$\Pi = A_M \times \prod_{n=1}^{\infty} \Sigma(A_0, X_0)_n.$$
For $x \in X_0$, set

$$\Phi(x) = \{(a, y_1, y_2, \ldots) \in \Pi : x = a^n \cdot y_n; \|y_n\| \leq \alpha_n^n \|x\| \ \forall \ n \geq 1; \|x - y_n\| \leq \varepsilon, 1 \leq n \leq N\}$$

For each $x \in X_0$, $\Phi(x)$ is clearly closed in Π, and the usual factorization theorem asserts that it is nonempty.

Let K be compact in Π, and as usual in the theory of multifunctions, let

$$\Phi^{-1}(K) = \{x : \Phi(x) \cap K \neq \emptyset\}.$$

One can check that $\Phi^{-1}(K)$ is closed in X_0 for all compact K in Π, so we may apply a known selection theorem to conclude that there is a measurable selection φ for Φ, i.e., a measurable map $\varphi : X_0 \to \Pi$ such that $\varphi(x) \in \Phi(x), \ x \in X_0$. Our theorem now follows by taking, as random variables,

$$(a, y_1, y_2, \ldots) = \varphi(x).$$
Amenability

An algebra, X an A-bimodule. A *derivation* on A to X is a linear map $D : A \to X$ satisfying

$$D(ab) = D(a) \cdot b + a \cdot D(b).$$

We are interested in the case where A is a unital Banach algebra, X is a Banach A-bimodule, and

$$D : L_0(\Omega; A) \to L_0(\Omega; X)$$

is a continuous derivation.

First observation:

Proposition

Every continuous derivation $D : L_0(\Omega; A) \to L_0(\Omega; X)$ *is modular.*
Proof.

If \(\chi_E \in L_0(\Omega) \) is a characteristic function, then \(\chi_E^2 = \chi_E \), so

\[
D(\chi_E) = D(\chi_E^2) = D(\chi_E)\chi_E + \chi_E D(\chi_E) = 2\chi_E D(\chi_E).
\]

I.e., \((1 - 2\chi_E) D(\chi_E) = 0 \) a.s. Since \((1 - 2\chi_E) \neq 0 \) on \(\Omega \), we have \(D(\chi_E) = 0 \). So if \(a \in A \), then \(D(a\chi_E) = D(a)\chi_E \). Now by linearity, we have

\[
D(\varphi a) = \varphi D(a)
\]

for any simple function \(\varphi \in L_0(\Omega) \) and simple element \(a \in L_0(\Omega; A) \). Recall that a.s. convergence implies convergence in probability, and convergence in probability implies a.s. convergence of a subsequence. Thus using the continuity of \(D \), recalling that elements of \(L_0(\Omega; A) \) are Bochner measurable, and passing to limits first in \(\varphi \) and then in \(a \), we obtain (2) or all \(\varphi \) and \(a \).
Definition

1. A stochastic derivation on $L_0(\Omega; A)$ is a continuous derivation $D : L_0(\Omega; A) \to L_0(\Omega; X)$ for some Banach A-bimodule X.

2. Let $Z^1(A, X)$ denote the space of all continuous derivations from A to X. By a random derivation on A we mean an element of $L_0(\Omega; Z^1(A, X))$. By abuse of language, we call a stochastic derivation D random if there exists $D \in L_0(\Omega; Z^1(A, X))$ such that

\[D(a) = D(a) \text{ a.s., } a \in L_0(\Omega; A) \]

(i.e. $D(a)(\omega) = D(\omega)(a(\omega))$).

3. A stochastic derivation is inner if for some $x \in L_0(\Omega; X)$,

\[D(a) = x \cdot a - a \cdot x. \]
Outline
The Algebra of Random Elements
Approximate Identities
Factorization
Amenability

Definition

- $L_0(\Omega; A)$ is \textit{weakly amenable} if for every A-bimodule X [$X = A$], every stochastic derivation on $L_0(\Omega; A)$ into $L_0(\Omega; X^*)$ is inner.

- $L_0(\Omega; A)$ is \textit{randomly weakly amenable} if for every A-bimodule X [$X = A$], every random derivation on $L_0(\Omega; A)$ into $L_0(\Omega; X^*)$ is inner.

Theorem

Consider the following conditions:

- $L_0(\Omega; A)$ is \textit{weakly amenable}.
- $L_0(\Omega; A)$ is randomly \textit{weakly amenable}.
- A is \textit{weakly amenable}.

Then (1) \implies (2) \implies (3). \implies (2).
Proof.

Clearly (1) \implies (2).

(2) \implies (3). Let D be a nonzero continuous derivation on X^*. Then D extends to a constant element of $L_0(\Omega; Z^1(A, X))$; denote the derived derivation on $L_0(\Omega; A)$ by D. By hypothesis, this derivation is inner, Choose $x^* \in L_0(\Omega; X^*)$ such that

$$D(a) = x^* \cdot a - a \cdot x^*, \quad a \in L_0(\Omega; A).$$

Choose a set $E \subset \Omega$ such that $\int_E x^* \, d\mu \neq 0$, and let

$$x^* = \frac{1}{\mu(E)} \int_E x^* \, d\mu.$$

Considering $a \in A$ as a constant element of $L_0(\Omega; A)$ and hence $D(a)$ as a constant element of $L_0(\Omega; X^*)$, we have using the Bochner integral,

$$D(a) = \frac{1}{\mu(E)} \int_E D(a) \, d\mu = \frac{1}{\mu(E)} \int_E (x^* \cdot a - a \cdot x^*) \, d\mu$$

$$= \left(\frac{1}{\mu(E)} \int_E x^* \, d\mu \right) \cdot a - a \cdot \left(\frac{1}{\mu(E)} \int_E x^* \, d\mu \right) = x^* \cdot a - a \cdot x^*, \quad a \in A.$$
(3) \implies (2). Since every continuous derivation on $L_0(\Omega; A)$ is determined by its values at constants, it suffices to deal with derivations from A to $L_0(\Omega; X^*)$.

For X^* a Banach dual A-module and $x^* \in X^*$, let δ_{x^*} be the inner automorphism on A determined by x^*, and let

$$
C(A, X^*) = \{ x^* \in X^* : x^* \cdot a = a \cdot x^* \ \forall a \in A \} = \{ x^* : \delta_{x^*} = 0 \}.
$$

Then $\delta_{x^*} = \delta_{y^*}$ if and only if $x^* - y^* \in C(A, X^*)$. And for all x^*, $\| \delta_{x^*} \| \leq 2 \| x^* \|$.

So there is a linear bijection $\Phi : Z^1(A, X^*) \to X^*/C(A, X^*)$, since A is amenable, which is easily seen to be a topological isomorphism. Moreover, if $D \in L_0(\Omega; Z^1(A, X^*))$, there is a separable subspace S of $Z^1(A, X^*)$ such that $D \in S$ a.s. So the space $\Phi(S)$ is separable. After checking one technical point, it follows from a classical selection theorem that there is an $x^* \in L_0(\Omega; X^*)$ such that $D = \delta_{x^*}$ a.s.
Kiitos — Thank you for your attention!