Catalogue report

Computer Science and Engineering DP

ITEE - Computer Science and Engineering DP

Degree Programme in Computer Science and Engineering

Programme Structure Diagram of Degree Programme in Computer Science and Engineering is here: Bachelor of Science (Technology) and Master of Science (Technology). Programme Director of Degree Programme is Janne Heikkilä.

Programme Structure Diagram of Master's Programme in Computer Science and Engineering (2 year) is here. International Master's Programme in Computer Science and Engineering, Programme Structure Diagram is here.

Study Advising

In the Degree Programme in Computer Science and Engineering: study.itee(at)oulu.fi

Tutor Teachers and Student Tutors

Everyone new student is appointed tutor teacher and student tutor in University of Oulu. Tutor Teachers of Degree Programme in Computer Science and Engineering and student tutors is here.

Degree structures

MSc. Engineering, Computer Science and Engineering

Degree structure status: published

Academic year: 2018-19

Beginning date of the academic year: 01.08.2018

Specialization Options (37 - 62 cp)

Artificial Intelligence, Compulsory Courses 55 ECTS cr

521285S: Affective Computing, 5 cp
521283S: Big Data Processing and Applications, 5 cp
521273S: Biosignal Processing I, 5 cp
521140S: Computer Graphics, 5 cp
031025A: Introduction to Optimization, 5 cp
Applied Computing, Compulsory Courses 62 ECTS cr

521152S: Applied Computing Project II, 10 cp
521283S: Big Data Processing and Applications, 5 cp
521042S: Creative Design, 5 cp
521290S: Distributed Systems, 5 cp
521043S: Internet of Things, 5 cp
521045S: Mobile Computing, 5 cp
521158S: Natural Language Processing and Text Mining, 5 cp
521260S: Programmable Web Project, 5 cp
813621S: Research Methods, 5 cp
521479S: Software Project, 7 cp
521148S: Ubiquitous Computing Fundamentals, 5 cp

Computer Engineering, Compulsory Courses 37 ECTS cr

521281S: Application Specific Signal Processors, 5 cp
521155S: Computer Security, 5 cp
521423S: Embedded System Project, 5 cp
521043S: Internet of Things, 5 cp
521288S: Multiprocessor Programming, 5 cp
521279S: Signal Processing Systems, 5 cp
521479S: Software Project, 7 cp

Specialization Options: Artificial Intelligence Orientation (42 cp)

A452295: Advanced Module / Artificial Intelligence, 25 - 60 cp

Optional Studies: Artificial Intelligence, Choose f.g. from the following courses total 30 ECTS cr
521495A: Artificial Intelligence, 5 cp
521348S: Statistical Signal Processing, 5 cp
521045S: Mobile Computing, 5 cp
521467A: Digital Image Processing, 5 cp
521489S: Research Work on Information Processing, 8 cp
521148S: Ubiquitous Computing Fundamentals, 5 cp
521260S: Programmable Web Project, 5 cp
521155S: Computer Security, 5 cp
521282S: Biosignal Processing II, 5 cp
521157A: Introduction to Social Network Analysis, 5 cp
521145A: Human-Computer Interaction, 5 cp
521290S: Distributed Systems, 5 cp
900017Y: Survival Finnish, 2 cp
900013Y: Beginners' Finnish Course 1, 3 cp

Advanced module: Applied Computing Orientation

A452300: Advanced Module / Applied Computing, 23 - 28 cp

Optional Studies: Applied Computing, Choose f.g. from the following courses total 23 ECTS cr.
521149S: Special Course in Information Technology, 5 - 8 cp
521489S: Research Work on Information Processing, 8 cp
521154S: UBISS - International UBI Summer School, 5 cp
Advanced Modules: Computer Engineering (min 20 cp)

(48 ECTS cr)

Computer Engineering, Advanced Modules: 1. Electronics

A452297: Advanced Module / Computer Engineering, Hardware, 48 cp

Compulsory studies, 22 ECTS cr

521404A: Digital Techniques 2, 5 cp
521303A: Circuit Theory 2, 5 cp
521406S: Digital Techniques 3, 7 cp
521340S: Communications Networks I, 5 cp

Optional Courses, Choose f.g. from the following courses total 26 ECTS cr.

813621S: Research Methods, 5 cp
521405A: Electronic System Design, 5 cp
521323S: Wireless Communications I, 5 cp
521443S: Electronics Design II, 5 cp
521088S: Optoelectronics, 5 cp
521489S: Research Work on Information Processing, 8 cp
521348S: Statistical Signal Processing, 5 cp
521385S: Mobile Telecommunication Systems, 5 cp
521304A: Filters, 5 cp
521328A: Simulations and Tools for Telecommunications, 5 cp
900017Y: Survival Finnish, 2 cp
900013Y: Beginners' Finnish Course 1, 3 cp

Computer Engineering, Advanced module: 2. Software

A452298: Advanced Module / Computer Engineering, Software, 48 cp

Compulsory studies, 20 ECTS cr

521348S: Statistical Signal Processing, 5 cp
521340S: Communications Networks I, 5 cp
521290S: Distributed Systems, 5 cp
521321S: Elements of Information Theory and Coding, 5 cp

Optional Courses, Choose f.g. from the following courses total 28 ECTS cr

521495A: Artificial Intelligence, 5 cp
521337A: Digital Filters, 5 cp
521467A: Digital Image Processing, 5 cp
521489S: Research Work on Information Processing, 8 cp
521148S: Ubiquitous Computing Fundamentals, 5 cp
521283S: Big Data Processing and Applications, 5 cp
813621S: Research Methods, 5 cp
521145A: Human-Computer Interaction, 5 cp
521260S: Programmable Web Project, 5 cp
Supplementary module

Choose optional courses so that your degree is the minimum of 120 cr.

Supplementary module can include for example courses from the basic module of another orientation.

Advanced Practical Training (5 cp)

521027S: Advanced practical training, 5 cp

Master's Thesis (30 cp)

The Master's Thesis requires a written maturity test.

521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp
521993S: Master's Thesis in Computer Engineering, 30 cp

Biomedical Engineering, MSc (Tech) ITEE

Degree structure status: archived

Academic year: 2018-19

Beginning date of the academic year: 01.08.2018

Common Compulsory Studies 70-72 ECTS cr (70 - 72 cp)

Common Compulsory Studies for Finnish students only 70 ECTS cr

521027S: Advanced practical training, 5 cp
080925A: Anatomy and Physiology for Biomedical Engineering, 5 cp
041201A: Basics in eHealth, 5 cp
521284S: Biomedical Engineering Project, 5 cp
080928S: Biomedical Engineering Research Methods and Seminar, 5 cp
521273S: Biosignal Processing I, 5 cp
521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp
521467A: Digital Image Processing, 5 cp
521242A: Introduction to Biomedical Engineering, 5 cp
522987S: Master's Thesis in Biomedical Engineering, 30 cp

Common Compulsory Studies for non-Finnish students only 72 ECTS cr

521027S: Advanced practical training, 5 cp
080925A: Anatomy and Physiology for Biomedical Engineering, 5 cp
041201A: Basics in eHealth, 5 cp
521284S: Biomedical Engineering Project, 5 cp
080928S: Biomedical Engineering Research Methods and Seminar, 5 cp
521273S: Biosignal Processing I, 5 cp
521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp
521242A: Introduction to Biomedical Engineering, 5 cp
522987S: Master's Thesis in Biomedical Engineering, 30 cp
521149S: Special Course in Information Technology, 5 - 8 cp
900017Y: Survival Finnish, 2 cp

Compulsory Studies ITEE BME (Signal and Imaging Processing) 25 ECTS cr (min 25 cp)

521285S: Affective Computing, 5 cp
521282S: Biosignal Processing II, 5 cp
521289S: Machine Learning, 5 cp
521466S: Machine Vision, 5 cp
521149S: Special Course in Information Technology, 5 - 8 cp

Optional Studies ITEE BME (Signal and Image Processing) 23-25 ECTS cr (min 23 cp)

Degree Programme in Information Engineering, B.Sc.

Degree structure status: published

Academic year: 2018-19

Beginning date of the academic year: 01.08.2018

Basic and Intermediate Studies (122 cp)

A452120: Basic and Intermediate Studies, Information Engineering, 120 - 150 cp

Second official language, select 2

901048Y: Second Official Language (Swedish), Written Skills, 1 cp
901049Y: Second Official Language (Swedish), Oral Skills, 1 cp
900081Y: Second Official Language (Finnish), Written Skills, 1 - 2 cp
900082Y: Second Official Language (Finnish), Oral Skills, 1 - 3 cp

English 6 ECTS cr

902150Y: Professional English for Technology, 2 cp
902147Y: Academic Vocabulary for Science and Technology, 2 cp
902145Y: Working Life Skills, 2 cp
902142Y: Business Correspondence, 2 cp

Compulsory studies

521002P: Orientation to Computer Science and Engineering, 5 cp
031010P: Calculus I, 5 cp
031078P: Matrix Algebra, 5 cp
521141P: Elementary Programming, 5 cp
031075P: Calculus II, 5 cp
031021P: Probability and Mathematical Statistics, 5 cp
031023P: Mathematical Structures for Computer Science, 5 cp
031077P: Complex analysis, 5 cp
030005P: Information Skills, 1 cp
761119P: Electromagnetism 1, 5 cp
521159P: Principles of Digital Fabrication, 5 cp
521160P: Introduction to Artificial Intelligence, 5 cp

Compulsory Intermediate Studies

521109A: Electrical Measurement Principles, 5 cp
521301A: Digital Techniques 1, 8 cp
521150A: Introduction to Internet, 5 cp
521286A: Computer Systems, 8 cp
521457A: Software Engineering, 5 cp
521145A: Human-Computer Interaction, 5 cp
811312A: Data Structures and Algorithms, 5 cp
031080A: Signal Analysis, 5 cp
521453A: Operating Systems, 5 cp
521467A: Digital Image Processing, 5 cp

Compulsory Bachelor's Thesis

900060A: Technical Communication, 2 cp
523991A: Bachelor's Thesis / Information Engineering, 8 cp
521008A: Computer Science and Engineering, The Maturity Test for Bachelor's Degree, 0 cp

Module preparing for the option (15 - 20 cp)

Artificial Intelligence

A452127: Module Preparing for the Option, Artificial Intelligence, 20 cp

20 ECTS cr

805305A: Introduction to Regression and Analysis of Variance, 5 cp
521495A: Artificial Intelligence, 5 cp
811395A: Basics of Databases, 5 cp
521157A: Introduction to Social Network Analysis, 5 cp

Applied computing

A452149: Module Preparing for the Option, Applied computing, 10 - 30 cp

15 ECTS cr

521044A: Social Computing, 5 cp
521040A: 3D Virtual Environments and Applications, 5 cp
521157A: Introduction to Social Network Analysis, 5 cp

Computer Engineering

A452126: Module Preparing for the Option, Computer Engineering, 20 cp

20 ECTS cr

521337A: Digital Filters, 5 cp
521302A: Circuit Theory 1, 5 cp
521431A: Principles of Electronics Design, 5 cp
031076P: Differential Equations, 5 cp

Optional Studies

Students can choose optional courses to complete the 10 ECTS credit. Practical training, 3 or 5 ECTS credits, can also be included. (521012A Practical Training or Practical training 521019A). You can select optional studies from the list of supplementary module.

Supplementary modules

Recommended modules in the Finnish language study guide.

H452229: Other Supplementary Module (Computer Science and Engineering), 15 cp
Supplementary module primarily consists of a preparatory module of another orientation (Artificial Intelligence, Applied Computing or Computer Engineering). Another alternative is to select the supplementary module from the fields of Electrical Engineering, Information Processing Science, Industrial Engineering and Management, Working life & Entrepreneurship, or Economics and Management. In all cases the extent of the supplementary module is 15 ECTS cr.

A452127: Module Preparing for the Option, Artificial Intelligence, 20 cp
20 ECTS cr
 805305A: Introduction to Regression and Analysis of Variance, 5 cp
 521495A: Artificial Intelligence, 5 cp
 811395A: Basics of Databases, 5 cp
 521157A: Introduction to Social Network Analysis, 5 cp

A452149: Module Preparing for the Option, Applied computing, 10 - 30 cp
15 ECTS cr
 521044A: Social Computing, 5 cp
 521040A: 3D Virtual Environments and Applications, 5 cp
 521157A: Introduction to Social Network Analysis, 5 cp

A452126: Module Preparing for the Option, Computer Engineering, 20 cp
20 ECTS cr
 521337A: Digital Filters, 5 cp
 521302A: Circuit Theory 1, 5 cp
 521431A: Principles of Electronics Design, 5 cp
 031076P: Differential Equations, 5 cp

Supplementary Module: Electrical Engineering (15 ECTS cr)
521302A: Circuit Theory 1, 5 cp
521431A: Principles of Electronics Design, 5 cp
521077P: Introduction to Electronics, 5 cp
521329A: Hands-on Course in Wireless Communication, 5 cp
521104P: Introduction to Material Physics, 5 cp
521071A: Principles of Semiconductor Devices, 5 cp
521303A: Circuit Theory 2, 5 cp
521432A: Electronics Design I, 5 cp
521404A: Digital Techniques 2, 5 cp
521384A: Basics in Radio Engineering, 5 cp
521070A: Introduction to Microfabrication Techniques, 5 cp
521304A: Filters, 5 cp
521092A: Electronic Measurement Techniques, 5 cp
521307A: Laboratory Exercises on Analogue Electronics, 5 cp

Supplementary Module: Information Processing Science. (15 ECTS cr)
810136P: Introduction to Information Processing Sciences, 5 cp
811122P: Introduction to Programming, 5 cp
813316A: Business Process Modeling, 5 cp
811177P: Humans as Users and Developers of Information Technology, 5 cp
811375A: User Interface Programming, 5 cp
811379A: Basics of Human Computer Interaction, 5 cp
815345A: Software Architectures, 5 cp
811174P: Introduction to Software Business, 5 cp
812341A: Object-Oriented Programming, 5 cp
812342A: Object Oriented Analysis and Design, 5 cp
812305A: Information Systems in Organisations, 5 cp
811167P: Introduction to Information Systems Design, 5 cp
812332A: Information Systems Design, 5 cp
811394A: Database systems, 5 cp
811395A: Basics of Databases, 5 cp
810122P: Computer Architecture, 5 cp
811168P: Information Security, 5 cp
811391A: Requirements Engineering, 5 cp

Supplementary Module: Industrial Engineering and Management (15 ECTS cr)
555225P: Basics of industrial engineering and management, 5 cp
555285A: Project management, 5 cp
555242A: Product development, 5 cp
555286A: Process and quality management, 5 cp
555264P: Managing well-being and quality of working life, 5 cp

Supplementary Module: Working life & Entrepreneurship (15 ECTS cr)
A631401: Entrepreneurship, Basic Studies, 25 cp

Choose five of the following courses (25 ECTS)
724811P: Entrepreneuring for Sustainability, 5 cp
724812P: Building Change Through Entrepreneurship, 5 cp
724813P: Entrepreneurship in Action, 5 cp
724814P: Introduction to Business Development, 5 cp
724815P: Entrepreneurial Assignment, 5 cp
724816P: Building Business Through Creativity and Collaboration, 5 cp

Supplementary Module: Economics and Management (15 ECTS cr) (* The module is intended only for students of Applied Computing (in MSc.))
724103P: Strategic Management, 5 cp
724105P: Management Accounting, 5 cp
724106P: Principles of Marketing, 5 cp
724109P: Investment Decisions, 5 cp
724110P: Introductory Economics, 5 cp

Basic Business Studies
A635801: Basic Business Studies, 25 - 40 cp

Student can select individual courses or complete the whole minor (minimum 5 courses, 25 ECTS).
724830P: Introduction to Accounting and Financial Management, 5 cp
724831P: Introduction to Business Law, 5 cp
724832P: Economics and The Business Environment, 5 cp
724833P: Introduction to Entrepreneurship, 5 cp
724834P: Basics of Marketing and Sales, 5 cp
724835P: Basics of Management and Organizations, 5 cp
724836P: Introduction to Corporate Social Responsibility, 5 cp
724837P: Understanding and Managing A Business as A Dynamic Whole - Business Simulation Game, 5 cp

Statistics
805351A: Linear Regression, 5 cp
805350A: Estimation and Test Theory, 5 cp
805353A: Statistical Software, 5 cp
805349A: Likelihood and Bayesian Inference, 5 cp
805306A: Introduction to Multivariate methods, 5 cp

ICT-conversion training MSc. Engineering, Computer Science and Engineering

Degree structure status: published

Academic year: 2018-19

Beginning date of the academic year: 01.08.2018

Module of option: obligatory studies 37 - 62 ECTS cr depending on option (37 - 62 cp)

Select one of specialization options.

Artificial Intelligence, Compulsory Courses 55 ECTS cr

521285S: Affective Computing, 5 cp
521283S: Big Data Processing and Applications, 5 cp
521273S: Biosignal Processing I, 5 cp
521140S: Computer Graphics, 5 cp
031025A: Introduction to Optimization, 5 cp
521289S: Machine Learning, 5 cp
521466S: Machine Vision, 5 cp
521161S: Multi-Modal Data Fusion, 5 cp
521158S: Natural Language Processing and Text Mining, 5 cp
813621S: Research Methods, 5 cp
521156S: Towards Data Mining, 5 cp

Applied Computing, Compulsory Courses 62 ECTS cr

521152S: Applied Computing Project II, 10 cp
521283S: Big Data Processing and Applications, 5 cp
521042S: Creative Design, 5 cp
521290S: Distributed Systems, 5 cp
521043S: Internet of Things, 5 cp
521045S: Mobile Computing, 5 cp
521158S: Natural Language Processing and Text Mining, 5 cp
521260S: Programmable Web Project, 5 cp
813621S: Research Methods, 5 cp
521479S: Software Project, 7 cp
521148S: Ubiquitous Computing Fundamentals, 5 cp

Computer Engineering, Compulsory Courses 37 ECTS cr

521281S: Application Specific Signal Processors, 5 cp
521155S: Computer Security, 5 cp
521423S: Embedded System Project, 5 cp
521043S: Internet of Things, 5 cp
521288S: Multiprocessor Programming, 5 cp
521279S: Signal Processing Systems, 5 cp
521479S: Software Project, 7 cp

Advanced module: Artificial Intelligence Orientation, elective 30 ECTS cr (min 30 cp)

For **Artificial Intelligence** orientation compulsory advanced module.

Elective studies

A452295: Advanced Module / Artificial Intelligence, 25 - 60 cp

Optional Studies: Artificial Intelligence, Choose f.g. from the following courses total 30 ECTS cr

- 521495A: Artificial Intelligence, 5 cp
- 521348S: Statistical Signal Processing, 5 cp
- 521045S: Mobile Computing, 5 cp
- 521467A: Digital Image Processing, 5 cp
- 521489S: Research Work on Information Processing, 8 cp
- 521148S: Ubiquitous Computing Fundamentals, 5 cp
- 521260S: Programmable Web Project, 5 cp
- 521155S: Computer Security, 5 cp
- 521282S: Biosignal Processing II, 5 cp
- 521157A: Introduction to Social Network Analysis, 5 cp
- 521145A: Human-Computer Interaction, 5 cp
- 521290S: Distributed Systems, 5 cp
- 900017Y: Survival Finnish, 2 cp
- 900013Y: Beginners' Finnish Course 1, 3 cp
- 030009M: Studies in Other Universities/Institutes, 0 - 60 cp
Advanced module: Applied Computing Orientation, elective studies 23 ECTS cr (min 23 cp)

For Applied Computing orientation compulsory advanced module.

Electives

A452300: Advanced Module / Applied Computing, 23 - 28 cp
Optional Studies: Applied Computing, Choose f.g. from the following courses total 23 ECTS cr.
 521149S: Special Course in Information Technology, 5 - 8 cp
 521489S: Research Work on Information Processing, 8 cp
 521154S: UBISS - International UBI Summer School, 5 cp
 815657S: Open Source Software Development, 5 cp
 815305A: Real Time Distributed Software Development, 5 cp
 817603S: System Design Methods for Information Systems, 5 cp
 813625S: Information Systems Theory, 5 cp
 521423S: Embedded System Project, 5 cp
 521286A: Computer Systems, 8 cp
 521275A: Embedded Software Project, 8 cp
 812671S: Usability Testing, 5 cp
 521041A: Applied Computing Project I, 8 cp
 812331A: Interaction Design, 5 cp
 812650S: Advanced Topics in Human-Centred Design, 5 cp
 900017Y: Survival Finnish, 2 cp
 900013Y: Beginners' Finnish Course 1, 3 cp
 030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Advanced Module: Computer Engineering, 1. Electronics obligatory studies 22 ECTS cr, electives 26 ECTS cr/ 2. Software 20 ECTS cr, electives 28 ECTS cr (min 20 cp)

For computer science orientation compulsory module.

Select one of advanced modules in computer science:

1. Electronics obligatory studies 22 ECTS cr, electives 26 ECTS cr OR 2. Software 20 ECTS cr, electives 28 ECTS cr

Computer Engineering, Advanced Modules: 1. Electronics obligatory 22 ECTS cr and elective 26 ECTS cr

A452297: Advanced Module / Computer Engineering, Hardware, 48 cp
Compulsory studies, 22 ECTS cr
 521404A: Digital Techniques 2, 5 cp
 521303A: Circuit Theory 2, 5 cp
 521406S: Digital Techniques 3, 7 cp
 521340S: Communications Networks I, 5 cp
Optional Courses, Choose f.g. from the following courses total 26 ECTS cr.
 813621S: Research Methods, 5 cp
 521405A: Electronic System Design, 5 cp
 521323S: Wireless Communications I, 5 cp
 521443S: Electronics Design II, 5 cp
 521088S: Optoelectronics, 5 cp
 521489S: Research Work on Information Processing, 8 cp
 521348S: Statistical Signal Processing, 5 cp
 521385S: Mobile Telecommunication Systems, 5 cp
 521304A: Filters, 5 cp
 521328A: Simulations and Tools for Telecommunications, 5 cp
 900017Y: Survival Finnish, 2 cp
 900013Y: Beginners' Finnish Course 1, 3 cp
 030009M: Studies in Other Universities/Institutes, 0 - 60 cp
Computer Engineering, Advanced module: 2. Software 20 ECTS cr, electives 28 ECTS cr

A452298: Advanced Module / Computer Engineering, Software, 48 cp

Compulsory studies, 20 ECTS cr
- 521348S: Statistical Signal Processing, 5 cp
- 521340S: Communications Networks I, 5 cp
- 521290S: Distributed Systems, 5 cp
- 521321S: Elements of Information Theory and Coding, 5 cp

Optional Courses, Choose f.g. from the following courses total 28 ECTS cr
- 521495A: Artificial Intelligence, 5 cp
- 521337A: Digital Filters, 5 cp
- 521467A: Digital Image Processing, 5 cp
- 521489S: Research Work on Information Processing, 8 cp
- 521148S: Ubiquitous Computing Fundamentals, 5 cp
- 521283S: Big Data Processing and Applications, 5 cp
- 813621S: Research Methods, 5 cp
- 521145A: Human-Computer Interaction, 5 cp
- 521260S: Programmable Web Project, 5 cp
- 031025A: Introduction to Optimization, 5 cp
- 521466S: Machine Vision, 5 cp
- 521289S: Machine Learning, 5 cp
- 521140S: Computer Graphics, 5 cp
- 521156S: Towards Data Mining, 5 cp
- 521273S: Biosignal Processing I, 5 cp
- 900017Y: Survival Finnish, 2 cp
- 900013Y: Beginners' Finnish Course 1, 3 cp
- 030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Common studies: obligatory 35 ECTS cr (35 cp)
- 521027S: Advanced practical training, 5 cp
- 521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp
- 521993S: Master's Thesis in Computer Engineering, 30 cp

Courses and study modules not included in degree structures

- 521151A: Applied Computing Project I, 10 cp
- 521014S: Expert Training, 0 - 5 cp
- 521012A: Practical Training, 3 cp
- 521019A: Practical training, 5 cp

Course descriptions

Descriptions of courses and study modules included in the degree structures
521285S: Affective Computing, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Fall, periods 1
Learning outcomes:
After completing the course, student
1. is able to explain the emotion theory and modeling
2. is able to implement algorithms for emotion recognition from visual and audio signals or the fusion of multi-modalities
3. has the ideas of wide applications of affective computing
Contents:
The history and evolution of affective computing; psychological study about emotion theory and modeling; emotion recognition from different modalities: facial expression, speech, EEG; crowdsourcing study; synthesis of emotional behaviors; emotion applications.
Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
The course consists of lectures and exercises. The final grade is based on the points from exam while there are several mandatory exercises.
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
A prior programming knowledge, possibly the bachelor level mathematical studies and/or some lower level intermediate studies (e.g. computer engineering or artificial intelligence courses). The recommended optional studies include the advanced level studies e.g. the pattern recognition and neural networks and/or computer vision courses.
Recommended optional programme components:
-
Recommended or required reading:
All necessary material will be provided by the instructor.
Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory exercises.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
Numerical grading scale 1-5; zero stands for a fail.
Person responsible:
Guoying Zhao, Henglin Shi, Yante Li
Working life cooperation:
-

521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ekaterina Gilman, Susanna Pirttikangas
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits
Language of instruction:
English
Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.
Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundatmenals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work
Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work
Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu
Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.
Recommended optional programme components:
Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the refernce list for recommended reading. Instructions to necessary installations will be given.
Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Ekaterina Gilman
Working life cooperation:
The course includes also invited lectures from industry.

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 50 hours of work

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to biosignal analysis
3. implement small-scale software for signal processing algorithms

Contents:

Mode of delivery:
Face-to-face teaching and guided laboratory work.

Learning activities and teaching methods:
Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.

Target group:
Students interested in biomedical engineering, at their master's level studies.
Students of the University of Oulu.

Prerequisites and co-requisites:
The mathemathic studies of the candidate degree program of computer science and engineering, or equivalent.
Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Tapio Seppänen

Working life cooperation:
No.

521140S: Computer Graphics, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao
Opintokohteen kielet (E): English
Leikkaavuudet (E):
ECTS Credits:
5 ECTS credits

Language of instruction:
In English

Timing:
Spring, period 4.

Learning outcomes:
1. is able to specify and design 2D graphics algorithms including: line and circle drawing, polygon filling and clipping
2. is able to specify and design 3D computer graphics algorithms including transformations, viewing, hidden surface removal, shading, texture mapping and hierarchical modeling
3. is able to explain the relationship between the 2D and 3D versions of such algorithms
4. possesses the necessary basic skills to use these basic algorithms available in OpenGL

Contents:
The history and evolution of computer graphics; 2D graphics including: line and circle drawing, polygon filling, clipping, and 3D computer graphics algorithms including viewing transformations, shading, texture mapping and hierarchical modeling; graphics API (OpenGL) for implementation.

Mode of delivery:
Face to face teaching.

Learning activities and teaching methods:
Lectures 28 h / Self-study and programming assignments 105h

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills using C++; basic data structures; simple linear algebra.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
4) Lecture notes (in English)

Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory returned programming assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5, zero stands for fail.

Person responsible:
Guoying Zhao, Xiaopeng Hong, Yingyue Xu

Working life cooperation:
No

031025A: Introduction to Optimization, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Applied Mathematics and Computational Mathematics

Grading: 1 - 5, pass, fail
Teachers: Ruotsalainen Keijo
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn, during period 1.

Learning outcomes:
After completing the course the student is able to solve optimization convex optimization problems with the basic optimization algorithms. The student is also able to form the necessary and sufficient conditions for the optimality.

Contents:
Linear optimization, Simplex-algorithm, nonlinear optimization, KKT-conditions, duality, conjugate gradient method, penalty and barrier function methods.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 14 h / Self-study 93 h.

Target group:
Students in Wireless Communication Engineering

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses Calculus I and II, Matrix algebra

Recommended optional programme components:

-

Recommended or required reading:
P. Ciarlet; Introduction to numerical linear algebra and optimization, M. Bazaraa, H. Sherali, C.M. Shetty; Nonlinear programming

Assessment methods and criteria:
The course can be completed by a final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Keijo Ruotsalainen

Working life cooperation:
-

Other information:
-

521289S: Machine Learning, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Tapio Seppänen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>521497S-01</td>
<td>Pattern Recognition and Neural Networks, Exam</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521497S-02</td>
<td>Pattern Recognition and Neural Networks; Exercise Work</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521497S</td>
<td>Pattern Recognition and Neural Networks</td>
<td>5.0 cp</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS cr

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the spring semester, during period III. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. can design simple optimal classifiers from the basic theory and assess their performance.
2. can explain the Bayesian decision theory and apply it to derive minimum error classifiers and minimum cost classifiers.
3. can apply the basics of gradient search method to design a linear discriminant function.
4. can apply regression techniques to practical machine learning problems.

Contents:

Mode of delivery:
Face-to-face teaching, guided laboratory work and independent assignment.

Learning activities and teaching methods:
Lectures 2h, Laboratory work 16h, Exercise 16h and Self-study the rest (Independent task assignment, written examination).

Target group:
Students who are interested in data analysis technology. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. The independent task assignment is graded. The course ends with a written exam.

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. The final grade is established by weighing the written exam by 2/3 and the task assignment by 1/3.

Person responsible:
Tapio Seppänen

Working life cooperation:
No

521466S: Machine Vision, 5 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr
Language of instruction: English
Timing: Spring, period 3.
Learning outcomes:
Upon completion of the course the student
1. understands the fundamentals of image acquisition, representation and modeling
2. can utilize elementary methods of machine vision for image recognition problems
3. can use 2D transformations in model fitting and image registration
4. can explain the basics of 3D imaging and reconstruction

Contents:
1. Introduction, 2. Imaging and image representation, 3. Color and shading, 4. Image features, 5. Recognition, 6. Texture, 7. Motion from 2D image sequences, 8. 2D models and transformations, 9. Perceiving 3D from 2D images, 10. 3D transformations and reconstruction.

Mode of delivery:
Face-to-face teaching, homework assignments.

Learning activities and teaching methods:
Lectures (20 h), exercises (16 h) and Matlab homework assignments (30 h), self-studying (67 h).

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521467A Digital Image Processing or an equivalent course

Recommended optional programme components:
521289S Machine Learning. This course provides complementary knowledge on machine learning methods needed in machine vision.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with final exam and accepted homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5. Zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
No.

521161S: Multi-Modal Data Fusion, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS / 135 hours of work
Language of instruction: English
Timing:
Period 2
Learning outcomes:
Upon completion the student should be able to understand the problem of combining data (such as images and audios) of different natures and coming from different sources. The student should be able to implement basic solutions towards the accomplishment of a given task requiring the integration and combination of data.

Contents:
This course will provide a comprehensive introduction to the concepts and ideas of multi-sensor data fusion. The course will be illustrated with many real-life examples taken from a diverse range of applications. The course will be self-contained as much as possible (no previous knowledge of multisensor data fusion is assumed). Basic knowledge on related topics like image processing and signal processing will be a plus.

The course will discuss the following topics:
- Introduction
- Sensors
- Architecture
- Common Representational Format
- Spatial Alignment
- Temporal Alignment
- Semantic Alignment
- Radiometric Normalization
- Bayesian Inference
- Parameter Estimation
- Robust Statistics
- Sequential Bayesian Inference
- Bayesian Decision Theory
- Ensemble Learning
- Sensor Management

Mode of delivery:
The course will be based on a combination of lectures (face-to-face teaching), home exercises and a final project.

Learning activities and teaching methods:
Face-to-face teaching: 20 h, home exercises: 80 h, final project: 35h

Target group:
Computer Science and Engineering, Ubiquitous Computing (M.Sc level, study years 4-5).

Prerequisites and co-requisites:
The course will be self-contained as much as possible (no previous knowledge is assumed). Basic knowledge on related topics like image processing and signal processing will be a plus.

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
To pass the course, the student should return the exercises, complete a final programming project and pass an exam.

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course will utilize a numerical grading scale 1-5.

Person responsible:
Abdenour Hadid (lecturer), Mohammad Tavakolian (Assistant)

Working life cooperation:
The course includes one or two guest lectures from experts with practical experience.

Other information:
-

521158S: Natural Language Processing and Text Mining, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 2. It is recommended to complete the course at the end of period 2

Learning outcomes:
Upon completing the course, the student is expected to i) comprehend, design and implement basic (online) text retrieval and query systems; ii) account for linguistic aspects and perform word sense disambiguation; iii) perform basic (statistical) inferences using corpus; iv) manipulate (statistical) language modelling toolkits, online lexical databases and various natural language processing tools.

Contents:
Foundation of text retrieval systems, Lexical ontologies, word sense disambiguation, Text categorization, Corpus-based inferences and Natural Language Processing tools

Mode of delivery:
Face-to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24h), tutorial/laboratory sessions (16h), seminar (6h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
students with (moderate to advanced) programming skills in Python

Prerequisites and co-requisites:
Programming skills (preferably) in Python

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

813621S: Research Methods, 5 cp

Form of study: Advanced Studies

Type: Course

Unit: Information Processing Science DP

Grading: 1 - 5, pass, fail

Teachers: Arto Lanamäki

Opintokohteen kielet (E): English

Leikkaavuudet (E):
521146S Research Methods in Computer Science 5.0 cp
ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.

Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521156S: Towards Data Mining, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Satu Tamminen

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits

Language of instruction:
Finnish or English

Timing:
Autumn, period I.

Learning outcomes:
Student can recognize the type of the data before further analysis and the required preprocessing. The concrete learning outcomes are:
1. Student can design and implement the data gathering
2. Student can combine data from different sources
3. Student can normalize and transform data, and handle missing or incorrect data.
4. Student can ensure the generalizability of the results.

Contents:
Course provides good ability to start Master's Thesis or graduate studies. Topics at the course include data mining process in general level, data gathering and different data types, quality and reliability of the data, data preparation including the processing of missing values, outliers, and privacy issues, combination of signals from several sources, utilization of data bases in data mining process, and normalization and transformation of data and interdependence of the observations and their distributions. Additionally, topics concerning the generality of the results are covered, as well as, the principles of data division, for example, train-test-validate, cross-validation and leave-one-out methods.

Mode of delivery:
Lectures, independent work, group work

Learning activities and teaching methods:
16h lectures, 16h exercises, independent studying.

Target group:
The course is suitable for Master level students in Computer science and engineering study programmes, for minor subject studies or for doctoral students.

Prerequisites and co-requisites:
031021P Probability and Mathematical Statistics or similar

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out and exercise material will be provided. The course book will be announced in the beginning of the course. The material is mostly in English.

Assessment methods and criteria:
Participation in mandatory classes and final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Tamminen Satu

Working life cooperation:
-

Other information:
-

521152S: Applied Computing Project II, 10 cp

Validity: 01.08.2013-

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Simo Hosio

Opintokohteen kielet (E): English

ECTS Credits: 10 ECTS cr

Language of instruction: English.

Timing: Autumn and Spring, periods 1-4.

Learning outcomes:
1. has advanced understanding on how to collaboratively design a medium-scale software project,
2. has advanced understanding on how to implement and evaluate a medium-scale software project,
3. is able to extensively document a medium-scale software project,
4. has advanced skills in presenting and pitching a project work, i.e. give a good, concise presentation of the work,

Contents:
Project work that is typically executed in groups of 3-5 students. Note: the project work cannot be done alone.

Mode of delivery:
3-4 lectures to introduce and conclude the course and project works, collaborative project work for a "client" (teaching assistants and/or industry representatives).

Learning activities and teaching methods:
Practical work in project teams. The course is passed with an approved project work. The implementation is fully in English.

Target group:
Computer Science and Engineering MSc students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that the project work is assessed in stages: design (20% of total grade), implementation (40%), evaluation (20%), and final report (20%). Passing criteria: all stages (design, implementation, evaluation, report) must be completed with an approved grade.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Simo Hosio

Working life cooperation:
No

521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ekaterina Gilman, Susanna Pirttikangas

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.

Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundamentals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work

Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.

Recommended optional programme components:

Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the refernce list for recommended reading. Instructions to necessary installations will be given.

Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ekaterina Gilman

Working life cooperation:
The course includes also invited lectures from industry.

521042S: Creative Design, 5 cp

Validity: 01.08.2018 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Georgi Georgiev

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits/ 135 hours of work

Language of instruction:
English

Timing:
Period 3

Learning outcomes:
Upon completion of this course, students are able to:
- Understand and apply in practice basic creative problem-solving and design thinking approaches.
- Systematically ideate and implement creative solutions to a problem, both independently and within a team.
- Apply creative design thinking and low-resolution prototyping, with emphasis on empathy, iterative strategies, and interactions.

Contents:
The course teaches students of (1) Creative problem-solving; (2) Design thinking and low-resolution prototyping; (3) Teamwork problem-solving; (4) Systematic ideation approaches.
Mode of delivery:
Face-to-face teaching, teamwork/individual work, and independent studying.

Learning activities and teaching methods:
Lectures 21h / Individual work 124h. There are TA hours each week where guidance is available.

Target group:
Primary target group is first year master's level students of computer science and engineering with the applied computing orientation.

Prerequisites and co-requisites:
There are no prerequisites or co-requisites.

Recommended optional programme components:

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
20% attendance of 7 lecture-exercises; 40% exercise completion and performance; 40% individual project outcome.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for fail.

Person responsible:
Georgi Georgiev

Working life cooperation:

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Xiang Su

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521266S-01 Distributed Systems, Exam 0.0 cp
521266S-02 Distributed Systems, Exercise Work 0.0 cp
521266S Distributed Systems 6.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, period 3.

Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.
Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory project work.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

521043S: Internet of Things, 5 cp

Validity: 01.08.2018 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
English

Timing:
Spring semester during period IV

Learning outcomes:
Upon completion of the course, the student will be able to:
1. explain application areas of IoT and requirements from such application areas for IoT systems.
2. will be able to explain the state-of-the-art IoT solutions, and understand the basic technologies behind them.
3. learn the principles of the novel IoT technologies and know important directions IoT research towards.

Contents:
The basic technologies and novel applications of the Internet of Things, including networking technologies as well as Web of Things. IoT sensor technologies and sensing solutions for smart buildings including smart home, city, office, or campus environments, and wearables and other personal devices such as fabrication. Exercises will include hands-on programming and sensing data analytics tasks.

Mode of delivery:
face-to-face teaching and exercises (both individual and group work)

Learning activities and teaching methods:
20h lectures, 12h exercise sessions, independent studying 95 hours.

Target group:
M.Sc. students of Computer Science and Engineering, M. Sc. students of Ubicomp International master program. The course fits also for Statistics and Math MSc student interested in applying their knowledge into sensing and IoT data.

Prerequisites and co-requisites:
The Bachelor level knowledge of Computer science and engineering study programmes. Good programming skills in a chosen language.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out, complementary reading list, and exercise material will be provided.

Assessment methods and criteria:
Attending lectures and exercise sessions, and returning the weekly exercises online.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilises a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ella Peltonen

Working life cooperation:
The course may include the invited guest lectures from industry and other top EU universities.

521045S: Mobile Computing, 5 cp

Validity: 01.08.2018 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Denzil Teixeira Ferreira

Opintokohteen kielet (E): English

Leikkaavuudet (E):
- 521046A Mobile Computing 5.0 cp
- 521147S Mobile and Social Computing 5.0 cp

ECTS Credits:
5ECTS / 138 hours of work

Language of instruction:
English

Timing:
Spring, periods 3 and 4

Learning outcomes:
This course focuses on one of the core demands of industry today: deep understanding of mobile interaction, mobile computing constrains and mobile development. After this class, students will possess the:
- ability to design and prototype a mobile user interface taking into account usability aspects of interaction on smaller displays
- ability to explain and leverage the fundamental concepts of context awareness using smartphone hardware, software and human sensors
- ability to understand and implement from scratch a mobile application that leverages both usability and context to create engaging mobile experiences

Contents:
The basic concepts of mobile interface design, implementation, mobile sensor acquisition, context awareness.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
5 ECTS cr = 138h of course work. Lectures (14h), in-class exercises (14h) and practical work (107h) (project, assignments).

Target group:
Computer Science and Engineering students and other students.

Prerequisites and co-requisites:
Recommended to have experience with object-oriented programming (Java, C#).

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment depends on whether the student attends or not the class. For attending students, the assessment is based on 5 laboratory exercises (which the student needs a passing grade). For non-attending students, 5 individual assignments are assigned instead of the laboratory exercises (which the student needs a passing grade). For non-attending students, there is an intermediate exam at the end of period 3 and another at the end of period 4. All students, attending or not, are peer-assessed in a team project during period 4.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Denzil Socrates Teixeira Ferreira

Working life cooperation:
-

521158S: Natural Language Processing and Text Mining, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Mourad Oussalah

Opintovalmistelut (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 2. It is recommended to complete the course at the end of period 2

Learning outcomes:
Upon completing the course, the student is expected to i) comprehend, design and implement basic (online) text retrieval and query systems; ii) account for linguistic aspects and perform word sense disambiguation; iii) perform basic (statistical) inferences using corpus; iv) manipulate (statistical) language modelling toolkits, online lexical databases and various natural language processing tools.

Contents:
Foundation of text retrieval systems, Lexical ontologies, word sense disambiguation, Text categorization, Corpus-based inferences and Natural Language Processing tools

Mode of delivery:
Face- to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24h), tutorial/laboratory sessions (16h), seminar (6h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
students with (moderate to advanced) programming skills in Python

Prerequisites and co-requisites:
Programming skills (preferably) in Python

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:

521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English

Leikkaavuudet (E):

ay521260S Programmable Web Project (OPEN UNI) 5.0 cp

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
- understand what a Web API is and learn different Web API architectures.
- understand the concept of hypermedia and how it is used to build Web APIs.
- are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
- are able to write unit and functional tests to inspect their APIS.
- are able to document their Web APIs using adequate software tools.
- are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

813621S: Research Methods, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki
Opintokohteen kielet (E): English
Leikkaavuudet (E):

 521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English
Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.

Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521479S: Software Project, 7 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Christian Wieser

Opintokohteen kielet (E): English

ECTS Credits:
7

Language of instruction:
Finnish/English, material available in English.

Timing:
Autumn, periods 1-2.

Learning outcomes:
After completing the course, students have demonstrated their capabilities to design, develop and test real-life software. Further, they have shown their proficiency in professionally documenting their work during the assignment.

Contents:
Phases of software engineering process: requirement gathering, analysis, design, implementation, testing, (maintenance). Project-work, starting a project, project management, working with external parties, project documentation. Project related implementation techniques and tools, software documentation.

Mode of delivery:
Face-to-face and independent studies.

Learning activities and teaching methods:
Working methods: The course is done in groups of 3-4 students. The clients are typically various companies and societies. Project progress is supervised in formal reviews, where the project teams present their work as it reaches the milestones: the software requirement specification, the project plan, the software design specification, an operational prototype demonstration, the test documentation, and finally the functional software demonstration and release. In addition to formal reviews the project work is coordinated with steering group meetings. The work environment and development tools vary between projects. The number of students that can attend the course is limited. Lectures 10 h, design project in period 4-6 180 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work and documentation.

Read more about [assessment criteria](#) at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Christian Wieser
Working life cooperation:
-
Other information:
-

521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English
Timing:
Autumn, periods 1-2.
Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face
Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.
Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.
Prerequisites and co-requisites:
None.
Recommended optional programme components:
None.
Recommended or required reading:

Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course uses numerical scale 1-5.
Person responsible:
Professor Timo Ojala
Working life cooperation:
None.
521281S: Application Specific Signal Processors, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
In English.
Timing:
Autumn, period 1.
Learning outcomes:
After completing the course, student
1. Can distinguish the main types of signal processors
2. Can design basic customized transport triggered architecture processors
3. Is capable of assembling a signal processor out of basic entities
4. Can match the processor performance and the application requirements
5. Applies the TTA codesign environment and Altera's FPGA tools to synthesize a system

Contents:
Examples of modern signal processing applications, main types of signal processors, parallel signal processing, transport triggered architectures, algorithm-architecture matching, TCE design environment and Altera FPGA tools.
Mode of delivery:
Lectures, independent work, group work.
Learning activities and teaching methods:
Lectures 12h (participation mandatory); Instructed labs 12h. Independent work 111h
Target group:
Computer Science and Engineering students + other Students of the University of Oulu. This is an advanced-level course intended for masters-level students and post-graduate students, especially to those who are specializing into signal processing.
Prerequisites and co-requisites:
521267A Computer Engineering or 521286A Computer Systems (8 ECTS cr) or 521287A Introduction to Computer Systems (5 ECTS cr) and 521337A digital filters, programming skills
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
Handouts.
Assessment methods and criteria:
Participation in mandatory classes and approved project work.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
Numerical grading scale 1-5; zero stands for a fail.
Person responsible:
Mehdi Safarpour
Working life cooperation:
No.
521155S: Computer Security, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teemu Tokola, Juha Röning
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits
Language of instruction:
English
Timing:
Autumn semester, period I.
Learning outcomes:
Upon completion of this course, students are familiar with key areas of computer security and have practiced practical skills in these areas with assignments.
Contents:
The course covers the essential aspects of computer security and computer security research in theory and through practical examples.
Mode of delivery:
Lectures and practical assignments
Learning activities and teaching methods:
Lectures 14 h, laboratory exercise 28 h, the rest as independent work.
Target group:
The course is intended for computer engineering masters students and additionally to any student interested in computer security that has the sufficient technical background to complete the course exercises.
Prerequisites and co-requisites:
As prior knowledge students should have a basic understanding of how computers and operating systems work and basic skills in programming. Examples of suitable courses to cover these fundamentals are Operating Systems 521453A, Introduction to Programming 521141P and Computer Engineering 521267A.
Recommended optional programme components:
The course is an independent entity.
Recommended or required reading:
-
Assessment methods and criteria:
Grading of the course is made based on the course practical assignments.
Grading:
Numerical scale 1-5, with 0 denoting failure to pass.
Person responsible:
Juha Röning, Teemu Tokola

Working life cooperation:
Visiting lectures from computer security -related companies arranged during the course whenever possible.
Other information:
-

521423S: Embedded System Project, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Röning
Opintokohteen kielet (E): English

ECTS Credits: 5

Language of instruction: Lecturing in Finnish, material available in English

Timing: Spring, periods 3-4.

Learning outcomes:
1. After passing the course a student can explain the life cycle of the embedded system, the characteristic features related to embedded systems development, and the risks involved.
2. In addition, the student can explain the roles of the client and the system developer during the requirements specification, and the role of the iteration phase as a part of the requirements specification phase. The student can explain the factors affecting to SW/HW partitioning process, and the concept of SW/HW dualism. The student can fairly analyze the factors affecting to the selection of the processor and the operating system. The student can recognize the basic development tools used and their possible advantages and disadvantages.
3. The student can compare various testing approaches. The student can explain how a design error affects to the final cost of the system in different phases of the development. The student can do some basic I/O programming using C programming language.

Contents:
The embedded design life cycle, the selection process, the partitioning decision, the development environment, the special software techniques, a basic toolset, JTAG/ICE, testing, I/O programming.

Mode of delivery: Face-to-face teaching.

Learning activities and teaching methods:
The course is run in a project work in groups of two and follow up the progress reporting meetings. Lectures 10 h, laboratory exercise in period 3-4 120 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521412A Digital Techniques I
Also recommended 521275A Embedded Software Project, 521432A Electronics Design I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Röning

Working life cooperation:
None.

Other information:

521043S: Internet of Things, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
English

Timing:
Spring semester during period IV

Learning outcomes:
Upon completion of the course, the student will be able to:
1. explain application areas of IoT and requirements from such application areas for IoT systems.
2. will be able to explain the state-of-the-art IoT solutions, and understand the basic technologies behind them.
3. learn the principles of the novel IoT technologies and know important directions IoT research towards.

Contents:
The basic technologies and novel applications of the Internet of Things, including networking technologies as well
as Web of Things. IoT sensor technologies and sensing solutions for smart buildings including smart home, city,
office, or campus environments, and wearables and other personal devices such as fabrication. Exercises will
include hands-on programming and sensing data analytics tasks.

Mode of delivery:
face-to-face teaching and exercises (both individual and group work)

Learning activities and teaching methods:
20h lectures, 12h exercise sessions, independent studying 95 hours.

Target group:
M.Sc. students of Computer Science and Engineering, M. Sc. students of Ubicomp International master program.
The course fits also for Statistics and Math MSc student interested in applying their knowledge into sensing and
IoT data.

Prerequisites and co-requisites:
The Bachelor level knowledge of Computer science and engineering study programmes. Good programming skills
in a chosen language.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out, complementary reading list, and exercise material will be provided.

Assessment methods and criteria:
Attending lectures and exercise sessions, and returning the weekly exercises online.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilises a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ella Peltonen

Working life cooperation:
The course may include the invited guest lectures from industry and other top EU universities.

521288S: Multiprocessor Programming, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Miguel Bordallo Lopez

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
521280S DSP Laboratory Work 5.0 cp

ECTS Credits:
5 ECTS cr / 135 hours of work

Language of instruction:
English

Timing:
Spring semester, periods 3-4

Learning outcomes:
Upon completion of the course, the student:
1. has basic understanding of multiprocessor architectures and heterogeneous computing,
2. has basic understanding on how to design and implement algorithms for heterogeneous platforms,
3. understands the possible challenges and shortcomings related to the current heterogeneous systems,
4. is able to use the OpenCL framework for designing, implementing and optimizing signal processing algorithms for heterogeneous platforms

Contents:
Algorithm design, general purpose computing on graphics processing units, heterogeneous computing, OpenCL programming and optimization

Mode of delivery:
Opening lecture and independent exercise project, which is divided into smaller sub-entities. The exercise project is performed using both desktop and mobile platforms. After each sub-entity, a short seminar is held where the students discuss their results and possible ways to optimize the performance of their implementation.

Learning activities and teaching methods:
Opening lecture (2h), seminars (8h) and independent exercise project (125h).

Target group:
Computer Science and Engineering students and other Students of the University of Oulu. This is an advanced-level course intended for masters-level students and post-graduate students, especially to those interested in signal processing, processor architectures and embedded systems programming.

Prerequisites and co-requisites:
Matrix Algebra 031078P, Elementary programming 521141P, Computer Systems 521286A, Digital Filters 521337A

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
-

Assessment methods and criteria:
Students complete the course exercises after the attending to the opening lecture in groups of two students. Assessment is based on the quality of the completed exercises and exercise reports. More detailed information on assessment will be announced at the beginning of the course. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Miguel Bordallo

Working life cooperation:
-

Other information:
-

521279S: Signal Processing Systems, 5 cp

Validity: 01.08.2012 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

ECTS Credits:
Language of instruction: English
Timing: Autumn, period 2
Learning outcomes:
1. Student can explain the challenges of signal processing hardware, software, and design methodologies.
2. Student is able to transform a digital filter designed with floating point arithmetic into a fixed point precision implementation, optimizing the word lengths to achieve the performance specifications.
3. Student is able to explain the most important algorithm implementation structures and can identify their usage contexts.
4. Student has rudimentary practical skills in modeling, designing, and judging finite word length signal processing algorithms with Matlab and Simulink software tools.

Contents:
Binary and floating point arithmetic, DSP programming models and co-design, digital signal processors, algorithms and implementations, including CORDIC, transforms (FFT and DCT), multi-rate signal processing, polyphase filters, filter banks, adaptive algorithms and applications. The software environments of the course are Matlab with the Fixed Point Toolbox extension and Simulink with the DSP Blockset extension.

Mode of delivery:
Lectures, independent work, group work.

Learning activities and teaching methods:
The course consists of lectures (30 h) and design exercises (6-12 h), the rest as independent work (33h).

Target group:
Computer Science and Engineering students: This is an advanced-level course intended for masters-level students, especially to those that are specializing into signal processing. + Other Students of the University of Oulu.

Prerequisites and co-requisites:
521337A Digital Filters, 521267A Computer Engineering or 521286A Computer Systems, 8 ECTS cr or 521287A Introduction to Computer Systems, 5 ECTS cr

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture notes and exercise materials. Material is in English.

Assessment methods and criteria:
Grading is based on the evaluation of the design exercises, which are done during the course, and exams, which are arranged during the lectures.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silven

Working life cooperation:
None.

521479S: Software Project, 7 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Christian Wieser
Opintokohteen kielet (E): English

ECTS Credits:
Language of instruction:
Finnish/English, material available in English.

Timing:
Autumn, periods 1-2.

Learning outcomes:
After completing the course, students have demonstrated their capabilities to design, develop and test real-life software. Further, they have shown their proficiency in professionally documenting their work during the assignment.

Contents:
Phases of software engineering process: requirement gathering, analysis, design, implementation, testing, (maintenance). Project-work, starting a project, project management, working with external parties, project documentation. Project related implementation techniques and tools, software documentation.

Mode of delivery:
Face-to-face and independent studies.

Learning activities and teaching methods:
Working methods: The course is done in groups of 3-4 students. The clients are typically various companies and societies. Project progress is supervised in formal reviews, where the project teams present their work as it reaches the milestones: the software requirement specification, the project plan, the software design specification, an operational prototype demonstration, the test documentation, and finally the functional software demonstration and release. In addition to formal reviews the project work is coordinated with steering group meetings. The work environment and development tools vary between projects. The number of students that can attend the course is limited. Lectures 10 h, design project in period 4-6 180 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work and documentation.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Christian Wieser

Working life cooperation:
-

Other information:
-

A452295: Advanced Module / Artificial Intelligence, 25 - 60 cp

Validity: 01.08.2018 -
Form of study: Advanced Module
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

No course descriptions.
521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Period 3.
Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.
Contents:
Mode of delivery:
Face-to-face teaching.
Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
Programming skills.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html
Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

521348S: Statistical Signal Processing, 5 cp

Validity: 01.08.2016 -

Form of study: Advanced Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Janne Lehtomäki, Juntti, Markku Johannes

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will

1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course: 031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments (programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.

Person responsible:
Markku Juntti
Janne Lehtomäki

Working life cooperation:

Other information:

521045S: Mobile Computing, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Denzil Teixeira Ferreira

Opintokohteen kielet (E): English
Leikkaavuudet (E):
- 521046A Mobile Computing 5.0 cp
- 521147S Mobile and Social Computing 5.0 cp

ECTS Credits:
5ECTS / 138 hours of work
Language of instruction:
English
Timing:
Spring, periods 3 and 4

Learning outcomes:
This course focuses on one of the core demands of industry today: deep understanding of mobile interaction, mobile computing constrains and mobile development. After this class, students will possess the:
- ability to design and prototype a mobile user interface taking into account usability aspects of interaction on smaller displays
- ability to explain and leverage the fundamental concepts of context awareness using smartphone hardware, software and human sensors
- ability to understand and implement from scratch a mobile application that leverages both usability and context to create engaging mobile experiences

Contents:
The basic concepts of mobile interface design, implementation, mobile sensor acquisition, context awareness.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
5 ECTS cr = 138h of course work. Lectures (14h), in-class exercises (14h) and practical work (107h) (project, assignments).

Target group:
Computer Science and Engineering students and other students.

Prerequisites and co-requisites:
Recommended to have experience with object-oriented programming (Java, C#).

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment depends on whether the student attends or not the class. For attending students, the assessment is based on 5 laboratory exercises (which the student needs a passing grade). For non-attending students, 5 individual assignments are assigned instead of the laboratory exercises (which the student needs a passing grade). For non-attending students, there is an intermediate exam at the end of period 3 and another at the end of period 4. All students, attending or not, are peer-assessed in a team project during period 4.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Denzil Socrates Teixeira Ferreira

Working life cooperation:

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay521467A Digital Image Processing (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.

Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.

Recommended or required reading:
Lecture notes and exercise

Assessment methods and criteria:
The course is completed by passing the exam and homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

521489S: Research Work on Information Processing, 8 cp
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work

Language of instruction:
English.

Timing:
Autumn and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.

Mode of delivery:
Self-study.

Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None
521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English
Timing:
Autumn, periods 1-2.
Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face
Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.

Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.

Prerequisites and co-requisites:
None.
Recommended optional programme components:
None.
Recommended or required reading:
Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course uses numerical scale 1-5.
Person responsible:
Professor Timo Ojala
Working life cooperation:
None.
521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521260S Programmable Web Project (OPEN UNI) 5.0 cp

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
 • understand what a Web API is and learn different Web API architectures.
 • understand the concept of hypermedia and how it is used to build Web APIs.
 • are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
 • are able to write unit and functional tests to inspect their APIs.
 • are able to document their Web APIs using adequate software tools.
 • are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

521155S: Computer Security, 5 cp

- **Validity:** 01.08.2017 -
- **Form of study:** Advanced Studies
- **Type:** Course
- **Unit:** Computer Science and Engineering DP
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Teemu Tokola, Juha Röning
- **Opintokohteen kielet (E):** English

ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Autumn semester, period I.

Learning outcomes:
Upon completion of this course, students are familiar with key areas of computer security and have practiced practical skills in these areas with assignments.

Contents:
The course covers the essential aspects of computer security and computer security research in theory and through practical examples.

Mode of delivery:
Lectures and practical assignments

Learning activities and teaching methods:
Lectures 14 h, laboratory exercise 28 h, the rest as independent work.

Target group:
The course is intended for computer engineering masters students and additionally to any student interested in computer security that has the sufficient technical background to complete the course exercises.

Prerequisites and co-requisites:
As prior knowledge students should have a basic understanding of how computers and operating systems work and basic skills in programming. Examples of suitable courses to cover these fundamentals are Operating Systems 521453A, Introduction to Programming 521141P and Computer Engineering 521267A.

Recommended optional programme components:
The course is an independent entity.

Recommended or required reading:
-

Assessment methods and criteria:
Grading of the course is made based on the course practical assignments.

Grading:
Numerical scale 1-5, with 0 denoting failure to pass.

Person responsible:
Juha Röning, Teemu Tokola

Working life cooperation:
Visiting lectures from computer security–related companies arranged during the course whenever possible.

Other information:
-

521282S: Biosignal Processing II, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Jukka Kortelainen

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
Lectures and laboratory works are given in English. The examination can be taken in Finnish or English.

Timing:
Period 4

Learning outcomes:
After completing the course, student
1. knows the special characteristics of neural signals and the typical signal processing methods related to them
2. can solve advanced problems related to the neural signal analysis

Contents:
Introduction to neural signals, artifact removal, anesthesia and natural sleep, topographic analysis and source localization, epilepsy, evoked potentials.

Mode of delivery:
Face-to-face teaching
Learning activities and teaching methods:
Lectures (8 h) and laboratory work (20 h), written exam.

Target group:
Engineering students, medical and wellness technology students, and other students interested in biomedical engineering. Students of the University of Oulu.

Prerequisites and co-requisites:
The basic engineering math courses, digital filtering, programming skills, Biosignal Processing I.

Recommended optional programme components:

Recommended or required reading:
The course is based on selected parts from books "EEG Signal Processing", S. Sanei and J. A. Chambers, "Bioelectrical Signal Processing in Cardiac and Neurological Applications", L. Sörnmo and P. Laguna, and "Neural Engineering", B. He (ed.) as well as lecture slides and task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by the assistants who will also check that the task assignments are completed properly. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading of the accepted exam is in the range 1-5.

Person responsible:
Jukka Kortelainen

Working life cooperation:

521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works
Language of instruction:
English
Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face-to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.

521145A: Human-Computer Interaction, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
In English.
Timing:
Autumn, period 2

Learning outcomes:
1. Knowledge of the Human Computer Interaction (HCI) fundamentals
2. Knowledge of evaluation techniques
3. Knowledge of prototyping techniques
4. Knowledge of how HCI can be incorporated in the software development process

Contents:
Human and computer fundamentals, design and prototyping, evaluation techniques, data collection and analysis.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (12 h), exercises (16 h), and practical work (105 h). The course is passed with an approved practical work (several assignments). The implementation is fully English.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. The course involves some basic programming.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment is project-based. Students have to complete several individual exercises throughout the semester: 1: Using questionnaires; 2: Fitts law; 3: Advanced, team-based design exercise and essay. Passing criteria: all exercises must be completed, each receiving more than 50% of the available points. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Simo Hosio (Dr. Tech.)

Working life cooperation:
If relevant, guest lectures may be organized (optional).

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Xiang Su
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E): 521266S-01 Distributed Systems, Exam 0.0 cp
ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, period 3.

Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory project work.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions,
describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:

- **Recommended or required reading:**
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:

- **Other information:**
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

A452300: Advanced Module / Applied Computing, 23 - 28 cp

- **Validity:** 01.08.2018 -
- **Form of study:** Advanced Module
- **Type:** Study module
- **Unit:** Computer Science and Engineering DP
- **Grading:** 1 - 5, pass, fail
- **Opintokohteen kielet (E):** Finnish

No course descriptions.

Optional Studies: Applied Computing, Choose f.g. from the following courses total 23 ECTS cr.

521149S: Special Course in Information Technology, 5 - 8 cp

- **Validity:** 01.08.2012 -
- **Form of study:** Advanced Studies
- **Type:** Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5-8
Language of instruction:
English
Timing:
Autumn and Spring, periods 1-4.
Learning outcomes:
The learning outcomes are defined based on the course topic.
Contents:
Varies yearly.
Mode of delivery:
Face-to-face teaching, also web-based teaching can be used.
Learning activities and teaching methods:
Lectures, exercises, design exercise, project work and seminars depending on the topic of the year. The implementation of the course will be informed separately. The course can be given several times with different contents during the academic year and it can be included into the degree several times.
Target group:
M.Sc. level students of Computer Science and Engineering; other students are accepted if there is space in the classes.
Prerequisites and co-requisites:
Will be defined based on the contents.
Recommended optional programme components:
No.
Recommended or required reading:
Will be announced at the first lecture
Assessment methods and criteria:
Depends on the working methods.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Professor of CSE
Working life cooperation:
-

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work

Language of instruction:
English.

Timing:
Autumn and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.

Mode of delivery:
Self-study.

Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

521154S: UBISS - International UBI Summer School, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English.

Timing:
Summer semester (June).

Learning outcomes:
Summer school comprises of multiple parallel workshops that each have specific learning outcomes.

Contents:
Each workshop has specific contents.

Mode of delivery:
Face-to-face teaching in workshops.

Learning activities and teaching methods:
Lectures, a project completed as group work, self-study.

Target group:
MSc. and doctoral students.

Prerequisites and co-requisites:
Each workshop may have specific prerequisites.

Recommended optional programme components:
None.

Recommended or required reading:
Each workshop has a specific reading package.

Assessment methods and criteria:
Final exam (50%), project (50%).

Grading:
The summer school uses a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

815657S: Open Source Software Development, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Henrik Hedberg
Opintokohteen kielet (E): English
ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 2nd autumn semester.

Learning outcomes:
After passing the course, a student will be able to
- define the historical background and the ideology of Open Source Software (OSS),
- participate in an OSS development project,
- evaluate the impact of the usage of OSS and OSS licenses on software development and exploitation, and
- view the phenomenon through the essential scientific research.

Contents:
The course introduces OSS development paradigm and current topics in OSS research. OSS affects both the way to produce software and the decisions of user organizations. It can be understood, for example, from different social, legal, economical, software engineering and data security viewpoints. The aim is to study from different perspectives, for example, what OSS is and what it is not, the history and organisation of OSS projects, methods of OSS development and usage, as well as licensing models and possible risks. The emphasis is on research work.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Independent personal and group work about 40 h, weekly meetings and seminars about 30 h, seminar article and presentation about 60 h.

Target group:
MSc students

Prerequisites and co-requisites:
Compulsory prerequisites are Bachelor degree or other equivalent degree and basic knowledge on software engineering and research work.

Recommended or required reading:

Assessment methods and criteria:
Active participation, seminar article and other assignments.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Henrik Hedberg

815305A: Real Time Distributed Software Development, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail

Teachers: Pulli, Petri Johannes

Opintokohteen kielet (E): English

ECTS Credits:

5 ECTS credits / 133 hours of work.

Language of instruction:

English

Timing:

The course is held in the autumn semester, during periods 1 and 2.

Learning outcomes:

After completing the course, the student is able to analyse the characteristics of real-time distributed systems; is able to acquire an object-oriented, model-based approach to solve the design problems found in real-time systems; is able to detect and derive specific problems facing the real-time software designer, and to suggest design patterns to solve those problems.

Contents:

Mode of delivery:

Face-to-face teaching

Learning activities and teaching methods:

Lectures 40 h, design exercises 15 h, student project 80 h.

Target group:

MSc students

Prerequisites and co-requisites:

Computer architecture, object-oriented analysis and design (UML), programming language C and / or Java.

Recommended or required reading:

Assessment methods and criteria:

Exam and project evaluation.

Grading:

Numerical scale 1-5 or fail.

Person responsible:

Petri Pulli

Working life cooperation:

One or two industrial guest lecturers.

817603S: System Design Methods for Information Systems, 5 cp

Validity: 01.08.2011 -

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Pasi Karppinen
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
E-exam.

Learning outcomes:
After the course the student understands the complexity of business, organizational, technical, and human aspects that affect ISD and the selection of methods in information systems design (ISD). The student also understands the defects of traditional waterfall model and how other methods aim to answer to these defects and to other challenges. In particular, with socio-technical methods (e.g., SSM) and their techniques the student is able to re-plan and develop the sub-systems (automated and non-automated) of organization into a coherent whole. The student is also able to assess and give arguments which method is suitable for an ISD project in an organization.

Contents:

Target group:
MSc students

Prerequisites and co-requisites:
Bachelor studies recommended.

Recommended optional programme components:

Assessment methods and criteria:
E-exam

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Pasi Karppinen

813625S: Information Systems Theory, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Netta Iivari
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:

English.

Timing:

The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course at the 2nd autumn semester.

Learning outcomes:

After completing the course, students will have a good knowledge and understanding of a broad array of research topics and themes within the field of information systems; will have good knowledge and understanding of information systems research and the process by which that research is produced; will have competence in critiquing research articles published in some of the leading academic journals and conference proceedings; will have competence in critical thinking, and analysis and synthesis of academic sources; will have competence in verbally presenting arguments in an academic fashion; will know how to write a literature review on an information systems research topic.

Contents:

Information Systems Research Overview, A contemporary selection of Information Systems research themes.

Mode of delivery:

Face-to-face teaching.

Learning activities and teaching methods:

Lectures 24 h, seminars 10 h, individual and group assignments 100 h; or self-study: opening lecture 2 h, assignments 132 h.

Target group:

MSc students

Prerequisites and co-requisites:

Bachelor’s degree or similar, Research Methods course. Recommended to take before Master’s Thesis.

Recommended optional programme components:

Recommended or required reading:

Lectures and Selection of scientific articles.

Assessment methods and criteria:

Accepted assignments.

Grading:

Numerical scale 1-5 or fail.

Person responsible:

Netta Iivari

521423S: Embedded System Project, 5 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Juha Röning

Opintokohteen kielet (E): English

ECTS Credits:
Language of instruction:
Lecturing in Finnish, material available in English

Timing:
Spring, periods 3-4.

Learning outcomes:
1. After passing the course a student can explain the life cycle of the embedded system, the characteristic features related to embedded systems development, and the risks involved.
2. In addition, the student can explain the roles of the client and the system developer during the requirements specification, and the role of the iteration phase as a part of the requirements specification phase. The student can explain the factors affecting to SW/HW partitioning process, and the concept of SW/HW dualism. The student can fairly analyze the factors affecting to the selection of the processor and the operating system. The student can recognize the basic development tools used and their possible advantages and disadvantages.
3. The student can compare various testing approaches. The student can explain how a design error affects to the final cost of the system in different phases of the development. The student can do some basic I/O programming using C programming language.

Contents:
The embedded design life cycle, the selection process, the partitioning decision, the development environment, the special software techniques, a basic toolset, JTAG/ICE, testing, I/O programming.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
The course is run in a project work in groups of two and follow up the progress reporting meetings. Lectures 10 h, laboratory exercise in period 3-4 120 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521412A Digital Techniques I
Also recommended 521275A Embedded Software Project, 521432A Electronics Design I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Röning

Working life cooperation:
None.

Other information:

521286A: Computer Systems, 8 cp
Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teemu Leppänen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

521142A Embedded Systems Programming 5.0 cp

ECTS Credits:
8 ECTS cr
Language of instruction:
Lecturing in Finnish, course and exercise material available in English.
Timing:
Autumn, periods 1-2.
Learning outcomes:
After completing the course
Student understands the basic computer architecture and organization.
Student understands CPU operation and basic datapath operation.
Student knows different number systems and data representations in computers.
Student is familiar of I/O operation with peripheral devices in general.
Student is able to implement small programs with the C programming language for general-purpose computers for embedded systems.
Student is able to implement small assembly language programs.
Student recognizes how embedded systems programming is different from programming general-purpose computers.

Contents:
Overview of computer architecture and organization, CPU and datapath, memory hierarchies, data types, interrupts, registers and I/O, basics of the C programming language and basics of assembly language. Embedded systems programming.

Mode of delivery:
Web-based and face-to-face teaching.
Learning activities and teaching methods:
Lectures (32h), course exercises (10-30h), laboratory exercise (3h) and two course projects, one is completed in a group and the other alone.

Target group:
2nd year students of computer science and engineering and 3rd year students of electrical engineering.
Prerequisites and co-requisites:
Elementary programming 521141P.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Assessment methods and criteria:
The assessment criteria is based on the learning outcomes of the course. Students complete the course exercises, participate to the laboratory exercise and complete the course projects. Assessment is based on the exercises and the course projects. More detailed information on assessment is published in the lecture material. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Teemu Leppänen

Working life cooperation:
Visiting lectures with experts from local industry are possible.

521275A: Embedded Software Project, 8 cp

Validity: 01.08.2007 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teemu Tokola
Opintokohteen kielet (E): English

ECTS Credits:
8

Language of instruction:
Material in English, lectures and guidance of individual groups available in English.

Timing:
Spring, periods 3-4.

Learning outcomes:
1. Can work independently on a non-trivial problem
2. Knows how to write a thesis and has gained lot of experience on refining text
3. Can make a scientific background study on a topic
4. Has increased experience on implementing an embedded software
5. Has improved group work and project skills

Contents:
This course familiarizes the student with modern embedded system development with modern methods and tools. Topics: Development tools, practical application program for an embedded system. The students additionally work on the application topic through scientific papers and use their application program to produce a scientific work of their own.

Mode of delivery:
Face-to-face teaching, independent project work in groups.

Learning activities and teaching methods:
Pair project with monitoring meetings and a compulsory exercise. Lectures 30 h, design exercise in period 4-6 180 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Course website, hardware data sheets and manuals, scientific publications.

Assessment methods and criteria:
Project report and a demonstrated implementation.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Teemu Tokola

Working life cooperation:
The topics of the course are relevant research topics with applications in the industry, and visiting lecturers are occasionally arranged to shed light on how the course topics are applied in the industry.

Other information:
The 521275A course offers the possibility to complete your Bachelor thesis in a structured course environment. The course is suitable also for students who do not use the course for their Bachelor Thesis.

812671S: Usability Testing, 5 cp

Validity: 01.08.2011 -

Form of study: Advanced Studies

Type: Course

Unit: Information Processing Science DP

Grading: 1 - 5, pass, fail

Teachers: Mikko Rajanen

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English and Finnish

Timing:
The course is held in the spring semester, during periods 3 and 4.

Learning outcomes:
After completing the course, the student can:
• Design and follow through a usability testing process;
• Design usability test scenarios and tasks;
• Select test subjects;
• Plan and follow through usability tests as laboratory tests or field tests;
• Analyse and report the findings from usability tests.

Contents:
Basic terms and types of usability testing, usability tests process, usability test tasks and scenarios, test subjects, following through a usability test, analysing usability test material, reporting the findings from usability tests.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 24h, assignment tutoring 13h, assignment 90h, seminar 7h.

Target group:
MSc students

Prerequisites and co-requisites:
Student is familiar with most common user interface design terms, design and evaluation methods as in “Introduction to Human-Computer Interactions” course.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Assessment of the course is based on the learning outcomes of the course based on the written usability test plan, supervised usability tests, written usability test report and oral seminar presentation

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Mikko Rajanen

Working life cooperation:
No

Other information:

521041A: Applied Computing Project I, 8 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio

Opintokohteen kielet (E): Finnish, English

Leikkaavuudet (E):
- 521151A Applied Computing Project I 10.0 cp

ECTS Credits:
8 ECTS credits / 216 hours of work

Language of instruction:
Finnish and English

Timing:
3rd semester (periods 1-4)

Learning outcomes:
Upon completion of the course, the student will be able to:
1. has basic understanding on how to collaboratively design a small-scale software project,
2. has basic understanding on how to implement and evaluate a small-scale software project,
3. is able to extensively document a small-scale software project,
4. is able to present and "pitch" a project work, i.e. give a good, concise presentation of the work

Contents:
The basics concepts and practices of implementing a software project in the domain of applied computing

Mode of delivery:
Fact-to-face teaching, project work in groups

Learning activities and teaching methods:
8 hours of introductory lectures. Majority of the course is guided project work

Target group:
3rd year Computer Science and Engineering B.Sc. students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Elementary Programing (521141P), Human-Computer Interaction (521145A) or corresponding skills

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that the project work is assessed in stages: design (20% of total grade), implementation (40%), evaluation (20%), and final report (20%). Passing criteria: all stages (design, implementation, evaluation, report) must be completed with an approved grade. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Simo Hosio

Working life cooperation:
The projects that the students will undertake are defined either by the research group or industry partners. In the projects defined by the industry, the students will carry out a development project to create a solution for the company's genuine and existing challenges. The project reports regularly to the
project steering group consisting of a supervising teaching assistant as well as the company representative. In addition, the course can have guest lectures from industry regarding collaborative software development and evaluation practices.

Other information:
The 521275A course offers the possibility to complete your Bachelor thesis in a structured course environment. The course is suitable also for students who do not use the course for their Bachelor Thesis.

812331A: Interaction Design, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Minna Pakanen
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the autumn semester, during period 1. It is recommended to complete the course at the 1st autumn semester.

Learning outcomes:
Objective: The course explains the role of human interaction with IT products, systems, and services, explains the factors and problems related to it to motivate interaction design, and teaches some user-centered methods for analysis, evaluation and design of interactions.
Learning Outcomes: After completing the course, the student can assess the role of human interaction with IT products, systems, and services and identify factors and problems related to it within a practical design case. The student is able to:
- use methods for analysis and evaluation of existing interfaces;
- understand the role of requirements, plan and conduct a simple requirements collection and analysis;
- use basic principles of usability and user experience for user interface design;
- use interaction design methods in designing for target user experiences.

Contents:
The course provides an overview of interaction design, introducing the terminology and fundamental concepts, the main activities, and the importance of user involvement in the design process. The course addresses establishing requirements for IT products, systems, and services. The focus is on usability and user experience from the viewpoint of the intended users, their tasks and the context of use. The course covers user-centered methods for designing for and evaluating usability and user experience of IT products, systems, and services. All the main activities of interaction design are carried out in a practical design case.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, exercises and seminar 25 h, individual and group assignments 90 h; or self-study: an opening lecture 2 h, one larger assignment 110 h and individual tasks 21 h.
Target group:
MSc students

Prerequisites and co-requisites:
Basic knowledge on human-computer interaction with usability and user-centered design.

Recommended or required reading:

Assessment methods and criteria:
Accepted assignments.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Minna Pakanen

Working life cooperation:
Invited lectures, assignments.

812650S: Advanced Topics in Human-Centred Design, 5 cp

Validity: 01.08.2011 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Dorina Rajanen, Mikko Rajanen
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
The course is held in the spring semester, during period 3. Master's students can take this course either on the 1st or the 2nd year.

Learning outcomes:
After completing the course, students are familiar with some state-of-the-art research results related to current themes and contexts in human-centred design, they understand the strengths and limitations of various methods and frameworks used in human-centred design and they can acquire knowledge and critically read relevant research articles on human-centred design research topics.

Contents:
The content of the course will change with time. The initial set of current themes include: User experience as an object of analysis and design, Participatory design, end-user-design and living labs, Information ecologies and infrastructures, Design for all, Iterative and incremental design and development, The impact of human-centred design, Current development contexts such as: Open source software development, Game development, Development of ICT for children, Ubiquitous computing.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, assignments 107 h, seminars 6 h.

Target group:
MSc students

Prerequisites and co-requisites:
Course “812335A Interaction Design” or similar knowledge.

Recommended optional programme components:

Recommended or required reading:
Selected scientific articles.

Assessment methods and criteria:
Assignments

Grading:
Numerical scale 1-5 or fail

Person responsible:
Mikko Rajanen

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:

This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:

Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:

Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:

International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:

-

Recommended optional programme components:

-

Recommended or required reading:

Will be provided during the course.

Assessment methods and criteria:

Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:

Grading scale is 0-5.

Person responsible:

Anne Koskela

Working life cooperation:

-

Other information:

Sign-up in WebOodi.

900013Y: Beginners’ Finnish Course 1, 3 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
-

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

A452297: Advanced Module / Computer Engineering, Hardware, 48 cp

Validity: 01.08.2018 -

Form of study: Advanced Module

Type: Study module

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

No course descriptions.

Compulsory studies, 22 ECTS cr

521404A: Digital Techniques 2, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Jukka Lahti

Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
In Finnish. Exams can be arranged in English on demand.

Timing:
Autumn, period 2

Learning outcomes:
1. knows the common architectures of synchronous digital logic circuits, and the building blocks they consist of, and can design digital circuits that realize complex data and signal processing functions.
2. knows most common combinational and sequential logic based building blocks, and can use them to design and realize complex digital circuits.
3. knows digital logic design methods, such as use of hardware description languages, functional verification using simulation, realization of logic with a logic synthesis program, and functional and timing verification of gate-level models.

Contents:
1. Logical and physical properties of digital logic components. 2. Representation of digital designs. 3. Combination logic design. 4. Sequential logic design. 5. Digital arithmetics. 6. Semiconductor memories.
7. Register transfer level architecture design. 8. Register transfer level modeling and synthesis. 9. Timing design. 10. Digital interface design. 11. Design verification

Mode of delivery:
Classroom

Learning activities and teaching methods:
Lectures 24h/ exercises 30h (group work)/independent work 84h.

Target group:
Primarily electrical and computer science and engineering students. Also other student of University of Oulu can take the course.

Prerequisites and co-requisites:
Digital techniques 1

Recommended optional programme components:
No

Recommended or required reading:
Lecture textbook (in finnish) and literature announced during course.

Assessment methods and criteria:
Final exam and a design excercise, or weekly assignments consisting of theoretical and design exercises. Read more about assessment criteria at the University of Oulu webpage.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
1-5, The grade is the average of the exam and the design exercise.

Person responsible:
Jukka Lahti

Working life cooperation:
No

Other information:
-

521303A: Circuit Theory 2, 5 cp

Validity: 01.08.2015 -

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Rahkonen, Timo Erkki

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521306A Circuit Theory 2 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Autumn, period 2

Learning outcomes:
After the course the student can:
1. use Laplace transform for solving time and frequency response of electric circuits;
2. derive continuous-time transfer functions;
3. solve their poles and zeros and understand the meaning of those;
4. draw the pole-zero map and Bode plots of any given transfer function;
5. construct 2-port parameter models of a given circuit

Contents:
Use of Laplace transform in network analysis. Properties of network functions, poles and zeros, Boden magnitude and phase plots. 2-port parameter models.

Mode of delivery:
Classroom

Learning activities and teaching methods:
30h lectures, 22 h exercises, and simulation exercices.

Target group:
Finnish BSc students

Prerequisites and co-requisites:
Basics of circuit theory, differential equations.

Recommended optional programme components:
Continuation for Circuit theory 1. Needed in most analog electronics courses.

Recommended or required reading:

Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical 1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

521406S: Digital Techniques 3, 7 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jukka Lahti
Opintokohteen kielet (E): Finnish

ECTS Credits:
7 ECTS

Language of instruction:
In Finnish. Exams can be arranged in English on demand.
Timing:
Spring, periods 3-4
Learning outcomes:
1. knows the phases of the design process of hardware parts of digital system implemented in FPGA or ASIC technologies, and understands their purpose, and the problems and aims associated with different design tasks
2. is able to use the tools needed in industrial design projects.

Contents:

Mode of delivery:
Classroom

Learning activities and teaching methods:
Lectures 20h/ exercises 20h (group work)/ independent work 120h.

Target group:
Primarily electrical and computer science and engineering students. Also other student of University of Oulu can take the course.

Prerequisites and co-requisites:
Digital techniques 1 and Digital techniques 2

Recommended optional programme components:
-

Recommended or required reading:
Lecture textbook (in finnish) and literature announced during course.

Assessment methods and criteria:
Final exam and a design exercise, or weekly assignments consisting of theoretical and design exercises. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5, The grade is the average of the exam and the design exercise.

Person responsible:
Jukka Lahti

Working life cooperation:
-

Other information:
-

521340S: Communications Networks I, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mika Ylianttila
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Fall, period 2
Learning outcomes:
1. Upon completing the required coursework, the student is able to list and understand the functionalities of different layers of OSI and TCP/IP protocol models
2. The course gives the skills for the student to explain the mobile network evolution through previous and existing generations of mobile networks (1G, 2G, 3G, and 4G) towards 5G.
3. The student is able to describe the basic system architecture of GSM, GPRS, EDGE, UMTS and LTE, understands the significance of emerging technologies such as Network Function Virtualization (NVF), Software Defined Networking (SDN), Multi-Access Edge Computing (MEC), Cloud Radio Access Networks (CRAN), and core network functionalities such as Evolved Packet Core (EPC).
4. The student knows the basic properties of routing protocols in fixed, wireless and ad hoc networks, and can use graph theory to solve network routing problems.
5. Students can describe the main principles of network programmability, mobility control, and network security, and can apply and solve related engineering problems.
6. The student is able to simulate different types of networks in simulation environments.

Contents:
Communications architecture and protocols, mobility management, network security, network management and ad hoc, wireless local area and mobile networks. Introduction to cloud computing, edge computing, network function virtualization and software defined networking. The goal is to present the fundamentals of the new communication architectures, trends and technologies accepted by academia and industry. Technical implementation and application of the common data and local networks are also discussed.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 30 h and the compulsory design work with a simulation program (15 h).

Target group:
1st year M.Sc. and WCE students

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on examination.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Mika Ylianttila

Working life cooperation:
No

Other information:
Optional Courses, Choose f.g. from the following courses total 26 ECTS cr.

813621S: Research Methods, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki
Opintokohteen kielet (E): English
Leikkaavuudet (E):

521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:

5 ECTS credits / 133 hours of work

Language of instruction:

English

Timing:

The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:

Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:

Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:

Face-to-face teaching, lecture videos.

Learning activities and teaching methods:

Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:

MSc students

Prerequisites and co-requisites:

Completion of Bachelor's studies.

Recommended or required reading:

Lecture slides and specified literature.

Assessment methods and criteria:

Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521405A: Electronic System Design, 5 cp

- **Form of study:** Intermediate Studies
- **Type:** Course
- **Unit:** Electrical Engineering DP
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Kari Määttä
- **Opintokohteen kielet (E):** Finnish

ECTS Credits:
5

Language of instruction:
English/Finnish.

Timing:
Period 1

Learning outcomes:
1. is able to choose the optimum method of the choices presented in the course in the field of power supply, thermal design, grounding, and routing of the high speed signals.
2. is able to calculate problems, caused by electrical disturbances, crosstalk and non-idealities of electrical components.
3. can calculate reliability of an electrical device or system.
4. The main goal of the course is to introduce methods and techniques needed in designing larger electronic entities such as equipment and systems.

Contents:
Power supplies, thermal design, grounding, transmission of fast signals by using transmission lines, electrical disturbances, crosstalk, non-idealities of electrical components, reliability of electronics.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
The course includes 30 h of lectures and 20 h of exercises.

Target group:
Primarily in electrical engineering students. Other University of Oulu students can complete the course.

Prerequisites and co-requisites:
Both Principles of Electronics Design and Analogue Electronics I must have been accepted.

Recommended optional programme components:
The course is an independent entity and does not require other studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed by means of a final exam.
Read more about [assessment criteria](#) at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 0 - 5. In the numerical scale 0 stands for a fail.

Person responsible:
Kari Määttä

Working life cooperation:
No.

Other information:

521323S: Wireless Communications I, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jari Iinatti

Opintokohteen kielet (E): English
Leikkaavuudet (E):
 521395S-01 Wireless Communications I, Exam 0.0 cp
 521395S Wireless Communications I 5.0 cp
 521320S Wireless Communications 2 8.0 cp
 521320S-01 Intermediate exam or final exam, Wireless Communications 1 0.0 cp
 521320S-02 Exercisework, Wireless Communications 2 0.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Fall, period 2

Learning outcomes:
1. can analyze the performance of multilevel digital modulation methods in AWGN channel
2. can explain the effect of fading channel on the performance of the modulation method and can analyze the performance
3. recognizes the suitable diversity methods for fading channel and related combining methods
4. can define the basic carrier and symbol synchronization methods and is able to make the performance comparison of them
5. can explain design methods signals for band-limited channels
6. can classify different channel equalizers, and perform the performance analysis

Contents:
Digital modulation methods and their performance in AWGN-channel, radio channel models, performance of digital modulation in fading channel, diversity techniques, channel equalizers in wireless communication channel, carrier and symbol synchronization.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures and exercise (total 44 hours) and the compulsory design work with a simulation program (20 h)
Target group:
1st year WCE students and M.Sc. students (i.e., 4th year in EE degree programme)

Prerequisites and co-requisites:
521330A Telecommunication Engineering 521316S Broadband Communications Systems

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course is passed with minor exams (only during lecture period) or with final exam; and the accepted design work report. In the final grade of the course, the weight for the examination(s) is 0.6 and that for the design work report 0.4.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Jari Iinatti

Working life cooperation:
No

Other information:
-

521443S: Electronics Design II, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Häkkinen
Opintokohteen kielet (E): Finnish

No course descriptions.

521088S: Optoelectronics, 5 cp

Validity: 01.01.2014 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Kostamovaara
Opintokohteen kielet (E): Finnish

ECTS Credits: 5

Language of instruction:
Finnish

Timing:
Autumn, period 1

Learning outcomes:
1. is able to explain the principles of operation of optical fibres and waveguides
2. is able to explain the principles of operation of semiconductor light sources and photo detectors, and knows the factors affecting their performance
3. is able to outline the circuit-level structures for optical transmitter circuits and photo detector preamplifiers
4. is able to compare their performance in terms of the main performance parameters

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h and exercises 20 h, may include a seminar.

Target group:
This course is targeted mainly for the students of electrical engineering degree program, but available for other students as well.

Prerequisites and co-requisites:
Principles of semiconductor devices.

Recommended optional programme components:
This course is independent, no other components are recommended simultaneously.

Recommended or required reading:

Assessment methods and criteria:
Final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara

Working life cooperation:
Does not apply.

Other information:
-

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work
Language of instruction:
English.
Timing:
Autum and spring, periods 1-4.
Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.
Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.
Mode of delivery:
Self-study.
Learning activities and teaching methods:
Independent project work 213 h.
Target group:
Computer Science and Engineering students, other students of the University of Oulu.
Prerequisites and co-requisites:
None.
Recommended optional programme components:
None.
Recommended or required reading:
Literature is selected for each research work separately.
Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5.
Person responsible:
Professor Timo Ojala.
Working life cooperation:
None

521348S: Statistical Signal Processing, 5 cp

Validity: 01.08.2016 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Janne Lehtomäki, Juntti, Markku Johannes
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E): 521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will
1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course:
031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments.
(programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.

Person responsible:
Markku Juntti
Janne Lehtomäki

Working life cooperation:
-

Other information:
-

521385S: Mobile Telecommunication Systems, 5 cp

Validity: 01.08.2011 -

Form of study: Advanced Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Katz, Marcos Daniel

Opintokohteen kielet (E): English

ECTS Credits:
5

Language of instruction:
English

Timing:
Spring, period 3

Learning outcomes:
1. Upon completing the required coursework, the student will be able to determine and fit the values of the main parameters for modern mobile telecommunication systems network planning. The course gives skills to describe mobility management, adaptive resource control and dynamic resource allocation in mobile networks.

The goal of this course is to provide the basic understanding of dimensioning and performance of mobile communications systems. In addition, the current mobile communications system standards as well as the ones being developed are also studied, preparing students to understand the structure, functionality and dimensioning of these systems.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h, exercises 16 h and the compulsory laboratory work (16 h)

Target group:
2nd year M.Sc. and WCE students
Prerequisites and co-requisites:
Telecommunication Engineering, Broadband Communications Systems and Wireless Communications I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material will be defined at the beginning of the course.

Assessment methods and criteria:
The course is passed with a final examination and the accepted laboratory work report. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Marcos Katz

Working life cooperation:
-

Other information:
Objective: The goal of this course is to provide the basic understanding of dimensioning and performance of mobile communications systems. In addition, the current mobile communications system standards as well as the ones being developed are also studied, preparing students to understand the structure, functionality and dimensioning of these systems.

521304A: Filters, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

521331A Filters 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish. Exams can be arranged in English on demand.

Timing:
Spring, period 3

Learning outcomes:
After the course the student can:
1. draw a pole-zero map for a given transfer function;
2. perform impedance and frequency scaling for component values;
3. choose an appropriate prototype filter and filter degree;
4. synthesize passive RLC filters;
5. synthesize active opamp based filters;
6. can compare various filter technologies;
7. understands the basics of scaling the dynamic range of active filters
Contents:
Filter types and prototypes, component scaling. Synthesis of active and passive filters. Sensitivity analysis and scaling of the dynamic range.

Mode of delivery:
Lectures, exercise and design exercise

Learning activities and teaching methods:
30 h lectures, 16 h exercises. A design exercise.

Target group:
Finnish electrical engineering students

Prerequisites and co-requisites:
Basics of circuit theory, Bode plots and analog design.

Recommended optional programme components:
Course Digital filters expands the topic into digital domain.

Recommended or required reading:

Assessment methods and criteria:
Circuit is examined by a final exam. Also the obligatory design exercise must be passed. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

Other information:
-

521328A: Simulations and Tools for Telecommunications, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Saarnisaari, Harri Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

521369A Simulations and Tools for Telecommunications 3.0 cp
521369A-01 Simulations and Tools for Telecommunications, exam 0.0 cp
521369A-02 Simulations and Tools for Telecomm. exercise 0.0 cp

ECTS Credits:
5
Language of instruction:
Finnish
Timing:
Learning outcomes:
1. A student recognizes problems and limitations related to simulations.
2. She/he can select a suitable simulation method and knows how to validate the model.
3. Student knows how to generate signals, random numbers and noise.
4. She/he knows how to model fading channels.
5. A student knows how to make Monte-Carlo simulations at the baseband level and can estimate confidence level of simulation results.
6. She/he can explain principles of network level simulations.
7. A student knows basics of one or two fundamental simulation programs

Contents:
Simulation methods, modelling communication systems with simulations, confidence limits of simulation, noise generation and modelling of fading channel. A simple baseband simulation example. Basics of MATLAB and OPNET simulation software (these could vary depending on needs/availability).

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 24 h (including program introductions), and the compulsory assignment with a simulation program (40 h).

Target group:
3rd year bachelor's degree students

Prerequisites and co-requisites:
Telecommunication Engineering

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Harri Saarnisaari

Working life cooperation:
No

Other information:
900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
- ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar
and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
-

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

A452298: Advanced Module / Computer Engineering, Software, 48 cp

Validity: 01.08.2018 -

Form of study: Advanced Module

Type: Study module

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

No course descriptions.

Compulsory studies, 20 ECTS cr

5213485: Statistical Signal Processing, 5 cp
Validity: 01.08.2016 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Janne Lehtomäki, Juntti, Markku Johannes
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will
1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course:
031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments (programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.

Person responsible:
Markku Juntti
Janne Lehtomäki

Working life cooperation:
-

Other information:
-

521340S: Communications Networks I, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mika Ylianttila

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Fall, period 2

Learning outcomes:
1. Upon completing the required coursework, the student is able to list and understand the functionalities of different layers of OSI and TCP/IP protocol models
2. The course gives the skills for the student to explain the mobile network evolution through previous and existing generations of mobile networks (1G, 2G, 3G, and 4G) towards 5G.
3. The student is able to describe the basic system architecture of GSM, GPRS, EDGE, UMTS and LTE, understands the significance of emerging technologies such as Network Function Virtualization (NFV), Software Defined Networking (SDN), Multi-Access Edge Computing (MEC), Cloud Radio Access Networks (CRAN), and core network functionalities such as Evolved Packet Core (EPC).
4. The student knows the basic properties of routing protocols in fixed, wireless and ad hoc networks, and can use graph theory to solve network routing problems
5. Students can describe the main principles of network programmability, mobility control, and network security, and can apply and solve related engineering problems.
6. The student is able to simulate different types of networks in simulation environments.

Contents:
Communications architecture and protocols, mobility management, network security, network management and ad hoc, wireless local area and mobile networks. Introduction to cloud computing, edge computing, network function virtualization and software defined networking. The goal is to present the fundamentals of the new communication architectures, trends and technologies accepted by academia and industry. Technical implementation and application of the common data and local networks are also discussed.
Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 30 h and the compulsory design work with a simulation program (15 h).

Target group:
1st year M.Sc. and WCE students

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on examination.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Mika Ylianttila

Working life cooperation:
No

Other information:
-

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Xiang Su
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

<table>
<thead>
<tr>
<th>Course ID</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>521266S-01</td>
<td>Distributed Systems, Exam</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521266S-02</td>
<td>Distributed Systems, Exercise Work</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521266S</td>
<td>Distributed Systems</td>
<td>6.0 cp</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, period 3.
Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory project work.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

521321S: Elements of Information Theory and Coding, 5 cp

Validity: 14.11.2005 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Timo Kokkonen, Rajatheva Rajatheva
Opintokohteen kielet (E): English
Leikkaavuudet (E):

521323S Wireless Communications 2 5.0 cp

ECTS Credits:
5
Language of instruction: English.

Timing: Fall, period 2

Learning outcomes:
1. can use basic methodology of information theory to calculate the capacity bounds of communication and data compression systems.
2. can estimate the feasibility of given design tasks before the execution of the detailed design.
3. understands the operating principles of block codes, cyclic codes and convolutional codes.
4. can form an encoder and decoder for common binary block codes, and is capable of using tables of the codes and shift register when solving problems.
5. can represent the operating idea of a convolutional encoder as a state machine.
6. is able to apply the Viterbi algorithm to decoding of convolutional codes.
7. is capable of specifying principles of Turbo, LDPC and Polar coding and coded modulation.
8. can evaluate error probability of codes and knows practical solutions of codes by name.

Contents:
Entropy, mutual information, data compression, basics of source coding, discrete channels and their capacity, the Gaussian channel and its capacity, block codes, cyclic codes, burst error correcting codes, error correcting capability of block codes, convolutional codes, Viterbi algorithm, concatenated codes, and introduction to Turbo, LDPC and Polar coding and to coded modulation.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-to-face teaching (lectures and exercises) 64 h and group working.

Target group:
1st year WCE-RAN students and M.Sc. students (i.e., 4th year in EE degree programme)

Prerequisites and co-requisites:
Signal Analysis, Telecommunication Engineering

Recommended optional programme components:
Wireless Communications I and the course support each other. Their simultaneous studying is recommended.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with continuous evaluation (only during lecture period) or with final exam and possible additional course tasks defined in the beginning of the course.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Read more about assessment criteria at the University of Oulu webpage.

Person responsible:
Timo Kokkonen (Coding) / Nandana Rajatheva (Information theory)
Optional Courses, Choose f.g. from the following courses total 28 ECTS cr

521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English
Timing:
Period 3.
Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html

Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

521337A: Digital Filters, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
Finnish, English study material available

Timing:
Spring, period 3.

Learning outcomes:
1. Student is able to specify and design respective frequency selective FIR and IIR filters using the most common methods.

2. Student is able to solve for the impulse and frequency responses of FIR and IIR filters given as difference equations, transfer functions, or realization diagrams, and can present analyses of the aliasing and imaging effects based on the responses of the f

3. Student is able to explain the impacts of finite word length in filter design.

4. Student has the necessary basic skills to use signal processing tools available in Matlab environment and to judge the results.

Contents:

Mode of delivery:
Face-to-face teaching (Lectures), independent work, group work

Learning activities and teaching methods:
Lectures and exercises 50 h. The design exercises familiarize the students with the methods of digital signal processing using the Matlab software package. The rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
031077P Complex Analysis, 031080A Signal Analysis

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course can be passed either with week exams or a final exam. In addition, the exercises need to be returned and accepted.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silven

Working life cooperation:
None.

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay521467A Digital Image Processing (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.
Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.

Recommended or required reading:

Assessment methods and criteria:
The course is completed by passing the exam and homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work

Language of instruction:
English.
Timing:
Autum and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.

Mode of delivery:
Self-study.

Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English

Timing:
Autumn, periods 1-2.

Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face

Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.

Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course uses numerical scale 1-5.

Person responsible:
Professor Timo Ojala

Working life cooperation:
None.

521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ekaterina Gilman, Susanna Pirttikangas
Opintokohteen kielet (E): English
ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.

Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundamentals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work

Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.

Recommended optional programme components:

Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the refernce list for recommended reading. Instructions to necessary installations will be given.

Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ekaterina Gilman

Working life cooperation:
The course includes also invited lectures from industry.

813621S: Research Methods, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.

Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521145A: Human-Computer Interaction, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Autumn, period 2

Learning outcomes:
1. Knowledge of the Human Computer Interaction (HCI) fundamentals
2. Knowledge of evaluation techniques
3. Knowledge of prototyping techniques
4. Knowledge of how HCI can be incorporated in the software development process

Contents:
Human and computer fundamentals, design and prototyping, evaluation techniques, data collection and analysis.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (12 h), exercises (16 h), and practical work (105 h). The course is passed with an approved practical work (several assignments). The implementation is fully English.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. The course involves some basic programming.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment is project-based. Students have to complete several individual exercises throughout the semester: 1: Using questionnaires; 2: Fitts law; 3: Advanced, team-based design exercise and essay. Passing criteria: all exercises must be completed, each receiving more than 50% of the available points. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Simo Hosio (Dr. Tech.)

Working life cooperation:
If relevant, guest lectures may be organized (optional).
521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521260S Programmable Web Project (OPEN UNI) 5.0 cp

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
 • understand what a Web API is and learn different Web API architectures.
 • understand the concept of hypermedia and how it is used to build Web APIs.
 • are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
 • are able to write unit and functional tests to inspect their APIs.
 • are able to document their Web APIs using adequate software tools.
 • are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

031025A: Introduction to Optimization, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Applied Mathematics and Computational Mathematics

Grading: 1 - 5, pass, fail

Teachers: Ruotsalainen Keijo

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn, during period 1.

Learning outcomes:
After completing the course the student is able to solve optimization convex optimization problems with the basic optimization algorithms. The student is also able to form the necessary and sufficient conditions for the optimality.

Contents:
Linear optimization, Simplex-algorithm, nonlinear optimization, KKT-conditions, duality, conjugate gradient method, penalty and barrier function methods.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 14 h / Self-study 93 h.

Target group:
Students in Wireless Communication Engineering

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses Calculus I and II, Matrix algebra
Recommended optional programme components:
-
Recommended or required reading:
P. Ciarlet; Introduction to numerical linear algebra and optimization, M. Bazaraa, H. Sherali, C.M. Shetty; Nonlinear programming

Assessment methods and criteria:
The course can be completed by a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Keijo Ruotsalainen

Working life cooperation:
-

Other information:
-

521466S: Machine Vision, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Spring, period 3.

Learning outcomes:
Upon completion of the course the student
1. understands the fundamentals of image acquisition, representation and modeling
2. can utilize elementary methods of machine vision for image recognition problems
3. can use 2D transformations in model fitting and image registration
4. can explain the basics of 3D imaging and reconstruction

Contents:
1. Introduction, 2. Imaging and image representation, 3. Color and shading, 4. Image features, 5. Recognition, 6. Texture, 7. Motion from 2D image sequences, 8. 2D models and transformations, 9. Perceiving 3D from 2D images, 10. 3D transformations and reconstruction

Mode of delivery:
Face-to-face teaching, homework assignments.

Learning activities and teaching methods:
Lectures (20 h), exercises (16 h) and Matlab homework assignments (30 h), self-studying (67 h).
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521467A Digital Image Processing or an equivalent course

Recommended optional programme components:
521289S Machine Learning. This course provides complementary knowledge on machine learning methods needed in machine vision.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with final exam and accepted homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5. Zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
No.

521289S: Machine Learning, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Tapio Seppänen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
- 521497S-01 Pattern Recognition and Neural Networks, Exam 0.0 cp
- 521497S-02 Pattern Recognition and Neural Networks; Exercise Work 0.0 cp
- 521497S Pattern Recognition and Neural Networks 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the spring semester, during period III. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. can design simple optimal classifiers from the basic theory and assess their performance.
2. can explain the Bayesian decision theory and apply it to derive minimum error classifiers and
minimum cost classifiers.

3. can apply the basics of gradient search method to design a linear discriminant function.

4. can apply regression techniques to practical machine learning problems.

Contents:

Mode of delivery:
Face-to-face teaching, guided laboratory work and independent assignment.

Learning activities and teaching methods:
Lectures 2h, Laboratory work 16h, Exercise 16h and Self-study the rest (Independent task assignment, written examination).

Target group:
Students who are interested in data analysis technology. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. The independent task assignment is graded. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. The final grade is established by weighing the written exam by $2/3$ and the task assignment by $1/3$.

Person responsible:
Tapio Seppänen

Working life cooperation:
No

521140S: Computer Graphics, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao
Opintokohteen kielet (E): English
Leikkaavuudet (E):

521493S Computer Graphics 7.0 cp

ECTS Credits:
5 ECTS credits
Language of instruction:
In English

Timing:
Spring, period 4.

Learning outcomes:
1. is able to specify and design 2D graphics algorithms including: line and circle drawing, polygon filling and clipping
2. is able to specify and design 3D computer graphics algorithms including transformations, viewing, hidden surface removal, shading, texture mapping and hierarchical modeling
3. is able to explain the relationship between the 2D and 3D versions of such algorithms
4. possesses the necessary basic skills to use these basic algorithms available in OpenGL

Contents:
The history and evolution of computer graphics; 2D graphics including: line and circle drawing, polygon filling, clipping, and 3D computer graphics algorithms including viewing transformations, shading, texture mapping and hierarchical modeling; graphics API (OpenGL) for implementation.

Mode of delivery:
Face to face teaching.

Learning activities and teaching methods:
Lectures 28 h / Self-study and programming assignments 105h

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills using C++; basic data structures; simple linear algebra.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
4) Lecture notes (in English)
5) Materials in the internet (e.g. OpenGL redbook) OpenGL Programming Guide or 'The Red Book':

Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory returned programming assignments.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5, zero stands for fail.

Person responsible:
Guoying Zhao, Xiaopeng Hong, Yingyue Xu

Working life cooperation:
No

521156S: Towards Data Mining, 5 cp
Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Satu Tamminen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish or English
Timing:
Autumn, period I.
Learning outcomes:
Student can recognize the type of the data before further analysis and the required preprocessing. The concrete learning outcomes are:
1. Student can design and implement the data gathering
2. Student can combine data from different sources
3. Student can normalize and transform data, and handle missing or incorrect data.
4. Student can ensure the generalizability of the results.

Contents:
Course provides good ability to start Master's Thesis or graduate studies. Topics at the course include data mining process in general level, data gathering and different data types, quality and reliability of the data, data preparation including the processing of missing values, outliers, and privacy issues, combination of signals from several sources, utilization of data bases in data mining process, and normalization and transformation of data and interdependence of the observations and their distributions. Additionally, topics concerning the generality of the results are covered, as well as, the principles of data division, for example, train-test-validate, cross-validation and leave-one-out methods.

Mode of delivery:
Lectures, independent work, group work

Learning activities and teaching methods:
16h lectures, 16h exercises, independent studying.

Target group:
The course is suitable for Master level students in Computer science and engineering study programmes, for minor subject studies or for doctoral students.

Prerequisites and co-requisites:
031021P Probability and Mathematical Statistics or similar

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out and exercise material will be provided. The course book will be announced in the beginning of the course. The material is mostly in English.

Assessment methods and criteria:
Participation in mandatory classes and final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.
Person responsible:
Tamminen Satu

Working life cooperation:
-

Other information:
-

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 50 hours of work

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to biosignal analysis
3. implement small-scale software for signal processing algorithms

Contents:

Mode of delivery:
Face-to-face teaching and guided laboratory work.

Learning activities and teaching methods:
Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.

Target group:
Students interested in biomedical engineering, at their master's level studies.
Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam. Read more about [assessment criteria](https://www.oulu.fi) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Tapio Seppänen

Working life cooperation:
No.

900017Y: Survival Finnish, 2 cp

- **Validity:** 01.08.1995 -
- **Form of study:** Language and Communication Studies
- **Type:** Course
- **Unit:** Languages and Communication
- **Grading:** 1 - 5, pass, fail
- **Opintokohteen kielet (E):** Finnish
- **Leikkaavuudet (E):**

 - ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.
The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
-

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.
521027S: Advanced practical training, 5 cp

Validity: 01.01.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Riku Hietaniemi
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish or English
Timing:
This course can be taken in periods I-IV. The recommended time to take this course is during summer of the fourth year.
Learning outcomes:
Student can apply knowledge and skills learned during university studies to complete work assignments in his/her own field.
Student can evaluate and develop himself/herself as a learner and worker.
Student can plan and evaluate his/her time management and working methods.
Student is capable of working in systematic and goal-oriented manner in group as well as independently.
Student can name important factors that direct the actions of work community and the employer.
Student can name duties where he/she can work after graduating from university.
Contents:
Planning and preparation, carrying out work assignments in the students field of studies, documentation of own accomplishments, writing report and reflection.
Mode of delivery:
Independent work.
Learning activities and teaching methods:
Student independently finds a place to work to complete the course. To pass the course minimum of two months of full time work is required. Work can also be carried out in multiple periods. The course works includes a) Making a practice plan for the working period 4 h, b) Documentation of progress during working 20 h, c) Learning while working 108 h, d) Final raport and reflection 8 h.
Target group:
Master level students.
Prerequisites and co-requisites:
-
Recommended optional programme components:
The course does not require additional studies carried out at the same time. While carrying out the course working assignments are compared to already completed studies.
Recommended or required reading:
No required material
Assessment methods and criteria:
Course is carried out by working minimum of two months in a work accepted by study program responsible person. Before starting the actual work the student needs to make a plan for the working period and return it to the responsible person. A weekly report is required from every working week. These reports have to turned in before the working period ends. After the working period is over the student writes a final report and returns it to the responsible person. Signed testimonial from the employer is also required with the final report.
Grading:
The course is graded as "pass/fail"
Person responsible:
Riku Hietaniemi
Working life cooperation:
The course is carried out as practical training.
Other information:
This course is alternative to 521013A Advanced Practical Training, 3 ECTS.
521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
0; The maturity test is integrated in the MSc Thesis credits (30 ECTS).
Language of instruction:
Finnish/Swedish/other
Timing:
Periods 1-4
Learning outcomes:
After the maturity test, the student has demonstrated that his/her language skills meet the requirements of the work life.
Contents:
The aim of the maturity test is to confirm the student's familiarity of the thesis area as well as his/her command of the domestic language of his/her school education.
Mode of delivery:
The maturity test is written in a controlled event, on a topic provided by the thesis supervisor.
Learning activities and teaching methods:
Written essay, approximately 3 pages hand written text or 380 words / 3040 characters.
Target group:
-
Prerequisites and co-requisites:
The maturity test can be written when the thesis is complete or being finished.
Recommended optional programme components:
-
Recommended or required reading:
MSc Thesis.
Assessment methods and criteria:
The maturity test is evaluated and approved by the thesis supervisor.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
Pass/fail.
Person responsible:
Thesis supervisor.
Working life cooperation:
-

521993S: Master's Thesis in Computer Engineering, 30 cp

Form of study: Advanced Studies
Type: Diploma thesis
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

ECTS Credits:
30
Language of instruction:
Learning outcomes:
The student is able to set goals for a given task. He can structure the topic coherently, with emphasis on the key issues. Depending on the nature of the work, the student is able to present the existing results or technological implementations so that the methods used in the work are justified in relation to the state of the art in the field of engineering or science in question. He is able to apply the knowledge and state of the art methods of the subject area in his work. He can present clearly his plan and solution implemented, justify the choices made, and assess the functionality of the solution with relevant testing and evaluation methods. In addition, he is able to compare the results against goals and to consider their general significance to modern engineering or science, and assess the broader significance of the results to the company, organization or project. The student is able to produce smooth, clear and finalized text based on technical and scientific writing practices of the field.

Contents:
The thesis work is carried out independently. The student defines the content of the thesis under the guidance of the supervisor. The degree program committee approves the thesis topic and content. The thesis is recorded in accordance with the orientation using the following codes:
- 521980S Master's Thesis in Artificial Intelligence, 30 ECTS cr
- 521981S Master's Thesis in Information Processing Engineering, 30 ECTS cr
- 522985S Master's Thesis in Applied Computing, 30 ECTS cr
- 521984S Master's Thesis in Embedded Systems, 30 ECTS cr
- 521979S Master's Thesis in Computer Engineering, 30 ECTS cr
- 522988S Master's Thesis / Master's Degree Programme in Computer Science and Engineering (CSVP ja Ubi), 30 ECTS cr
- 522987S Master's Thesis in Biomedical Engineering, 30 ECTS cr

Mode of delivery:
Face-to-face meetings with the supervisor and independent studying.

Learning activities and teaching methods:
Independent work under the guidance of the supervisor.

Target group:
Second year MSc students.

Prerequisites and co-requisites:
Compulsory advanced studies preceding the thesis (90 ECTS cr).

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
The thesis is assessed by two reviewers (supervisor and second reviewer) and approved by the degree program committee. Assessment Criteria at the University of Oulu can be found [here](https://www.oulu.fi/cse/studying/masters-thesis).

Grading:
1-5 (1=sufficient, 2=satisfactory, 3=good, 4=very good, 5=excellent)

Person responsible:
Supervising professor or researcher

Working life cooperation:
Yes.

Other information:
ECTS Credits: 5 ECTS credits
Language of instruction: Finnish or English
Timing: This course can be taken in periods I-IV. The recommended time to take this course is during summer of the fourth year.
Learning outcomes: Student can apply knowledge and skills learned during university studies to complete work assignments in his/her own field. Student can evaluate and develop himself/herself as a learner and worker. Student can plan and evaluate his/her time management and working methods. Student is capable of working in systematic and goal-oriented manner in group as well as independently. Student can name important factors that direct the actions of work community and the employer. Student can name duties where he/she can work after graduating from university.
Contents: Planning and preparation, carrying out work assignments in the students field of studies, documentation of own accomplishments, writing report and reflection.
Mode of delivery: Independent work.
Learning activities and teaching methods: Student independently finds a place to work to complete the course. To pass the course minimum of two months of full time work is required. Work can also be carried out in multiple periods. The course works includes a) Making a practice plan for the working period 4 h, b) Documentation of progress during working 20 h, c) Learning while working 108 h, d) Final raport and reflection 8 h.
Target group: Master level students.
Prerequisites and co-requisites: -
Recommended optional programme components: The course does not require additional studies carried out at the same time. While carrying out the course working assignments are compared to already completed studies.
Recommended or required reading: No required material
Assessment methods and criteria: Course is carried out by working minimum of two months in a work accepted by study program responsible person. Before starting the actual work the student needs to make a plan for the working period and return it to the responsible person. A weekly report is required from every working week. These reports have to turned in before the working period ends. After the working period is over the student writes a final report and returns it to the responsible person. Signed testimonial from the employer is also required with the final report.
Grading: The course is graded as "pass/fail"
Person responsible: Riku Hietaniemi
Working life cooperation: The course is carried out as practical training.
Other information: This course is alternative to 521013A Advanced Practical Training, 3 ECTS.
Grading: 1 - 5, pass, fail
Teachers: Miika Nieminen, Heimonen, Kyösti Ensio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English
Timing:
Master studies, Spring 2019, 4th period

Learning outcomes:
The student is able to define human anatomy and describe the physiological functions, and can explain how these
can be investigated using different imaging methods and measurement systems

Contents:
The course acquaints the student to human physiology and anatomy. Areas covered include
Cells and tissues,
Skin, blood, blood circulation and the fluids of the body
Musculoskeletal organs
Defense reactions of the body
Respiration
Digestion
Urine secretion
Metabolic regulation, heat regulation
Reproduction
Sensory functions
Nervous system

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28h, demonstrations 6h. Independent studying 101h. Final examination

Target group:
Biomedical engineering and physics students

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. Imaging
methods are more closely studies in the course Diagnostic Imaging.

Recommended or required reading:
The students will be informed about the supplementary reading in the beginning of the course.

Assessment methods and criteria:
Taking part in the lectures and demonstrations. Final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1- 5. In the numerical scale zero stands for a fail. Course grade is
based on score of the final exam.

Person responsible:
Professor Miika Nieminen

Working life cooperation:
Course demonstrations will be held in hospital environment and are related to diagnostics.

Other information:
Maximum number of participants is 40 students.

041201A: Basics in eHealth, 5 cp

Validity: 01.08.2011 -
Form of study: Intermediate Studies
Type: Course
Unit: Medicine
Grading: 1 - 5, pass, fail
Teachers: Jarmo Reponen
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay041201A Basics in eHealth (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credit points / 135 hours of work
Language of instruction:
English
Timing:
- The main course is held in the spring semester, 3rd period, for (master) degree students and Biomedical Engineering exchange students
- The special edition course is held for exchange students of the Faculty of Medicine (medicine, health sciences) in the autumn semester, 2nd period. Other students can participate in this course depending on availability of free places (limited number of places).

Learning outcomes:
Upon completion of the course:
The student can define central information and communication technology (ICT) terms and solutions in healthcare, and can list respective applications in healthcare services and training.
The student can evaluate the societal and economic significance of information and communication technology in healthcare
The student can understand the position of e-health and telemedicine solutions as a part of the national health care information system.
The student receives an initial view of future health ICT trends from clinical perspective and possibilities to contribute to these with his/her professional background

Contents:
- terms and concepts
- societal dimensions
- delivery of health services
- electronic patient records
- data transfer within the health care system
- data transfer between the health care professionals and the patients
- citizens providing their own health data, mHealth-solutions
- national healthcare information exchange in Finland
- remote consultations, examples like teleradiology, telepsychiatry, telerehabilitation
- economical and functional assessment
- remote education in health care
- future visions of health care information systems
- changing current topics in connected health like: AI, knowledge based medicine, cybersecurity etc according to availability

Mode of delivery:
Web-based teaching

Learning activities and teaching methods:
Interactivity takes place in virtual learning environment Optima. The course consists of videotaped lectures, power point presentations and links to other material available in the web. Performance of duties includes an essay, exam, participating in moderated discussions on the grounds of the lectures.
Web lectures 15h / Web exam 40h / Written essay 40h* / Self-study and participation in web discussion 40h
(*Exchange student can relate their essay to the situation in their home countries)

Target group:
MSc and 3rd year BSc students of Biomedical Engineering and Medical Technology (medical technology, biomedical engineering, biophysics, physics, other degree programs), students of Medicine and Health Sciences and Information technology and everyone who is interested. Please, note the recommended separate course timings for different groups.

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is independent and does not require additional studies carried out at the same time.

Recommended or required reading:
All recommended or required reading is offered in Optima virtual learning environment or in linked web pages.

Assessment methods and criteria:
Web tasks, contribution to moderated discussion, an essay and course exams and optional final exam. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1 – 5. In the numerical scale one stands for a fail. Minimum accepted grade in this course is 2.

Person responsible:
Professor Jarmo Reponen
Course teacher Nina Keränen, MD, MSc

Other information:
In the future, the course will be developed and offered as a separate module for inclusion in optional studies in medicine.

521284S: Biomedical Engineering Project, 5 cp

Validity: 01.01.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Tapio Seppänen

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits

Language of instruction:
English.

Timing:
As part of the master level studies, in any period suitable to the student.

Learning outcomes:
1. has develop skills for being initiative, creativity, application of theoretical knowledge, programming and cooperation.

Contents:
A small-scale research work in an active research group. Topics will be selected from the needs of present research activities in the site of work and the interests of student. Main emphasis is on the development and application of methods and algorithms for biomedical data processing. Often the work includes programming with Matlab, C or Java languages.

Mode of delivery:
Self-study under supervision.

Learning activities and teaching methods:
First the research group is studied to get understanding of what are its goals. Detailed task description is written with the advisor. Typically, the work includes study of theoretical background information, programming, testing and simulations, and documentation. Task assignments can be applied at any time all year round.

Target group:
Master-level students that are interested in biomedical engineering. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Courses such as Biosignal processing I and II, Biomedical image processing and Machine learning are recommended. Programming skills, especially the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Literature and scientific articles depending on the task assignment.

Assessment methods and criteria:
Course assessment is based on the technical report. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Tapio Seppänänen

Working life cooperation:
No

080928S: Biomedical Engineering Research Methods and Seminar, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Health Sciences

Grading: 1 - 5, pass, fail

Teachers: Jämsä, Timo Jaakko

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
Master studies, Autumn term, 1st period

Learning outcomes:
The student familiarizes with the principles of scientific work and research ethics.
The student can identify the essential features of scientific publications.
The student can present the central content of a scientific article to others.
The student can present critical questions related to a scientific presentation, and give and receive feedback on the presentations.

Contents:
Principles of scientific work. Ethical principles. Lectures, seminars and scientific literature. Publication forums in the field and characteristics of scientific articles. Popularization of science.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Introduction lectures/group work, presentations and discussion on the basis of the latest scientific publications. Each student will give two presentations and act as an opponent for two (peer-assessment). Lectures 8h, group work and seminars 26h, home exercise, self-study 101h.

Target group:
Biomedical Engineering MSc students

Recommended optional programme components:
Prepares the student for thesis work.

Recommended or required reading:
Material given during lectures, selected scientific articles.

Assessment methods and criteria:
Attending seminars, making presentations and acting as an opponent. The assessment criteria are based on the learning outcomes of the course. The more detailed assessment criteria is found in university’s learning platform. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Grading is made based on presentations.

Person responsible:
Professor Timo Jämsä
Working life cooperation:
The course prepares for working life.
Other information:
Also for doctoral studies

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 50 hours of work
Language of instruction:
English. Examination can be taken in English or Finnish.
Timing:
The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.
Learning outcomes:
After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to biosignal analysis
3. implement small-scale software for signal processing algorithms
Contents:
Mode of delivery:
Face-to-face teaching and guided laboratory work.
Learning activities and teaching methods:
Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.
Target group:
Students interested in biomedical engineering, at their master's level studies.
Students of the University of Oulu.
Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.
Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Tapio Seppänen
Working life cooperation:
No.
521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
0; The maturity test is integrated in the MSc Thesis credits (30 ECTS).
Language of instruction:
Finnish/Swedish/other
Timing:
Periods 1-4
Learning outcomes:
After the maturity test, the student has demonstrated that his/her language skills meet the requirements of the work life.
Contents:
The aim of the maturity test is to confirm the student's familiarity of the thesis area as well as his/her command of the domestic language of his/her school education.
Mode of delivery:
The maturity test is written in a controlled event, on a topic provided by the thesis supervisor.
Learning activities and teaching methods:
Written essay, approximately 3 pages hand written text or 380 words / 3040 characters.
Target group:
-
Prerequisites and co-requisites:
The maturity test can be written when the thesis is complete or being finished.
Recommended optional programme components:
-
Recommended or required reading:
MSc Thesis.
Assessment methods and criteria:
The maturity test is evaluated and approved by the thesis supervisor.
Read more about [assessment criteria](https://example.com) at the University of Oulu webpage.
Grading:
Pass/fail.
Person responsible:
Thesis supervisor.
Working life cooperation:
-

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay521467A Digital Image Processing (OPEN UNI) 5.0 cp
ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.

Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.

Recommended or required reading:

Assessment methods and criteria:
The course is completed by passing the exam and homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

521242A: Introduction to Biomedical Engineering, 5 cp

Validity: 01.08.2017 -

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Teemu Myllylä

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Period 1
Learning outcomes:
After completing the course, the student has a basic knowledge of the biomedical engineering discipline and the applications of engineering science to biomedical problems.

Contents:
Biomedical engineering is a multidisciplinary field of study that ranges from theory to applications at the interface between engineering, medicine and biology. This course will introduce the subdisciplines within biomedical engineering, including such as systems physiology, bioinstrumentation, bioimaging, biophotonics and biomedical signal analysis. General issues of the subdisciplines will be presented together with selected examples and clinical applications. A number of lectures will be given by professionals working in health tech companies, University of Oulu and Oulu University Hospital, presenting different fields of the biomedical engineering. In addition, course offerings of biomedical engineering at the University of Oulu are introduced.

Mode of delivery:
Face-to-face teaching. Under some circumstances distance learning using online material is possible (please, ask the teacher).

Learning activities and teaching methods:
The course includes online material, lectures and a group project. Lectures 28h and laboratory exercises 4 h and self-study 100h

Target group:

- Prerequisites and co-requisites:

- Recommended optional programme components:

- Recommended or required reading:

- Assessment methods and criteria:
Participation in lectures or using the online material and writing a work report. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1 - 5, pass, fail

Person responsible:
Teemu Myllylä

Working life cooperation:
Guest lecturers

Other information:

522987S: Master's Thesis in Biomedical Engineering, 30 cp

Form of study: Advanced Studies

Type: Diploma thesis

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

ECTS Credits:
30

Language of instruction:
English

Timing:
Second year of MSc

Learning outcomes:
The student knows the background and methods for the research field of his/her thesis, and is able to perform relatively large research project as well as to handle reporting of the results.
Contents: Research project in the field of biomedical engineering and writing of the thesis.

Mode of delivery: Face-to-face (supervision meetings) and independent work.

Learning activities and teaching methods: Thesis can be made at different research groups of the university or in industry or health care system. The student writes the thesis independently supported by the supervisor. The topic and contents should be discussed with the professor beforehand.

Target group: Second year MSc students (International Master's Degree Programme in Biomedical Engineering).

Prerequisites and co-requisites:

Recommended optional programme components: No alternative course units or course units that should be completed simultaneously

Recommended or required reading:

Assessment methods and criteria: Writing the thesis. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale: 1 – 5

Person responsible: Professor Tapio Seppänen

Working life cooperation: Yes

Other information: Detailed instructions: http://www.oulu.fi/cse/studying/masters-thesis

521027S: Advanced practical training, 5 cp

Validity: 01.01.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Riku Hietaniemi

Opintokohteen kielet (E): Finnish

ECTS Credits: 5 ECTS credits

Language of instruction:
Finnish or English

Timing:
This course can be taken in periods I-IV. The recommended time to take this course is during summer of the fourth year.

Learning outcomes:
Student can apply knowledge and skills learned during university studies to complete work assignments in his/her own field.
Student can evaluate and develop himself/herself as a learner and worker.
Student can plan and evaluate his/her time management and working methods.
Student is capable of working in systematic and goal-oriented manner in group as well as independently.
Student can name important factors that direct the actions of work community and the employer.
Student can name duties where he/she can work after graduating from university.

Contents:
Planning and preparation, carrying out work assignments in the students field of studies, documentation of own accomplishments, writing report and reflection.

Mode of delivery:
Independent work.

Learning activities and teaching methods:
Student independently finds a place to work to complete the course. To pass the course minimum of two months of full time work is required. Work can also be carried out in multiple periods. The course works includes:

a) Making a practice plan for the working period 4 h,
b) Documentation of progress during working 20 h,
c) Learning while working 108 h,
d) Final report and reflection 8 h.

Target group:
Master level students.

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course does not require additional studies carried out at the same time. While carrying out the course working assignments are compared to already completed studies.

Recommended or required reading:
No required material

Assessment methods and criteria:
Course is carried out by working minimum of two months in a work accepted by study program responsible person. Before starting the actual work the student needs to make a plan for the working period and return it to the responsible person. A weekly report is required from every working week. These reports have to be turned in before the working period ends. After the working period is over the student writes a final report and returns it to the responsible person. Signed testimonial from the employer is also required with the final report.

Grading:
The course is graded as “pass/fail”

Person responsible:
Riku Hietaniemi

Working life cooperation:
The course is carried out as practical training.

Other information:
This course is alternative to 521013A Advanced Practical Training, 3 ECTS.

080925A: Anatomy and Physiology for Biomedical Engineering, 5 cp

Validity: 01.08.2017 -

Form of study: Intermediate Studies

Type: Course

Unit: Health Sciences

Grading: 1 - 5, pass, fail

Teachers: Miika Nieminen, Heimonen, Kyösti Ensio

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
Master studies, Spring 2019, 4th period

Learning outcomes:
The student is able to define human anatomy and describe the physiological functions, and can explain how these can be investigated using different imaging methods and measurement systems

Contents:
The course acquaints the student to human physiology and anatomy. Areas covered include
- Cells and tissues,
- Skin, blood, blood circulation and the fluids of the body
Musculoskeletal organs
Defense reactions of the body
Respiration
Digestion
Urinary secretion
Metabolic regulation, heat regulation
Reproduction
Sensory functions
Nervous system

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28h, demonstrations 6h. Independent studying 101h. Final examination

Target group:
Biomedical engineering and physics students

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. Imaging methods are more closely studied in the course Diagnostic Imaging.

Recommended or required reading:
The students will be informed about the supplementary reading in the beginning of the course.

Assessment methods and criteria:
Taking part in the lectures and demonstrations. Final exam.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1- 5. In the numerical scale zero stands for a fail. Course grade is based on score of the final exam.

Person responsible:
Professor Miika Nieminen

Working life cooperation:
Course demonstrations will be held in hospital environment and are related to diagnostics.

Other information:
Maximum number of participants is 40 students.

041201A: Basics in eHealth, 5 cp

Validity: 01.08.2011 -

Form of study: Intermediate Studies

Type: Course

Unit: Medicine

Grading: 1 - 5, pass, fail

Teachers: Jarmo Reponen

Opintokohteen kielet (E): English

Leikkaavuudet (E):
ay041201A Basics in eHealth (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credit points / 135 hours of work

Language of instruction:
English

Timing:
- The main course is held in the spring semester, 3rd period, for (master) degree students and Biomedical Engineering exchange students
- The special edition course is held for exchange students of the Faculty of Medicine (medicine, health sciences) in the autumn semester, 2nd period. Other students can participate in this course depending on availability of free places (limited number of places).

Learning outcomes:
Upon completion of the course:
The student can define central information and communication technology (ICT) terms and solutions in healthcare, and can list respective applications in healthcare services and training. The student can evaluate the societal and economic significance of information and communication technology in healthcare. The student can understand the position of e-health and telemedicine solutions as a part of the national healthcare information system. The student receives an initial view of future health ICT trends from clinical perspective and possibilities to contribute to these with his/her professional background.

Contents:
- terms and concepts
- societal dimensions
- delivery of health services
- electronic patient records
- data transfer within the health care system
- data transfer between the health care professionals and the patients
- citizens providing their own health data, mHealth-solutions
- national healthcare information exchange in Finland
- remote consultations, examples like teleradiology, telepsychiatry, telerehabilitation
- economical and functional assessment
- remote education in health care
- future visions of health care information systems
- changing current topics in connected health like: AI, knowledge based medicine, cybersecurity etc according to availability

Mode of delivery:
Web-based teaching

Learning activities and teaching methods:
Interactivity takes place in virtual learning environment Optima. The course consists of videotaped lectures, power point presentations and links to other material available in the web. Performance of duties includes an essay, exam, participating in moderated discussions on the grounds of the lectures. Web lectures 15h / Web exam 40h / Written essay 40h* / Self-study and participation in web discussion 40h (*Exchange student can relate their essay to the situation in their home countries)

Target group:
MSc and 3rd year BSc students of Biomedical Engineering and Medical Technology (medical technology, biomedical engineering, biophysics, physics, other degree programs), students of Medicine and Health Sciences and Information technology and everyone who is interested. Please, note the recommended separate course timings for different groups.

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is independent and does not require additional studies carried out at the same time.

Recommended or required reading:
All recommended or required reading is offered in Optima virtual learning environment or in linked web pages.

Assessment methods and criteria:
Web tasks, contribution to moderated discussion, an essay and course exams and optional final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1 – 5. In the numerical scale one stands for a fail. Minimum accepted grade in this course is 2.

Person responsible:
Professor Jarmo Reponen
Course teacher Nina Keränen, MD, MSc

Other information:
In the future, the course will be developed and offered as a separate module for inclusion in optional studies in medicine.

521284S: Biomedical Engineering Project, 5 cp
Validity: 01.01.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

ECTS Credits: 5 ECTS credits
Language of instruction: English.
Timing: As part of the master level studies, in any period suitable to the student.
Learning outcomes: 1. has develop skills for being initiative, creativity, application of theoretical knowledge, programming and cooperation.
Contents: A small-scale research work in an active research group. Topics will be selected from the needs of present research activities in the site of work and the interests of student. Main emphasis is on the development and application of methods and algorithms for biomedical data processing. Often the work includes programming with Matlab, C or Java languages.
Mode of delivery: Self-study under supervision.
Learning activities and teaching methods: First the research group is studied to get understanding of what are its goals. Detailed task description is written with the advisor. Typically, the work includes study of theoretical background information, programming, testing and simulations, and documentation. Task assignments can be applied at any time all year round.
Target group: Master-level students that are interested in biomedical engineering. Students of the University of Oulu.
Prerequisites and co-requisites: The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Courses such as Biosignal processing I and II, Biomedical image processing and Machine learning are recommended. Programming skills, especially the Matlab.
Recommended optional programme components: The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading: Literature and scientific articles depending on the task assignment.
Assessment methods and criteria: Course assessment is based on the technical report. Read more about assessment criteria at the University of Oulu webpage.
Grading: The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible: Tapio Seppänen
Working life cooperation: No

080928S: Biomedical Engineering Research Methods and Seminar, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Health Sciences
Grading: 1 - 5, pass, fail
Teachers: Jämsä, Timo Jaakko

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
Master studies, Autumn term, 1st period

Learning outcomes:
The student familiarizes with the principles of scientific work and research ethics.
The student can identify the essential features of scientific publications.
The student can present the central content of a scientific article to others.
The student can present critical questions related to a scientific presentation, and give and receive feedback on the presentations.

Contents:
Principles of scientific work. Ethical principles. Lectures, seminars and scientific literature. Publication forums in the field and characteristics of scientific articles. Popularization of science.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Introduction lectures/group work, presentations and discussion on the basis of the latest scientific publications.
Each student will give two presentations and act as an opponent for two (peer-assessment).
Lectures 8h, group work and seminars 26h, home exercise, self-study 101h.

Target group:
Biomedical Engineering MSc students

Recommended optional programme components:
Prepares the student for thesis work.

Recommended or required reading:
Material given during lectures, selected scientific articles.

Assessment methods and criteria:
Attending seminars, making presentations and acting as an opponent. The assessment criteria are based on the learning outcomes of the course. The more detailed assessment criteria is found in university’s learning platform.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Grading is made based on presentations.

Person responsible:
Professor Timo Jämsä

Working life cooperation:
The course prepares for working life.

Other information:
Also for doctoral studies

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Tapio Seppänen

Opintokohteen kielet (E): Finnish
ECTS Credits: 5 ECTS credits / 50 hours of work

Language of instruction: English. Examination can be taken in English or Finnish.

Timing: The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.

Learning outcomes: After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to bio signal analysis
3. implement small-scale software for signal processing algorithms

Mode of delivery: Face-to-face teaching and guided laboratory work.

Learning activities and teaching methods: Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.

Target group: Students interested in biomedical engineering, at their master's level studies.

Students of the University of Oulu.

Prerequisites and co-requisites: The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.

Recommended optional programme components: The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading: The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.

Assessment methods and criteria: Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam.

Read more about assessment criteria at the University of Oulu webpage.

Grading: The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible: Tapio Seppänen

Working life cooperation: No.

521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits: 0; The maturity test is integrated in the MSc Thesis credits (30 ECTS).

Language of instruction: Finnish/Swedish/other

Timing: Periods 1-4
Learning outcomes:
After the maturity test, the student has demonstrated that his/her language skills meet the requirements of the work life.

Contents:
The aim of the maturity test is to confirm the student's familiarity of the thesis area as well as his/her command of the domestic language of his/her school education.

Mode of delivery:
The maturity test is written in a controlled event, on a topic provided by the thesis supervisor.

Learning activities and teaching methods:
Written essay, approximately 3 pages hand written text or 380 words / 3040 characters.

Target group:

Prerequisites and co-requisites:
The maturity test can be written when the thesis is complete or being finished.

Recommended optional programme components:

Recommended or required reading:
MSc Thesis.

Assessment methods and criteria:
The maturity test is evaluated and approved by the thesis supervisor.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass/fail.

Person responsible:
Thesis supervisor.

Working life cooperation:

521242A: Introduction to Biomedical Engineering, 5 cp

Validity: 01.08.2017 -

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Teemu Myllylä

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Period 1

Learning outcomes:
After completing the course, the student has a basic knowledge of the biomedical engineering discipline and the applications of engineering science to biomedical problems.

Contents:
Biomedical engineering is a multidisciplinary field of study that ranges from theory to applications at the interface between engineering, medicine and biology. This course will introduce the subdisciplines within biomedical engineering, including such as systems physiology, bioinstrumentation, bioimaging, biophotonics and biomedical signal analysis. General issues of the subdisciplines will be presented together with selected examples and clinical applications. A number of lectures will be given by professionals working in health tech companies, University of Oulu and Oulu University Hospital, presenting different fields of the biomedical engineering. In addition, course offerings of biomedical engineering at the University of Oulu are introduced.

Mode of delivery:
Face-to-face teaching. Under some circumstances distance learning using online material is possible (please, ask the teacher).

Learning activities and teaching methods:
The course includes online material, lectures and a group project. Lectures 28h and laboratory exercises 4 h and self-study 100h

Target group:

Prerequisites and co-requisites:

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Participation in lectures or using the online material and writing a work report. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
1 - 5, pass, fail

Person responsible:
Teemu Myllylä

Working life cooperation:
Guest lecturers

Other information:

522987S: Master's Thesis in Biomedical Engineering, 30 cp

Form of study: Advanced Studies

Type: Diploma thesis

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

ECTS Credits:
30

Language of instruction:
English

Timing:
Second year of MSc

Learning outcomes:
The student knows the background and methods for the research field of his/her thesis, and is able to perform relatively large research project as well as to handle reporting of the results.

Contents:
Research project in the field of biomedical engineering and writing of the thesis.

Mode of delivery:
Face-to-face (supervision meetings) and independent work.

Learning activities and teaching methods:
Thesis can be made at different research groups of the university or in industry or health care system. The student writes the thesis independently supported by the supervisor. The topic and contents should be discussed with the professor beforehand.

Target group:
Second year MSc students (International Master's Degree Programme in Biomedical Engineering).

Prerequisites and co-requisites:

Recommended optional programme components:
No alternative course units or course units that should be completed simultaneously

Recommended or required reading:
-

Assessment methods and criteria:
Writing the thesis. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale: 1 – 5

Person responsible:
Professor Tapio Seppänen

Working life cooperation:
Yes

Other information:
Detailed instructions:
http://www.oulu.fi/cse/studying/masters-thesis

521149S: Special Course in Information Technology, 5 - 8 cp

Validity: 01.08.2012 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): English

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5-8

Language of instruction:
English

Timing:
Autumn and Spring, periods 1-4.

Learning outcomes:
The learning outcomes are defined based on the course topic.

Contents:
Varies yearly.

Mode of delivery:
Face-to-face teaching, also web-based teaching can be used.

Learning activities and teaching methods:
Lectures, exercises, design exercise, project work and seminars depending on the topic of the year. The implementation of the course will be informed separately. The course can be given several times with different contents during the academic year and it can be included into the degree several times.

Target group:
M.Sc. level students of Computer Science and Engineering; other students are accepted if there is space in the classes.

Prerequisites and co-requisites:
Will be defined based on the contents.

Recommended optional programme components:
No.

Recommended or required reading:
Will be announced at the first lecture

Assessment methods and criteria:
Depends on the working methods.
Read more about assessment criteria at the University of Oulu webpage.

Grading:

The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor of CSE

Working life cooperation:
-

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
- ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the ‘where’-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-
Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

521285S: Affective Computing, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Guoying Zhao

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Fall, periods 1

Learning outcomes:
After completing the course, student
1. is able to explain the emotion theory and modeling
2. is able to implement algorithms for emotion recognition from visual and audio signals or the fusion of multi-modalities
3. has the ideas of wide applications of affective computing

Contents:
The history and evolution of affective computing; psychological study about emotion theory and modeling; emotion recognition from different modalities: facial expression, speech, EEG; crowdsourcing study; synthesis of emotional behaviors; emotion applications.

Mode of delivery:
Face to face teaching

Learning activities and teaching methods:
The course consists of lectures and exercises. The final grade is based on the points from exam while there are several mandatory exercises.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
A prior programming knowledge, possibly the bachelor level mathematical studies and/or some lower level intermediate studies (e.g. computer engineering or artificial intelligence courses). The recommended optional studies include the advanced level studies e.g. the pattern recognition and neural networks and/or computer vision courses.

Recommended optional programme components:
-

Recommended or required reading:
All necessary material will be provided by the instructor.
Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory exercises. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Guoying Zhao, Henglin Shi, Yante Li

Working life cooperation:

521282S: Biosignal Processing II, 5 cp

Validity: 01.08.2015 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Jukka Kortelainen

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
Lectures and laboratory works are given in English. The examination can be taken in Finnish or English.

Timing:
Period 4

Learning outcomes:
After completing the course, student
1. knows the special characteristics of neural signals and the typical signal processing methods related to them
2. can solve advanced problems related to the neural signal analysis

Contents:
Introduction to neural signals, artifact removal, anesthesia and natural sleep, topographic analysis and source localization, epilepsy, evoked potentials.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (8 h) and laboratory work (20 h), written exam.

Target group:
Engineering students, medical and wellness technology students, and other students interested in biomedical engineering. Students of the University of Oulu.

Prerequisites and co-requisites:
The basic engineering math courses, digital filtering, programming skills, Biosignal Processing I.

Recommended optional programme components:

Recommended or required reading:
The course is based on selected parts from books "EEG Signal Processing", S. Sanei and J. A. Chambers, "Bioelectrical Signal Processing in Cardiac and Neurological Applications", L. Sörnmo and P. Laguna, and "Neural Engineering", B. He (ed.) as well as lecture slides and task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by the assistants who will also check that the task assignments are completed properly. The course ends with a written exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading of the accepted exam is in the range 1-5.

Person responsible:
Jukka Kortelainen
Working life cooperation:

521289S: Machine Learning, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
 521497S-01 Pattern Recognition and Neural Networks, Exam 0.0 cp
 521497S-02 Pattern Recognition and Neural Networks; Exercise Work 0.0 cp
 521497S Pattern Recognition and Neural Networks 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the spring semester, during period III. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. can design simple optimal classifiers from the basic theory and assess their performance.
2. can explain the Bayesian decision theory and apply it to derive minimum error classifiers and minimum cost classifiers.
3. can apply the basics of gradient search method to design a linear discriminant function.
4. can apply regression techniques to practical machine learning problems.

Contents:

Mode of delivery:
Face-to-face teaching, guided laboratory work and independent assignment.

Learning activities and teaching methods:
Lectures 2h, Laboratory work 16h, Exercise 16h and Self-study the rest (Independent task assignment, written examination).

Target group:
Students who are interested in data analysis technology. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. The independent task assignment is graded. The course ends with a written exam.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. The final grade is established by weighing the written exam by 2/3 and the task assignment by 1/3.

Person responsible:
Tapio Seppänen

Working life cooperation:
No

521466S: Machine Vision, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Spring, period 3.

Learning outcomes:
Upon completion of the course the student
1. understands the fundamentals of image acquisition, representation and modeling
2. can utilize elementary methods of machine vision for image recognition problems
3. can use 2D transformations in model fitting and image registration
4. can explain the basics of 3D imaging and reconstruction

Contents:
1. Introduction, 2. Imaging and image representation, 3. Color and shading, 4. Image features, 5. Recognition, 6. Texture, 7. Motion from 2D image sequences, 8. 2D models and transformations, 9. Perceiving 3D from 2D images, 10. 3D transformations and reconstruction.

Mode of delivery:
Face-to-face teaching, homework assignments.

Learning activities and teaching methods:
Lectures (20 h), exercises (16 h) and Matlab homework assignments (30 h), self-studying (67 h).

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521467A Digital Image Processing or an equivalent course

Recommended optional programme components:
521289S Machine Learning. This course provides complementary knowledge on machine learning methods needed in machine vision.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with final exam and accepted homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5. Zero stands for a fail.

Person responsible:
Janne Heikkilä
Working life cooperation:
No.

521149S: Special Course in Information Technology, 5 - 8 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkiä, Janne Tapani
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5-8
Language of instruction:
English
Timing:
Autumn and Spring, periods 1-4.
Learning outcomes:
The learning outcomes are defined based on the course topic.
Contents:
Varies yearly.
Mode of delivery:
Face-to-face teaching, also web-based teaching can be used.
Learning activities and teaching methods:
Lectures, exercises, design exercise, project work and seminars depending on the topic of the year. The implementation of the course will be informed separately. The course can be given several times with different contents during the academic year and it can be included into the degree several times.
Target group:
M.Sc. level students of Computer Science and Engineering; other students are accepted if there is space in the classes.
Prerequisites and co-requisites:
Will be defined based on the contents.
Recommended optional programme components:
No.
Recommended or required reading:
Will be announced at the first lecture
Assessment methods and criteria:
Depends on the working methods.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Professor of CSE
Working life cooperation:

A452120: Basic and Intermediate Studies, Information Engineering, 120 - 150 cp

Validity: 01.08.2005 -
Form of study: Basic and Intermediate Studies
Type: Study module
No course descriptions.

Second official language, select 2

901048Y: Second Official Language (Swedish), Written Skills, 1 cp

Validity: 01.08.2014 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Opintokohteen kielet (E): Swedish
Leikkaavuudet (E):
 ay901048Y Second Official Language (Swedish), Written Skills (OPEN UNI) 1.0 cp

901049Y: Second Official Language (Swedish), Oral Skills, 1 cp

Validity: 01.08.2014 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Opintokohteen kielet (E): Swedish
Leikkaavuudet (E):
 ay901049Y Second Official Language (Swedish), Oral Skills (OPEN UNI) 1.0 cp

900081Y: Second Official Language (Finnish), Written Skills, 1 - 2 cp

Validity: 01.01.2015 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Opintokohteen kielet (E): Finnish

900082Y: Second Official Language (Finnish), Oral Skills, 1 - 3 cp

Validity: 01.01.2015 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Opintokohteen kielet (E): Finnish

English 6 ECTS cr
Proficiency level:
CEFR B2 - C1

Status:
This course is the first English course for students in the engineering programmes in the Faculty of Technology (TTK) and Faculty of Information Technology and Electrical Engineering (TST).

Required proficiency level:
English must have been the A1 or A2 language at school or equivalent English skills acquired otherwise. If you need to take English, but lack this background, please get in touch with the Languages and Communication contact teacher for your department to discuss individual solutions.

ECTS Credits:
2 credits. The workload is 53 hours.

Language of instruction:
English

Timing:
The course takes place in the autumn semester (periods 1 and 2).

Learning outcomes:
By the end of the course, you can
- create and deliver effective presentations of a product, a company and company processes,
- apply appropriate cultural, linguistic and technical knowledge when presenting a product or company,
- formulate strategies for developing your English-language communication skills based on an evaluation of your own strengths and weaknesses.

Contents:
Scheduled as the first course of your English studies, Professional English for Technology (PET) has a strong focus on developing speaking skills necessary for working life. During PET, you will explore a product or service from your own field, and give a variety of short presentations in connection with your product or service. In addition, PET helps you to develop an awareness of your own language skills, encouraging you to develop strategies and techniques for effective learning.

Mode of delivery:
Contact teaching and independent study

Learning activities and teaching methods:
Lessons 24 hours / team work 22 hours / independent work 7 hours. Lessons include regular pair and group work in class. Team work includes the preparation of four short presentations (22 hours). Independent homework activities include an online vocabulary test (3 hours) and other small assignments (5 hours). Active participation is essential.

Target group:
Students in the engineering programmes: TTK (PO1, YMP1, KO1, TuTa1, KaiRik1), TST (ST2, CSE2).

Prerequisites and co-requisites:
Recommended optional programme components:
This course is offered as the first course of your English studies.

Recommended or required reading:
Course materials will be provided by the teacher in electronic form.

Assessment methods and criteria:
The course utilises continuous assessment that is based on the learning outcomes of the course, including full and active participation in class, and the successful completion of module assignments and class presentations. Students must achieve a grade of 75% in the online vocabulary test. Lue lisää opintosuoritusten arvostelusta yliopiston verkkosivulta.

Grading:
pass / fail

Person responsible:
Each engineering programme has its own Languages and Communication contact teacher for questions about English studies.

Working life cooperation:
-

Other information:
-

902147Y: Academic Vocabulary for Science and Technology, 2 cp

Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English

Proficiency level:
CEFR Level: B2-C1 (All levels)

Status:
This course can be chosen in partial completion of the English language requirement for students in the engineering programmes in the Faculty of Technology (TTK) and Faculty of Information Technology and Electrical Engineering (TST).

Required proficiency level:
English must have been the A1 or A2 language at school or equivalent English skills acquired otherwise. If you need to take English, but lack this background, please get in touch with the Languages and Communication contact teacher for your department to discuss individual solutions.

ECTS Credits:
2 ECTS credits. The workload is 53 hours.

Language of instruction:
English

Timing:
The course takes place in both autumn (periods 1 and 2) and spring (periods 3 and 4) semesters.

Learning outcomes:
By the end of the course, you are expected to be able to
1) define what you need to know about a word or a lexical phrase in order to learn vocabulary,
2) give examples of how words are built from meaningful parts,
3) apply vocabulary learning techniques,
4) explain and apply general academic / scientific vocabulary (AWL),
5) outline the characteristics of informal vs. formal / academic vocabulary,
6) demonstrate basic academic writing and communication skills.

Contents:
The general aim of this module is 1) to help you become aware of the strategies which best promote your skills to learn and memorise vocabulary, and 2) to activate and broaden your basic scientific vocabulary, i.e. the core vocabulary of scientific texts, which is principally the same regardless of the field (the Academic Word List).
The ultimate aim is to help you gain the skills to read and write academic / scientific text and to discuss related topics.
To help you achieve the learning outcomes, you will be given many varied written and oral activities which focus primarily on practicing vocabulary learning strategies, word formation, and the use of the most frequent academic vocabulary (AWL sublists).

Mode of delivery:
Contact teaching and independent study

Learning activities and teaching methods:
Lessons 26 hours / independent work 27 hours. The independent work includes an essay (6 hours); two exams (10), one around the midpoint of the course and the other towards the end; presentations (6), which will be given in class to small groups of students; and other homework assignments (5 hours). Active participation is essential.

Target group:
Students in the engineering programmes (TTK and TST)

Prerequisites and co-requisites:
-

Recommended optional programme components:
This is an elective course which can be taken after 902150Y PET by students in the engineering programmes (TTK and TST).

Recommended or required reading:
Course materials will be provided by the teacher in electronic form.

Assessment methods and criteria:
Regular and active participation in the weekly sessions will be observed in continuous assessment that is based on the learning outcomes of the course. In addition to this, satisfactory completion of the in-class/homework assignments and the two vocabulary tests is required.
Lue lisää opintosuoritusten arvostelusta yliopiston verkkosivulta.

Grading:
Pass/Fail

Person responsible:
See contact teachers

Working life cooperation:
-

Other information:
-

902145Y: Working Life Skills, 2 cp

Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English

Proficiency level:
CEFR B2 - C1 (All Levels)

Status:
This course can be chosen in partial completion of the English language requirement for students in the engineering programmes in the Faculty of Technology (TTK) and Faculty of Information Technology and Electrical Engineering (TST).

Required proficiency level:
English must have been the A1 or A2 language at school or equivalent English skills acquired otherwise. If you need to take English, but lack this background, please get in touch with the Languages and Communication contact teacher for your department to discuss individual solutions.

ECTS Credits:
2 ECTS credits. The workload is 53 hours.

Language of instruction:
English

Timing:
The course takes place in both autumn (periods 1 and 2) and spring (periods 3 and 4) semesters.

Learning outcomes:
By the end of the course, you are expected to
1. have demonstrated a good basic vocabulary related to job applications, meetings and negotiations,
2. have demonstrated an ability to create an effective CV and cover letter for a job application,
3. be able to communicate effectively and with a reasonable degree of fluency at job interviews and in meeting and negotiation contexts.

Contents:
The aim of this course is to help you to develop the English language skills needed to deal with situations related to everyday working life. The course focuses on 4 basic areas:
i) business communication (e.g. telephoning skills and correspondence),
ii) social English in working life situations,
iii) applying for a job,
iv) a general introduction to the language of meetings and negotiations.

Mode of delivery:
Contact teaching and independent study

Learning activities and teaching methods:
Lessons 26 hours / independent work 27 hours. Active participation is essential. The course includes regular pair and group work in class and independent homework activities.

Target group:
Students in the engineering programmes (TTK and TST).

Prerequisites and co-requisites:

Recommended optional programme components:
This is an elective course which can be taken after 902150Y PET by students in the engineering programmes (TTK and TST).

Recommended or required reading:
Course materials will be provided by the teacher in electronic form.

Assessment methods and criteria:
The course utilises continuous assessment that is based on the learning outcomes of the course. In addition, full and active participation is required, course assignments must be completed, and students must achieve a grade of 70% in two tests during the course. Students will be asked to take an end-of course exam if they have not otherwise demonstrated that they have achieved the learning outcomes by the end of the course. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass/Fail

Person responsible:
See contact teachers

Working life cooperation:
-

Other information:
-

902142Y: Business Correspondence, 2 cp

Validity: 01.08.2014 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): English

Proficiency level:
CEFR B2 - C1 (All Levels)

Status:
This course can be chosen in partial completion of the English language requirement for students in the engineering programmes in the Faculty of Technology (TTK) and Faculty of Information Technology and Electrical Engineering (TST).

Required proficiency level:
English must have been the A1 or A2 language at school or equivalent English skills acquired otherwise. If you need to take English, but lack this background, please get in touch with the Languages and Communication contact teacher for your department to discuss individual solutions.

ECTS Credits:
2 credits. The workload is 53 hours

Language of instruction:
English

Timing:
The course takes place in both autumn (periods 1 and 2) and spring (periods 3 and 4) semesters.

Learning outcomes:
By the end of the course, you are expected to have demonstrated:
- the ability to write clear and effective business letters conveying information and details accurately,
- the ability to use an appropriate level of formality and style for business communications,
- mastery of the conventional formats and layouts of different types of business letters.

Contents:
The aim of this course is to introduce different types of business correspondence and the format used when communicating in writing. Types of correspondence include communication in business-to-business scenarios and between a business and the public.

Mode of delivery:
Self-access: the course operates within an Optima workspace, with online support from the teacher.

Learning activities and teaching methods:
Introductory session 2 hours / independent learning 51 hrs / optional text clinics. Assignments, instructions and course resources are available in the course Optima workspace. Completed assignments are submitted electronically to the teacher. The teacher provides feedback and any problems are discussed either by written electronic communication or at one of the optional text clinics.

Target group:
Students in the engineering programmes (TTK and TST)

Prerequisites and co-requisites:

Recommended optional programme components:
This is an elective course which can be taken after [902150Y PET](#) by students in the engineering programmes (TTK, TST and OMS).

Recommended or required reading:
Course materials are provided in an electronic form that can be downloaded.

Assessment methods and criteria:
All assignments must be completed to a standard of effective business correspondence based on the learning outcomes of the course. In addition, there is a test at the end of the course.

Lue lisää opintosuoritusten arvostelusta yliopiston verkosivulta.

Grading:
Pass/Fail

Person responsible:
See [contact teachers](#)

Working life cooperation:

-

Other information:

-

Compulsory studies

521002P: Orientation to Computer Science and Engineering, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Riku Hietaniemi

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521005P Orientation Course for New CSE Students 1.0 cp

ECTS Credits:

5
Language of instruction:
Main language is Finnish, but can be completed with English.

Timing:
Course will be arranged during Autumn / Spring in periods I-II. Course is obligatory for first year computer engineering students.

Learning outcomes:
1. Student understands the characteristics of studying in computer science and engineering program and knows about the devices and software related to the studies.
2. Student has created his personal study plan, participates in community activities, and is aware of the challenges related to studying.
3. Student has gained hands-on experience with computer gadgets, Linux systems, agile software development tools and scientific computing environment.
4. Student understands how microcontroller devices operate and how signal data can be manipulated using Matlab software environment.
5. Student has gained knowledge on scientific principles (academic responsibility, studying and ways of work) and understands the responsibility over his personal studies.
6. Student knows his degree program, key university personnel, tutor and small group.
7. Student has become acquainted with the degree structure, goals and content, and knows how to create a personal study plan (HOPS) to achieve the degree.
8. Student has practical knowledge about initializing his studies and utilizing Lukkari service to plan and manage his studies and time use.

Contents:
Comprises of the following sections: Study planning, studying in communities, introduction to Matlab computing environment, introduction to Linux systems, introduction to agile software development tools, and introduction to programmable gadgets.

Mode of delivery:
Course is based on blended teaching (web-based teaching + face-to-face teaching).

Learning activities and teaching methods:
Lectures: 2+4 h (student counseling) 4+4 h (seminars) 6 h (introduction to Matlab 4 h (introduction to Linux systems) = 24 h Group work: 20 h (small-group meetings) 7 h (introduction to programmable gadgets -> one day) 3*4h (introduction to agile tools) PSP Advising 2 h = 41 h Self-studying: 70 h (study planning and follow-up, self study) Linux-systems and programmable gadgets are organized as one-day courses. Introductions to Matlab and agile software development tools are given as three lectures. The courses give guided introductions to scientific computation environments, agile tools, Linux systems and programmable gadgets in order to get student acquainted with the tools and technologies they need in their further studies. The sections require attendance in the organized seminars, guided teaching sessions and small-group meetings as well as creating personal study plan, time tracking and reporting. To pass Orientation to computer science course and get credits, all sections of the course must be passed.

Target group:
Computer science and engineering students.

Prerequisites and co-requisites:
Recommended optional programme components:
The course is designed to carry out in the first year while planning and following obligatory studies in computer science and engineering.

Recommended or required reading:
Study material is provided during guided teaching and seminars.

Assessment methods and criteria:
The course utilizes continuous assessment. To pass sub-sections, student is required to attend in the organized seminars and guided teaching sessions, creating personal study plan, time tracking and reporting.

Grading:
The course will be graded as “pass / fail”.

Person responsible:
Riku Hietaniemi

Working life cooperation:
-

031010P: Calculus I, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Ilkka Lusikka
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay031010P Calculus I (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish. The course can be completed in English by intermediate exams or by a final exam.

Timing:
Autumn semester, period 1

Learning outcomes:
Upon completion of the course, the student identifies concepts of vector algebra, can use vector algebra for solving problems of analytic geometry, can explain basic characteristics of elementary functions, is able to analyse the limit and the continuity of real valued functions of one variable, can solve problems associated with differential and integral calculus of real valued functions of one variable.

Contents:
Vector algebra and analytic geometry. Limit, continuity, differential and integral calculus and applications of real valued functions of one variable. Complex numbers.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 28 h / Group work 22 h / Self-study 85 h.

Target group:
-
Prerequisites and co-requisites:

-

Recommended optional programme components:

-

Recommended or required reading:

Assessment methods and criteria:

Intermediate exams or a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:

The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.

Person responsible:

Ilkka Lusikka

Working life cooperation:

-

Other information:

-

031078P: Matrix Algebra, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Matti Peltola
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

| ay031078P | Matrix Algebra (OPEN UNI) | 5.0 cp |
| 031019P | Matrix Algebra | 3.5 cp |

ECTS Credits:

5 ECTS credits / 135 hours of work

Language of instruction:

Finnish

Timing:

The course is held in the autumn, during period 2. It is recommended to complete the course at the 1th autumn semester.

Learning outcomes:

The student is able to apply arithmetic operations of matrices and can solve system of linear equations by matrix methods and can apply matrix factorizations to find the solution of the system of linear equations. The student is able to recognize the vector space and understands the concepts of basis and dimension of a vector space and can analyse matrices by the parameters, vectors and vector spaces of matrices. He/She knows how to calculate determinant, eigenvalues and eigenvectors of a square matrix, and is able to diagonalize matrices and apply diagonalization to the simple problems.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 22 h / Self-study 85 h.

Target group:
1. year students of technical sciences, mathematics and physics.

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course can be completed by intermediate exams (2 exams) or by a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Matti Peltola

Working life cooperation:
-

Other information:
-

521141P: Elementary Programming, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mika Oja
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay521141P Elementary Programming (OPEN UNI) 5.0 cp
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS Cr

Language of instruction:
Lectures and learning material are in Finnish. The course is not available English

Timing:
Fall, periods 1-2.
Learning outcomes:
1. Is capable of solving problems in the computer's terms
2. Understands the basic concepts of programming
3. Knows the basics of the Python programming language
4. Is able to implement programs independently
5. Is able to use the internet to find information about programming

Contents:
Problem solving with programming, basic concepts of programming, writing Python code.

Mode of delivery:
Web-based teaching + face-to-face teaching

Learning activities and teaching methods:
30h of exercise groups, 105h self-studying in the web.

Target group:
1st year students of computer science and engineering, electrical engineering, medical and wellness technology and industrial and engineering management, 2nd year students of physics, and other students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course provides a basis for subsequent programming courses.

Recommended or required reading:
Web material in an online learning environment. Address will be announced at the beginning of the course.

Assessment methods and criteria:
The course is completed by passing all learning assignments, programming exercises and a final exercise project. Read more about assessment criteria at the University of Oulu webpage.

Grading:
pass/fail.

Person responsible:
Mika Oja

Working life cooperation:
-

031075P: Calculus II, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Ilkka Lusikka
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish. The course can be completed in English by intermediate exams or by a final exam.

Timing:
Spring semester, period 3

Learning outcomes:
Upon completion of the course, the student is able to examine the convergence of series and power series of real terms, can explain the use of power series e.g. in calculating limits, is able to solve problems related to differential and integral calculus of real and vector valued functions of several variables.

Contents:
Sequences, series, power series and Fourier series of real terms. Differential and integral calculus of real and vector valued functions of several variables.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 22 h / Self-study 85 h.

Target group:
-

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the course 031010P Calculus I.

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
Intermediate exams or a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.

Person responsible:
Ilkka Lusikka

Working life cooperation:
-

Other information:
-

031021P: Probability and Mathematical Statistics, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Jukka Kemppainen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay031021P Probability and Mathematical Statistics (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 135 hours of work
Language of instruction:
Finnish
Timing:
Spring semester, period 3
Learning outcomes:
After completing the course the student
1. knows the key concepts of probability and the most important random variables,
2. will be able to use them in calculating probabilities and parameters of probability distributions,
3. is capable of analyzing statistical data by calculating interval and point estimates for the parameters,
4. will be able to formulate statistical hypotheses and test them,
5. knows the basics of linear regression.

Contents:
The key concepts of probability, random variable, parameters of probability distributions, estimation of parameters, hypothesis testing, regression analysis.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h/Exercises 20 h/Self study 87 h.

Target group:
The students in the engineering sciences. Other students are welcome, too.

Prerequisites and co-requisites:
The recommended prerequisites are the course 031010P Calculus I and some parts of the course 031075P Calculus II.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Intermediate exams or a final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.

Person responsible:
Jukka Kemppainen

Working life cooperation:
-

Other information:
-
031023P: Mathematical Structures for Computer Science, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Matti Peltola

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay031023P Mathematical Structures for Computer Science (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish

Timing:
The course is held in the autumn, during period 1. It is recommended to complete the course at the 2nd autumn semester.

Learning outcomes:
The student is able to apply result of logic to find the truth value of logical statement and can express sentences of natural language by symbols of logic. He/She can use arithmetic operations on different number bases. The student recognize the main types of graphs and understand the basis concepts of graphs and is able to apply formal methods of discrete mathematics to model simple information processing problems.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 14 h / Self-study 93 h.

Target group:
2. year students of computer science.

Prerequisites and co-requisites:
No prerequisites

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
The course can be completed by intermediate exams (2 exams) or by a final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Matti Peltola
Working life cooperation:
-
Other information:
-

031077P: Complex analysis, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Jukka Kemppainen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay031077P Complex analysis (OPEN UNI) 5.0 cp
 031018P Complex Analysis 4.0 cp

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish

Timing:
Fall semester, period 1.

Learning outcomes:
After completing the course the student
 1. is able to calculate the derivative and the integral of functions of complex variable,
 2. understands the concept of analyticity
 3. is capable of calculating the contour integrals and using the theory of residues for computing the
 line integrals, will be able to apply the techniques of complex analysis to simple problems in signal
 processing.

Contents:
Complex numbers and functions, complex derivative and analyticity, complex series, Cauchy's integral
theorem, Laurent and Taylor expansions, theory of residues, applications to signal analysis.

Mode of delivery:
Face-to-face teaching, Stack(web-based too) exercises.

Learning activities and teaching methods:
Lectures 28 h/Exercises 14 h/Self study 93 h.

Target group:
The students in the engineering sciences. The other students are welcome, too.

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses Calculus I and II, Differential Equations.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:
The lecture notes

Assessment methods and criteria:
Intermediate exams or a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail.

Person responsible:
Jukka Kemppainen

Working life cooperation:
-

Other information:
-

030005P: Information Skills, 1 cp

Form of study: Basic Studies
Type: Course
Unit: Faculty of Technology
Grading: 1 - 5, pass, fail
Teachers: Ursula Heinikoski

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
030004P Introduction to Information Retrieval 0.0 cp

ECTS Credits:
1 ECTS credits / 27 hours of work

Language of instruction:
Finnish

Timing:
Architecture 3. spring semester, period I; Biochemistry 3. autumn semester; Biology 3. autumn semester, period I; Chemistry 3. autumn semester, period II; Computer Science and Engineering 2. spring semester, period IV; Electronics and Communications Engineering 3. spring semester; Geosciences 2. spring semester, period IV; Geography 1. and 3. spring semester, period III; Industrial Engineering and Management 3. year (Master's degree students in Industrial Engineering and Management 1st year.); Information Processing Sciences 1. year; Mathematics and Physics 1. spring semester, period III; Mechanical Engineering 3. year; Mining Engineering and Mineral Processing 3. year; Process and Environmental Engineering 2. year, period II.

Learning outcomes:
Upon completion of the course, the students:
- can search scientific information,
- can use the most important databases of their discipline,
- know how to evaluate search results and information sources,
- can use the reference management tool

Contents:
Scientific information retrieval process, the most important databases and publication channels of the discipline, evaluation of the reliability of information sources and RefWorks reference management tool.

Mode of delivery:
Blended teaching: classroom training, web-based learning material and exercises, a group assignment.

Learning activities and teaching methods:
Training sessions 8 h, group working 7 h, self-study 12 h
Target group:
Compulsory for all bachelor degree students of Faculty of Information Technology and Electrical Engineering, Faculty of Technology and Faculty of Science. Compulsory also for those Master’s degree students in Industrial Engineering and Management who have no earlier studies in the information skills. Optional for the students of biochemistry.

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Web learning material Tieteellisen tiedonhankinnan opas http://libguides.oulu.fi/tieteellinentiedonhankinta (in Finnish)

Assessment methods and criteria:
Passing the course requires participation in the training sessions and successful completion of the course assignments.

Grading:
pass/fail

Person responsible:
Ursula Heinikoski

Working life cooperation:
-

Other information:
-

761119P: Electromagnetism 1, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Field of Physics

Grading: 1 - 5, pass, fail

Teachers: Timo Asikainen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>761113P-01</td>
<td>Electricity and magnetism, lectures and exam</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>761113P-02</td>
<td>Electricity and magnetism, lab. exercises</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>761113P</td>
<td>Electricity and magnetism</td>
<td>5.0 cp</td>
</tr>
<tr>
<td>766319A</td>
<td>Electromagnetism</td>
<td>7.0 cp</td>
</tr>
<tr>
<td>761103P</td>
<td>Electricity and Magnetism</td>
<td>4.0 cp</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS credits / 133 hours of work
- 761119P-01, Lectures and exam (4 cr)
- 761119P-02, Lab. exercises (1 cr)

Language of instruction:
Finnish
Timing:
Second fall term

Learning outcomes:
The student will be able to understand the basic concepts of electromagnetism and can apply this understanding to solve problems related to electromagnetism.

Contents:
Basic principles of electromagnetic phenomena and their physical and geometric interpretation. More detailed contents will be presented later.

Mode of delivery:
face-to-face teaching

Learning activities and teaching methods:
Lectures 32 h, 7 exercises (14 h), 2 laboratory exercises (3 hours/exercise), self-study 83 h

Target group:
For the students of the University of Oulu.

Prerequisites and co-requisites:
Knowledge of vector calculus and basics of differential and integral calculus.

Recommended optional programme components:
No alternative course units or course units that should be completed simultaneously.

Recommended or required reading:

Assessment methods and criteria:
Both parts (761119P-01 and 761119P-02) will be graded separately. The final grade of the course is the weighted average of the grades of part 1 (4 cr) and part 2 (1 cr).
761119P-01: Three small midterm exams or final examination
761119P-02: Two laboratory exercises
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 0 – 5, where 0 = fail

Person responsible:
Timo Asikainen

521159P: Principles of Digital Fabrication, 5 cp

Validity: 01.01.2017 -
Form of study: Basic Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Georgi Georgiev
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits/ 135 hours of work
Language of instruction:
Finnish/English
Timing:
The course will be held in the spring semester, during period IV.

Learning outcomes:
In this course the students will learn the whole process of digital fabrication in FabLab. They will learn how to create an interactive 3D prototype, design mechanical parts for prototype, create basic electronics, implement a control logic for open hardware embedded board, and work in teams on project.

Contents:
The course teaches students to (1) design mechanical components with solid modeling tools, (2) build necessary electronics, and (3) implement software to a microcontroller, to create in FabLab a physical gadget that interacts with the world around it.

Mode of delivery:
Face-to-face teaching (Lectures)/ Individual work towards project

Learning activities and teaching methods:
Lectures 30h / Individual work 123h. There are sessions each week in FabLab where guidance is available (min total 16 h).

Target group:
This course is included in the computer science bachelor degree program. It is also available for all degree programs in the university. The course is offered to high-school students.

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
There is no recommended or required reading. The tutorials for tools and software (or links to such tutorials) will be provided in the course.

Assessment methods and criteria:
The course will be evaluated on the basis of the project delivered by the teams of students. Essential part of this reporting is the documentation of the project.

Grading:
pass/fail

Person responsible:
Georgi Georgiev

Working life cooperation:
-

Other information:
The course is also offered to high-school students with special study right and gives 5 ECTS credits that can be included in some bachelor's degrees at University of Oulu.
The exercises are in FabLab:
https://www.oulu.fi/fablab/node/32345

521160P: Introduction to Artificial Intelligence, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): English
Leikkaavuudet (E):
ay521160P Introduction to Artificial Intelligence (OPEN UNIV) 5.0 cp

ECTS Credits:
5 ECTS credits /135 hours of work

Language of instruction:
The language of instruction is Finnish with part of the material in English. The course is implemented as exercises done by groups of participants.

Timing:
The course is held during the period IV in the Spring semester, and it is recommended for the 1st or 2nd year.

Learning outcomes:
Upon completion the student the student will have the elementary skills to identify the potentially applicable artificial intelligence techniques for solving problems. He/she is able to recognize search, regression, classification, and clustering problems, and to explain the use of supervised and nonsupervised learning, performance measurements and metrics.

Contents:
1. Introduction: the role of artificial intelligence
2. Search methods: artificial intelligence in games
3. Regression methods: learning of causalities
4. Classification methods: recognition of categories
5. Clustering methods: identification of category structure
6. Supervised learning
7. Unsupervised learning

Mode of delivery:
The course is implemented face-to-face teaching

Learning activities and teaching methods:
Lectures 42h / group work 70 h / elf-study 23 h. The exercises are completed as group work in multi-disciplinary teams.

Target group:
The course is suitable for all students, but due to the nature of the exercises some elementary programming skills are needed in each student group.

Prerequisites and co-requisites:
No prerequisites

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course is modeled loosely based on the University of Washington's Coursera module “Machine learning foundations: a case study approach”

Assessment methods and criteria:
The course utilizes continuous assessment. During the course there are 6 intermediate exams of which 5 best ones will be used in final evaluation. The course includes 5 group exercises of which at least 4 need to be passed.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silvén

Working life cooperation:
The course includes guest presentations on the artificial intelligence applications

Compulsory Intermediate Studies

521109A: Electrical Measurement Principles, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Juha Saarela

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 136h

Language of instruction:
Course is lectured in Finnish. Lecture notes are available in English. Laboratory exercises and the exam can be done in English.

Timing:
Periods 1-2.

Learning outcomes:
1. is able to measure basic measurements with a multimeter,

2. is able to measure basic measurements with an oscilloscope,

3. is able to operate signal and function generators.

4. is able to estimate the validity of their measurements.

Contents:
Units of measures, standards of measures, analysis of errors, most commonly used analog and digital measuring methods, equipment and electrical safety regulations.

Mode of delivery:
Pure face-to-face teaching.

Learning activities and teaching methods:
Lectures 20h, laboratory exercises 16 h and self-study 100h.

Target group:
Course is compulsory for electrical engineering, information engineering and wellness technology students. Course is open for all students in University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Course material is in English and Finnish and can be found in Optima.
Course material is in English and Finnish and can be found in Optima.

Assessment methods and criteria:
Exam and passed lab exercises.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grade is based on exam and grade is on numerical scale 1-5.

Person responsible:
Juha Saarela

Working life cooperation:
None.

Other information:

521301A: Digital Techniques 1, 8 cp

Validity: 01.08.2015 -

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Antti Mäntyniemi

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

- 521412A-02 Digital Techniques 1, Exercise Work 0.0 cp
- 521412A Digital Techniques 1 6.0 cp
- 521412A-01 Digital Techniques, Exam 0.0 cp

ECTS Credits:
8

Language of instruction:
Finnish

Timing:
Periods 3-4

Learning outcomes:
1. After the course, students are able to ably binary number system and Boolean algebra in the form of switching algebra to the design and functional analyze of simple digital circuits.
2. In addition, they are also able to use in their designs graphical symbols specified in the dependency notation standard (SFS4612 ja IEEE/ANSI Std.91-1991) and different descriptions of function and structure of state machines.
3. Based on this knowledge, students are able to implement and analyze digital devices consisting of ordinary simple digital components.
4. After having assimilated the basic knowledge of digital technique, students are able to understand also the function and structure of micro controllers and micro processors.

Contents:
The principles of digital devices, Boolean algebra, numeral systems, operating principle, analysis and synthesis of combinational logic, flip-flops, operating principle, analysis and synthesis of sequential logic (state machines), physical characteristics of CMOS technology, registers and register transfers, computer memory, instruction set architecture, computer design basics, interfaces and data transmission.

Mode of delivery:
Classroom

Learning activities and teaching methods:
Lessons 40 h, weekly home assignments.

Target group:
Primarily 1st year electrical engineering and computer science and engineering BSc students. The course can be taken by the students of the university of Oulu.

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Text books, MIT OpenCourseWare and exercise literature.

Assessment methods and criteria:
Project work and home assignments
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Project work and home assignments are assessed on numerical scale 1-5. The average of project work and home assignments will be the final grade.

Person responsible:
Antti Mäntyniemi

Working life cooperation:
-

Other information:
-

521150A: Introduction to Internet, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Erkki Harjula, Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
All materials are in English, lectures are given in Finnish.

Timing:
Spring, period 4.

Learning outcomes:
Upon completing the course the student:
1. is able to explain internet's design principles, architecture, functionality and challenges
2. understands the role of the data link layer role and most important access network technologies
3. is able to explain the structure and most important protocols of the TCP/IP protocol stack
4. understands how most important internet applications and their protocols function
5. understands the principles of internet security and multimedia applications
6. is able to solve simple internet related problems
7. is able to program a small internet application

Contents:
Internet's design principles and architecture, data link layer and most important access network technologies, TCP/IP protocol stack and its most important protocols, most important Internet applications, principles of Internet security and multimedia, internet's challenges and Future Internet.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 32 h / problem solving exercises 14 h / laboratory exercises 12 h / course work 25 h / self-study 50 h. Problem solving exercises, laboratory exercises and course work are completed as group work.

Target group:
Computer Science and Engineering students, Information Processing Science students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Announced at the beginning of the course.

Assessment methods and criteria:
The course uses continuous assessment so that there are 3 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory course work.

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course uses numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None.

521286A: Computer Systems, 8 cp

Validity: 01.08.2015 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Teemu Leppänen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521142A Embedded Systems Programming 5.0 cp

ECTS Credits:
8 ECTS cr

Language of instruction:
Lecturing in Finnish, course and exercise material available in English.
Timing:
Autumn, periods 1-2.

Learning outcomes:
After completing the course
Student understands the basic computer architecture and organization.
Student understands CPU operation and basic datapath operation.
Student knows different number systems and data representations in computers.
Student is familiar of I/O operation with peripheral devices in general.
Student is able to implement small programs with the C programming language for general-purpose computers for embedded systems.
Student is able to implement small assembly language programs.
Student recognizes how embedded systems programming is different from programming general-purpose computers.

Contents:
Overview of computer architecture and organization, CPU and datapath, memory hierarchies, data types, interrupts, registers and I/O, basics of the C programming language and basics of assembly language. Embedded systems programming.

Mode of delivery:
Web-based and face-to-face teaching.

Learning activities and teaching methods:
Lectures (32h), course exercises (10-30h), laboratory exercise (3h) and two course projects, one is completed in a group and the other alone.

Target group:
2nd year students of computer science and engineering and 3rd year students of electrical engineering.

Prerequisites and co-requisites:
Elementary programming 521141P.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture notes and exercise material are available in the course website. Literature:

Assessment methods and criteria:
The assessment criteria is based on the learning outcomes of the course. Students complete the course exercises, participate to the laboratory exercise and complete the course projects. Assessment is based on the exercises and the course projects. More detailed information on assessment is published in the lecture material.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Teemu Leppänen
Working life cooperation:
Visiting lectures with experts from local industry are possible.

521457A: Software Engineering, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Röning
Opintokohenteen kielet (E): English
Leikkaavuudet (E):
 ay521457A Software Engineering (OPEN UNI) 5.0 cp

ECTS Credits:
5
Language of instruction:
Finnish. Material available in English.
Timing:
Spring, period 3.
Learning outcomes:
After finishing the course, the student knows the basic concepts of software and real-time systems, the different areas of project management, the phases of software development and the goals and tasks of them, is able to use structural methods for defining systems and knows the principles of object-oriented design and analysis. After the course, the student has basic knowledge of utilizing software tools for structural analysis and design.
Contents:
Problematics of software development and the special features of real-time systems in this regard. Software development is viewed in regard to project management and actual implementation: 1. process models, 2. requirements specification, 3. project management basics: design, metrics, risk management, resource management, follow up, quality control, product control, 4. software testing methods and strategies, 5. introduction to object-oriented analysis and design. 6. Agile software development.
Mode of delivery:
Face-to-face.
Learning activities and teaching methods:
The course consists of lectures and a laboratory design exercise. The course is completed by a final exam and a successfully completed exercise. Lectures 30 h, laboratory design (in period 3) 4 h, the rest of the self-study.
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:

Assessment methods and criteria:
Final exam and accepted laboratory exercise.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Röning

Working life cooperation:
-

Other information:
-

521145A: Human-Computer Interaction, 5 cp

Validity: 01.08.2012 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Simo Hosio

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Autumn, period 2

Learning outcomes:
1. Knowledge of the Human Computer Interaction (HCI) fundamentals
2. Knowledge of evaluation techniques
3. Knowledge of prototyping techniques
4. Knowledge of how HCI can be incorporated in the software development process

Contents:
Human and computer fundamentals, design and prototyping, evaluation techniques, data collection and analysis.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (12 h), exercises (16 h), and practical work (105 h). The course is passed with an approved practical work (several assignments). The implementation is fully English.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. The course involves some basic programming.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment is project-based. Students have to complete several individual exercises throughout the semester: 1: Using questionnaires; 2: Fitts law; 3: Advanced, team-based design exercise and essay. Passing criteria: all exercises must be completed, each receiving more than 50% of the available points. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Simo Hosio (Dr. Tech.)

Working life cooperation:
If relevant, guest lectures may be organized (optional).

811312A: Data Structures and Algorithms, 5 cp

- **Validity:** 01.08.2010 -
- **Form of study:** Intermediate Studies
- **Type:** Course
- **Unit:** Information Processing Science DP
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Ari Vesanen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

- 521144A Algorithms and Data Structures 6.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish. One English exercise group will be arranged.

Timing:
The course is held in the autumn semester, during period 2. It is recommended to complete the course in the 2nd autumn semester.

Learning outcomes:
After completing the course the student is able to
- describe the concept of algorithm
- explain correctness and time complexity of an algorithm
- describe the complexity classes of the sorting algorithms presented
- prove algorithm correctness
- estimate the running time of an algorithm related to the size of the input
- describe the data structures presented
- argue how to choose a data structure or an algorithm to an application
- apply basic graph algorithms
- construct a program that applies appropriate data structures to solve a given problem.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 48 h, exercises 21 h, exercise work 27 h, independent study 39 h.

Target group:
BSc students.

Prerequisites and co-requisites:
811120P Discrete structures or similar knowledge. Basic skills in programming.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Exam and assignment.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Ari Vesanen

031080A: Signal Analysis, 5 cp

Validity: 01.08.2015 -

Form of study: Intermediate Studies

Type: Course

Unit: Applied Mathematics and Computational Mathematics

Grading: 1 - 5, pass, fail

Teachers: Kotila, Vesa Iisakki

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

- 031050A Signal Analysis 4.0 cp

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish.

The course can be completed in English by a final exam or a retake exam.

Timing:
The course is held in the autumn semester, during period II. It is recommended to complete the course at the 2nd autumn semester.
Learning outcomes:
Upon completion of the course, the student:
- is able to calculate the energy, the power, the convolution and the frequency spectrum of discrete and analog, periodic and non-periodic deterministic signals
- is able to calculate the spectrum of a sampled signal
- is able to calculate the Hilbert transform and the complex envelope of a signal
- is able to study the stationarity, the mutual dependence and the frequency content of random signals by means of the auto- and cross-correlation functions, and the power- and cross-power spectral densities
- is able to study the effect of an LTI system on a signal

Contents:

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Lectures 28 h / Exercises 14 h / Self-study privately or in a group 93 h. The independent work includes individual STACK-assignments as online work.

Target group:
-

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses 031078P Matrix Algebra, 031021P Probability and Mathematical Statistics and 031077P Complex Analysis.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is completed with a final exam or a retake exam. In addition to the final exam, STACK-assignments given during the course are part of the assessment. The assessment of the course is based on the learning outcomes of the course.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Vesa Kotila

Working life cooperation:
-

Other information:
-

521453A: Operating Systems, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Röning

Opintokohteen kielet (E): English

Leikkaavuudet (E):
ay521453A Operating Systems (OPEN UNI) 5.0 cp

ECTS Credits:
5

Language of instruction:
In Finnish, material available in English

Timing:
Spring, period 4

Learning outcomes:
1. is capable of explaining the basic structure and functioning of operating system
2. is able to point the problems related to process management and synchronization as well as is able to apply learned methods to solve basic problems
3. is capable of explaining the cause and effect related to deadlocks and is able to analyse them related to common circumstances in operating systems
4. is able to explain the basics of memory management, the use of virtual memory in modern operating systems as well as the structure of the most common file-systems.

Contents:
Operating system structure and services, process management, process synchronization, deadlocks, memory management, virtual memory, file-systems

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 36 h, laboratory exercise 4 h, the rest as independent work. The laboratory work, including pre-exercise and guided exercise performed in a group of one or two students in the unix environment, covers core topics of the course.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521141P Elementary Programming, 521286A Computer Systems or 521142A Embedded Systems Programming and 521267A Computer Engineering

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed the final examination and accepted laboratory working.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Röning
Working life cooperation:
-
Other information:
-

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay521467A Digital Image Processing (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.

Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.

Recommended or required reading:
Assessment methods and criteria:
The course is completed by passing the exam and homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

Compulsory Bachelor's Thesis

900060A: Technical Communication, 2 cp

Validity: 01.08.2005 -
Form of study: Intermediate Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay900060A Technical Communication (OPEN UNI) 2.0 cp
470218P Written and Oral Communication 3.0 cp

Proficiency level:
-

Status:
This course unit is compulsory for students of Electrical Engineering, Computer Science, Communications Technologies and Engineering Mechanical Engineering, Process and Environmental Engineering.

Required proficiency level:
-

ECTS Credits:
2 credits

Language of instruction:
Finnish

Timing:
1st year: Process and Environmental Engineering
2nd year: Communications Technologies
3rd year: Geoscience; Mechanical Engineering; Electrical Engineering, Computer Science and Engineering Technologies

Mode of delivery:
Multimodal teaching

Learning activities and teaching methods:
Contact hours ca. 20 h and independent group work or self-study ca. 34 h.

Target group:

Prerequisites and co-requisites:

-

Recommended optional programme components:

-

Recommended or required reading:

Kauppinen, Anneli & Nummi, Jyrki & Savola, Tea: Tekniikan viestintä: kirjoittamisen ja puhumisen käsikirja (EDITA); Nykänen, Olli: Toimivaa tekstitä: Opas tekniikasta kirjoittaville (TEK) and material in Optima study environment.

Assessment methods and criteria:

Active participation in contact teaching, independent study and completion of given assignments. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:

Pass / fail

Person responsible:

Kaija Oikarainen

Toropainen, Outi

Working life cooperation:

-

Other information:

All students are required to attend the first meeting of the course unit so the work groups can be formed and work started in a timely and efficient manner. When signing up for the course unit, you should keep in mind that completing it requires a responsible attitude and a strong commitment to the work because the teamwork-based exercises rely heavily on the participation and activity of the students.

If the student is involved in the University's student associations or functions in a position of trust in university government, student union administration or Oulun Teekkariyhdistys ry (or in its subordinate guilds), he/she may be relieved of some of the group communication exercises. These compensatory actions must always be agreed upon separately with the course unit's teacher. The student must present an official statement from a person in charge of the governing body or association, which details the student's tasks and involvement with that body or association. Participation that took place over five years ago does not entitle the student to any compensation.

523991A: Bachelor's Thesis / Information Engineering, 8 cp

Validity: 01.08.2007 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

ECTS Credits:

8

Language of instruction:

Finnish. Bachelor's thesis can be written also in English.

Timing:

All periods

Learning outcomes:
The student is able to set goals for a given task. He can structure the topic coherently, with emphasis on the key issues. The student is able to use sources of information critically. He can present clearly his plan and solution implemented, justify the choices made, and assess the functionality of the solution with relevant testing and evaluation methods. In addition, he is able to compare the results against goals, and produce smooth, clear and finalized text based on technical and scientific writing practices of the field.

Contents:
The student selects the topic together with the supervisor.

Mode of delivery:
Independent work.

Learning activities and teaching methods:
Course is completed at the end of bachelor’s studies, typically, in the spring semester of the third study year. The work may be a theoretical or practically oriented study from a topic provided by a company or a research group.

Target group:
Computer Science and Engineering students.

Prerequisites and co-requisites:
Compulsory basic and intermediate studies and the module preparing for the option.

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
Bachelor’s thesis and the maturity test. Assessment Criteria at the University of Oulu can be found here. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass / fail

Person responsible:
Professors and researchers in the Department of Computer Science and Engineering.

Working life cooperation:
Yes

521008A: Computer Science and Engineering, The Maturity Test for Bachelor’s Degree, 0 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
0; The maturity test is integrated in the BSc Thesis credits (8 ECTS).

Language of instruction:
Finnish/Swedish/other

Timing:
periods 1-4

Learning outcomes:
After the maturity test, the student has demonstrated that his/her language skills meet the requirements of the work life.

Contents:
The aim of the maturity test is to confirm the student's familiarity of the thesis area as well as his/her command of the domestic language of his/her school education.

Mode of delivery:
The maturity test is written in a controlled event, on a topic provided by the thesis supervisor.

Learning activities and teaching methods:
Written essay, approximately 3 pages.

Target group:

Prerequisites and co-requisites:
The maturity test can be written after all other components of the BSc thesis are completed.

Recommended optional programme components:

Recommended or required reading:
BSc Thesis.

Assessment methods and criteria:
The maturity test is evaluated and approved by the thesis supervisor. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass/fail.

Person responsible:
The thesis supervisor.

Working life cooperation:

A452127: Module Preparing for the Option, Artificial Intelligence, 20 cp

Validity: 01.08.2018 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

20 ECTS cr

805305A: Introduction to Regression and Analysis of Variance, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Teachers: Jari Päkkilä
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
806112P Basic Methods of Data Analysis 10.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Finnish

Timing:
Autumn term, 2nd period. Recommended to be taken already in the 2nd year for those aiming at specialization in data science.

Learning outcomes:
Upon successful completion of the course the student can describe the basic concepts and main principles of regression and variance analysis with one or several explanatory variables, and is able to apply these methods in analysing a small scale data set as well as to apply the necessary computational tools.

Contents:
Linear regression and analysis of variance models for continuous outcomes; Formulation of the model and interpretation of parameters; Fitting the models, estimation of parameters, and prediction with the method of least squares: Basic methods of model criticism and diagnostics; Use of R environment in modelling.

Mode of delivery:
Contact teaching

Learning activities and teaching methods:
Lectures 28 h, practicals 14 h, and independent work. The practicals include both homework and computer class exercises.

Target group:
Students of mathematical sciences and other interested. The course belongs to core studies for those with an orientation to data science. It is a prerequisite for those doing M.Sc. in computational mathematics and data science having data science as the specialization profile. The course is useful also for students of the Faculty of Science and the Oulu Business School as well as those of computer science or computational engineering, who have statistics as a minor subject.

Prerequisites and co-requisites:
806113P Introduction to Statistics or 806119P A Second Course in Statistics or corresponding abilities acquired otherwise.

Recommended optional programme components:
Is assumed as preliminary knowledge in the course 805306A Introduction to Multivariate Methods.

Recommended or required reading:
Lecture notes and material distributed during lectures and practicals. Recommended reading: James, G., Witten, D., Hastie, T., Tibshirani, R. (2013). An Introduction to Statistical Learning with Applications in R}. Springer, New York; chapters 1-3. -- freely downloadable from http://www-bcf.usc.edu/~gareth/ISL/

Assessment methods and criteria:
Practical exercises and final exam. Passing the course requires adequate participation in practical sessions and sufficient homework activity.

Grading:
Numeric assessment scale from 1 to 5

Person responsible:
Jari Päkkilä

Working life cooperation:
521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English
Leikkaavuudet (E):
ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Period 3.

Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html
Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

811395A: Basics of Databases, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Iisakka, Juha Veikko
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish. If at least four non-Finnish students take the course, an English exercise group will be organised.

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 1st spring semester.

Learning outcomes:
After completing the course, students will understand what the databases are and what are their relevance to information systems. They know the concept model for building databases, design a relational database with a good quality and make queries. Students understand the transactions, schedules, serialiseability and recovery options.

Contents:
Conceptual modelling (ER- and EER-diagrams), relational model (theory, databases, query techniques and normalization), transactions.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 45 h (in Finnish), compulsory exercises 24 h, reading 20 h, exams 21 h and self-studying 23 h.

Target group:
BSc students.

Prerequisites and co-requisites:
The student knows basics of programming.

Recommended or required reading:

Assessment methods and criteria:
The course is divided to five parts. All parts must be passed in a year. Students must show they achieve at least half of required knowledge of each part.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Juha Iisakka

521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Mourad Oussalah

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face- to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills
Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.

A452149: Module Preparing for the Option, Applied computing, 10 - 30 cp

Validity: 01.08.2011 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

15 ECTS cr

521044A: Social Computing, 5 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr / 135 hours of work

Language of instruction:
Finnish; course can also be completed in English.
Timing:
The course is organised during the spring semester, during period III. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
By the end of the course, students:
-- possess the skills for analysing and designing socially intelligent applications that consist of individuals and computing devices in a variety of contexts.
-- apply the best practices and avoid major pitfalls in designing social services and applications
-- have advanced understanding of both the positive and negative real-world consequences/aspects of social computing systems
-- are able to explain human behaviour with social computing systems by using theories from such as sociology or psychology.

Contents:
Basics of social computing, computer-mediated human communication, designing social software, analysing social computing projects, crowdsourcing

Mode of delivery:
The course consists of lectures, exercises and individual / group-based assignments.

Learning activities and teaching methods:
The course consists of lectures (12h), exercises (16h), assignments and self-study (102h).

Target group:
M.Sc. and B.Sc. students. The course recommended for anyone who wishes to strengthen their expertise on human-computer interaction regards the social component.

Prerequisites and co-requisites:
Recommended: 521145A - Human-Computer Interaction

Recommended optional programme components:
The course is an independent entity, and does not require other courses from the student.

Recommended or required reading:
Selected academic publications, delivered upon starting the course.

Assessment methods and criteria:
The students are assessed based on the quality of the assignments. Some of the assignments are peer-evaluated and some are assessed by the course staff.
All the assessment criteria are based on the learning goals of the course.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical (1-5)

Person responsible:
Simo Hosio

Working life cooperation:
When possible, guest lectures by local companies are organized, to explain further how social computing drives business.

521040A: 3D Virtual Environments and Applications, 5 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Matti Pouke
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS / 135 hours of work.

Language of instruction:
Primary instruction language is Finnish. The course can also be completed in English.

Timing:
The course is organized during the spring semester, during period III. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
Upon completion of the course, the student will be able to:
- Independently develop 3D applications containing an interactive environment utilizing contemporary game engines
- Develop game-engine compatible 3D objects utilizing low-polygon modeling
- Develop game-engine compatible materials utilizing Physically Based Rendering workflow
- Understand the principles of 3D application design for different platforms (mobile, desktop, VR)

Contents:
Game engine architecture, basics of 3D graphics, 3D modeling and animation, textures and materials, interaction, multiplayer, game AI, performance and profiling, virtual reality

Mode of delivery:
The course consists of lectures, exercises and a group-based assignment.

Learning activities and teaching methods:
The course consists of lectures (20h), exercises (16h), a group assignment (60), self-study (35h) and a seminar (4h).

Target group:
B.Sc. students from applied computing. The course might also be useful for students of Information processing science or architecture.

Prerequisites and co-requisites:
No prerequisites. Programming experience is an advantage.

Recommended optional programme components:
The course is an independent entity, and does not require other simultaneous courses from the student.

Recommended or required reading:
Online-material that is delivered throughout the course.

Assessment methods and criteria:
The students are assessed according to the quality of the group assignment (an interactive 3D application and related documentation) that is presented at the seminar. The assessment criteria of the application is based on the learning goals of the course.

Grading:
Numerical (1-5).

Person responsible:
Matti Pouke

Working life cooperation:
When possible, one or multiple visiting lectures by local companies are organized. The topic of the guest lecture can be related to the special knowledge of the visitor, or industry needs for 3D application development.
521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face-to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5
Person responsible:
Mourad Oussalah
Working life cooperation:
-
Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.

A452126: Module Preparing for the Option, Computer Engineering, 20 cp

Validity: 01.08.2018 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

20 ECTS cr

521337A: Digital Filters, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr
Language of instruction:
Finnish, English study material available
Timing:
Spring, period 3.
Learning outcomes:
1. Student is able to specify and design respective frequency selective FIR and IIR filters using the most common methods.

2. Student is able to solve for the impulse and frequency responses of FIR and IIR filters given as difference equations, transfer functions, or realization diagrams, and can present analyses of the aliasing and imaging effects based on the responses of the f

3. Student is able to explain the impacts of finite word length in filter design.

4. Student has the necessary basic skills to use signal processing tools available in Matlab environment and to judge the results.
Contents:

Mode of delivery:
Face-to-face teaching (Lectures), independent work, group work

Learning activities and teaching methods:
Lectures and exercises 50 h. The design exercises familiarize the students with the methods of digital signal processing using the Matlab software package. The rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
031077P Complex Analysis, 031080A Signal Analysis

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course can be passed either with week exams or a final exam. In addition, the exercises need to be returned and accepted.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silven

Working life cooperation:
None.

521302A: Circuit Theory 1, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Rahkonen, Timo Erkki

Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish. Exams can be arranged in English on demand.

Timing:
Spring, period 4

Learning outcomes:
After the course the student can

1. write and solve the equations describing the operation of a given electrical circuit
2. solve the sinusoidal steady-state solution using complex phasor arithmetics

3. solve time responses of electric circuits

4. simplify electrical circuits e.g. using equivalent circuits

5. simulate simple circuits and choose an appropriate circuit simulation method

Contents:

Mode of delivery:
Classroom.

Learning activities and teaching methods:
30h lectures, 22h exercises, and a simulation exercise.

Target group:
Finnish BSc students.

Prerequisites and co-requisites:
Matrix algebra, complex arithmetics, differential equations.

Recommended optional programme components:
Background to all analog electronics courses.

Recommended or required reading:

Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

Other information:
-

521431A: Principles of Electronics Design, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Kostamovaara
Opintokohteen kielet (E): Finnish

ECTS Credits:
5
Language of instruction:
Finnish.

Timing:
Spring, period 3

Learning outcomes:
1. should be able to analyze and design such electronic building blocks as rectifiers, clamping circuits, amplifiers and CMOS logic elements using diodes, operational amplifiers and MOS and bipolar junction transistors.

Contents:
Analogue and digital circuits, basic amplifier related concepts, diodes and diode circuits, single stage bipolar and MOS transistor amplifiers, small signal modeling and analyzing ac properties of amplifiers, internal structures of digital circuits (mainly CMOS), MOS/CMOS switch, operational amplifier.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h and exercises 20 h.

Target group:
Students of Electrical engineering. Other students of the University of Oulu may also participate.

Prerequisites and co-requisites:
Circuit Theory I

Recommended optional programme components:
Recommended course Principles of Semiconductor Devices.

Recommended or required reading:
John Wiley & Sons 2015

Assessment methods and criteria:
Final or 2 mid-term exams.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara

Working life cooperation:
-

031076P: Differential Equations, 5 cp

Validity: 01.08.2015 -

Form of study: Basic Studies

Type: Course

Unit: Applied Mathematics and Computational Mathematics

Grading: 1 - 5, pass, fail

Teachers: Ruotsalainen Keijo

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ay031076P</td>
<td>Differential Equations (OPEN UNI)</td>
<td>5.0 cp</td>
</tr>
</tbody>
</table>
ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
Finnish

Timing:
The course is held in the spring, during period 4. It is recommended to complete the course at the 1th spring semester.

Learning outcomes:
The students can apply differential equations as a mathematical model. They can identify and solve various differential equations and they have knowledge on basic solvability of differential equations. The student can use the Laplace transform as a solution method.

Contents:
Ordinary differential equations of first and higher order.
Laplace transform with applications to differential equations.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 22 h / Self-study 85 h.

Target group:
1. year students of technical sciences, mathematics and physics.

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the course Calculus I.

Recommended optional programme components:
-

Recommended or required reading:
Recommended literature: Kreyszig, E: Advanced Engineering Mathematics;

Assessment methods and criteria:
The course can be completed by intermediate exams (2 exams) or by a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Keijo Ruotsalainen

Working life cooperation:
-

Other information:
-

H452229: Other Supplementary Module (Computer Science and Engineering), 15 cp

Validity: 01.08.2015 -

Form of study: Supplementary Module / Bachelor's Degree

Type: Study module

Unit: Computer Science and Engineering DP
Supplementary module primarily consists of a preparatory module of another orientation (Artificial Intelligence, Applied Computing or Computer Engineering). Another alternative is to select the supplementary module from the fields of Electrical Engineering, Information Processing Science, Industrial Engineering and Management, Working life & Entrepreneurship, or Economics and Management. In all cases the extent of the supplementary module is 15 ECTS cr.

A452127: Module Preparing for the Option, Artificial Intelligence, 20 cp

Validity: 01.08.2018 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

20 ECTS cr

805305A: Introduction to Regression and Analysis of Variance, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Teachers: Jari Päkkilä
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

806112P Basic Methods of Data Analysis 10.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
Finnish
Timing:
Autumn term, 2nd period. Recommended to be taken already in the 2nd year for those aiming at specialization in data science.

Learning outcomes:
Upon successful completion of the course the student can describe the basic concepts and main principles of regression and variance analysis with one or several explanatory variables, and is able to apply these methods in analysing a small scale data set as well as to apply the necessary computational tools.

Contents:
Linear regression and analysis of variance models for continuous outcomes; Formulation of the model and interpretation of parameters; Fitting the models, estimation of parameters, and
prediction with the method of least squares: Basic methods of model criticism and diagnostics; Use of R environment in modelling.

Mode of delivery:
Contact teaching

Learning activities and teaching methods:
Lectures 28 h, practicals 14 h, and independent work. The practicals include both homework and computer class exercises.

Target group:
Students of mathematical sciences and other interested. The course belongs to core studies for those with an orientation to data science. It is a prerequisite for those doing M.Sc. in computational mathematics and data science having data science as the specialization profile. The course is useful also for students of the Faculty of Science and the Oulu Business School as well as those of computer science or computational engineering, who have statistics as a minor subject.

Prerequisites and co-requisites:
806113P Introduction to Statistics or 806119P A Second Course in Statistics or corresponding abilities acquired otherwise.

Recommended optional programme components:
Is assumed as preliminary knowledge in the course 805306A Introduction to Multivariate Methods.

Recommended or required reading:

Assessment methods and criteria:
Practical exercises and final exam. Passing the course requires adequate participation in practical sessions and sufficient homework activity.

Grading:
Numeric assessment scale from 1 to 5

Person responsible:
Jari Päkkilä

Working life cooperation:
No

521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Abdenour Hadid

Opintokohteen kielet (E): English

Leikkaavuudet (E):
- ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English
Timing:
Period 3.

Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html

Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

811395A: Basics of Databases, 5 cp
Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Iisakka, Juha Veikko
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish. If at least four non-Finnish students take the course, an English exercise group will be organised.

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 1st spring semester.

Learning outcomes:
After completing the course, students will understand what the databases are and what are their relevance to information systems. They know the concept model for building databases, design a relational database with a good quality and make queries. Students understand the transactions, schedules, serialiseability and recovery options.

Contents:
Conceptual modelling (ER- and EER-diagrams), relational model (theory, databases, query techniques and normalization), transactions.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 45 h (in Finnish), compulsory exercises 24 h, reading 20 h, exams 21 h and self-studying 23 h.

Target group:
BSc students.

Prerequisites and co-requisites:
The student knows basics of programming.

Recommended or required reading:

Assessment methods and criteria:
The course is divided to five parts. All parts must be passed in a year. Students must show they achieve at least half of required knowledge of each part.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Juha Iisakka
521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face-to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.

A452149: Module Preparing for the Option, Applied computing, 10 - 30 cp

Validity: 01.08.2011 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

15 ECTS cr

521044A: Social Computing, 5 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr / 135 hours of work

Language of instruction:
Finnish; course can also be completed in English.

Timing:
The course is organised during the spring semester, during period III. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
By the end of the course, students:
-- possess the skills for analysing and designing socially intelligent applications that consist of individuals and computing devices in a variety of contexts.
-- apply the best practices and avoid major pitfalls in designing social services and applications
-- have advanced understanding of both the positive and negative real-world consequences
/aspects of social computing systems
-- are able to explain human behaviour with social computing systems by using theories from
such as sociology or psychology.

Contents:
Basics of social computing, computer-mediated human communication, designing social software,
analysing social computing projects, crowdsourcing

Mode of delivery:
The course consists of lectures, exercises and individual / group-based assignments.

Learning activities and teaching methods:
The course consists of lectures (12h), exercises (16h), assignments and self-study (102h).

Target group:
M.Sc. and B.Sc. students. The course recommended for anyone who wishes to strengthen their
expertise on human-computer interaction regards the social component.

Prerequisites and co-requisites:
Recommended: 521145A - Human-Computer Interaction

Recommended optional programme components:
The course is an independent entity, and does not require other courses from the student.

Recommended or required reading:
Selected academic publications, delivered upon starting the course.

Assessment methods and criteria:
The students are assessed based on the quality of the assignments. Some of the assignments are
peer-evaluated and some are assessed by the course staff.
All the assessment criteria are based on the learning goals of the course.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical (1-5)

Person responsible:
Simo Hosio

Working life cooperation:
When possible, guest lectures by local companies are organized, to explain further how social
computing drives business.

521040A: 3D Virtual Environments and Applications, 5 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Matti Pouké
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS / 135 hours of work.

Language of instruction:
Primary instruction language is Finnish. The course can also be completed in English.
Timing:
The course is organized during the spring semester, during period III. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
Upon completion of the course, the student will be able to:

- Independently develop 3D applications containing an interactive environment utilizing contemporary game engines
- Develop game-engine compatible 3D objects utilizing low-polygon modeling
- Develop game-engine compatible materials utilizing Physically Based Rendering workflow
- Understand the principles of 3D application design for different platforms (mobile, desktop, VR)

Contents:
Game engine architecture, basics of 3D graphics, 3D modeling and animation, textures and materials, interaction, multiplayer, game AI, performance and profiling, virtual reality

Mode of delivery:
The course consists of lectures, exercises and a group-based assignment.

Learning activities and teaching methods:
The course consists of lectures (20h), exercises (16h), a group assignment (60), self-study (35h) and a seminar (4h).

Target group:
B.Sc. students from applied computing. The course might also be useful for students of Information processing science or architecture.

Prerequisites and co-requisites:
No prerequisites. Programming experience is an advantage.

Recommended optional programme components:
The course is an independent entity, and does not require other simultaneous courses from the student.

Recommended or required reading:
Online-material that is delivered throughout the course.

Assessment methods and criteria:
The students are assessed according to the quality of the group assignment (an interactive 3D application and related documentation) that is presented at the seminar. The assessment criteria of the application is based on the learning goals of the course.

Grading:
Numerical (1-5).

Person responsible:
Matti Pouke

Working life cooperation:
When possible, one or multiple visiting lectures by local companies are organized. The topic of the guest lecture can be related to the special knowledge of the visitor, or industry needs for 3D application development.

521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face- to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah
Working life cooperation:

-

Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.

A452126: Module Preparing for the Option, Computer Engineering, 20 cp

Validity: 01.08.2018 -
Form of study: Module Preparing for the Option
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

20 ECTS cr

521337A: Digital Filters, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr
Language of instruction:
Finnish, English study material available
Timing:
Spring, period 3.
Learning outcomes:
1. Student is able to specify and design respective frequency selective FIR and IIR filters using the most common methods.

2. Student is able to solve for the impulse and frequency responses of FIR and IIR filters given as difference equations, transfer functions, or realization diagrams, and can present analyses of the aliasing and imaging effects based on the responses of the filters.

3. Student is able to explain the impacts of finite word length in filter design.

4. Student has the necessary basic skills to use signal processing tools available in Matlab environment and to judge the results.

Contents:
realizations, 7. IIR filter design and realizations, 8. Finite word length effects and analysis, 9. Multi-rate signal processing.

Mode of delivery:
Face-to-face teaching (Lectures), independent work, group work

Learning activities and teaching methods:
Lectures and exercises 50 h. The design exercises familiarize the students with the methods of digital signal processing using the Matlab software package. The rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
031077P Complex Analysis, 031080A Signal Analysis

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course can be passed either with week exams or a final exam. In addition, the exercises need to be returned and accepted.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silven

Working life cooperation:
None.

521302A: Circuit Theory 1, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish. Exams can be arranged in English on demand.

Timing:
Spring, period 4

Learning outcomes:
After the course the student can

1. write and solve the equations describing the operation of a given electrical circuit
2. solve the sinusoidal steady-state solution using complex phasor arithmetics

3. solve time responses of electric circuits

4. simplify electrical circuits e.g. using equivalent circuits

5. simulate simple circuits and choose an appropriate circuit simulation method

Contents:

Mode of delivery:
Classroom.

Learning activities and teaching methods:
30h lectures, 22h exercises, and a simulation exercise.

Target group:
Finnish BSc students.

Prerequisites and co-requisites:
Matrix algebra, complex arithmetics, differential equations.

Recommended optional programme components:
Background to all analog electronics courses.

Recommended or required reading:

Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

Other information:
-

521431A: Principles of Electronics Design, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Juha Kostamovaara

Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish.
Timing:
Spring, period 3

Learning outcomes:
1. should be able to analyze and design such electronic building blocks as rectifiers, clamping circuits, amplifiers and CMOS logic elements using diodes, operational amplifiers and MOS and bipolar junction transistors.

Contents:
Analogue and digital circuits, basic amplifier related concepts, diodes and diode circuits, single stage bipolar and MOS transistor amplifiers, small signal modeling and analyzing ac properties of amplifiers, internal structures of digital circuits (mainly CMOS), MOS/CMOS switch, operational amplifier.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h and exercises 20 h.

Target group:
Students of Electrical engineering. Other students of the University of Oulu may also participate.

Prerequisites and co-requisites:
Circuit Theory I

Recommended optional programme components:
Recommended course Principles of Semiconductor Devices.

Recommended or required reading:
John Wiley & Sons 2015

Assessment methods and criteria:
Final or 2 mid-term exams.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara

Working life cooperation:
-

031076P: Differential Equations, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Ruotsalainen Keijo
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay031076P Differential Equations (OPEN UNI) 5.0 cp
ECTS Credits:
5 ECTS credits / 135 hours of work
Language of instruction:
Finnish
Timing:
The course is held in the spring, during period 4. It is recommended to complete the course at the 1st spring semester.

Learning outcomes:
The students can apply differential equations as a mathematical model. They can identify and solve various differential equations and they have knowledge on basic solvability of differential equations. The student can use the Laplace transform as a solution method.

Contents:
Ordinary differential equations of first and higher order. Laplace transform with applications to differential equations.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 22 h / Self-study 85 h.

Target group:
1. year students of technical sciences, mathematics and physics.

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the course Calculus I.

Recommended optional programme components:
-

Recommended or required reading:
Recommended literature: Kreyszig, E: Advanced Engineering Mathematics;

Assessment methods and criteria:
The course can be completed by intermediate exams (2 exams) or by a final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Keijo Ruotsalainen

Working life cooperation:
-

Other information:
-

Supplementary Module: Electrical Engineering (15 ECTS cr)

521302A: Circuit Theory 1, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish

ECTS Credits:
5
Language of instruction:
Finnish. Exams can be arranged in English on demand.
Timing:
Spring, period 4
Learning outcomes:
After the course the student can
1. write and solve the equations describing the operation of a given electrical circuit
2. solve the sinusoidal steady-state solution using complex phasor arithmetics
3. solve time responses of electric circuits
4. simplify electrical circuits e.g. using equivalent circuits
5. simulate simple circuits and choose an appropriate circuit simulation method

Contents:
Mode of delivery:
Classroom.
Learning activities and teaching methods:
30h lectures, 22h exercises, and a simulation exercise.
Target group:
Finnish BSc students.
Prerequisites and co-requisites:
Matrix algebra, complex arithmetics, differential equations.
Recommended optional programme components:
Background to all analog electronics courses.
Recommended or required reading:
Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed
Read more about assessment criteria at the University of Oulu webpage..
Grading:
1-5
Person responsible:
Prof. Timo Rahkonen
Working life cooperation:
-
521431A: Principles of Electronics Design, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Kostamovaara
Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish.

Timing:
Spring, period 3

Learning outcomes:
1. should be able to analyze and design such electronic building blocks as rectifiers, clamping circuits, amplifiers and CMOS logic elements using diodes, operational amplifiers and MOS and bipolar junction transistors.

Contents:
Analogue and digital circuits, basic amplifier related concepts, diodes and diode circuits, single stage bipolar and MOS transistor amplifiers, small signal modeling and analyzing ac properties of amplifiers, internal structures of digital circuits (mainly CMOS), MOS/CMOS switch, operational amplifier.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h and exercises 20 h.

Target group:
Students of Electrical engineering. Other students of the University of Oulu may also participate.

Prerequisites and co-requisites:
Circuit Theory I

Recommended optional programme components:
Recommended course Principles of Semiconductor Devices.

Recommended or required reading:
John Wiley & Sons 2015

Assessment methods and criteria:
Final or 2 mid-term exams.
Read more about [assessment criteria](https://www.oulu.fi) at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara
Juha Kostamovaara

Working life cooperation:
-

521077P: Introduction to Electronics, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jari Hannu

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay521077P Introduction to Electronics (OPEN UNI) 5.0 cp
 521209A Electronics Components and Materials 2.0 cp

ECTS Credits:
5 ECTS credits / 132,5 hours of work

Language of instruction:
Finnish

Timing:
The course is held in the 1st period. It is recommended to complete the course at the 1st autumn semester.

Learning outcomes:
1. Student understands the block structures of electronic devices and their signal processing paths.

2. Student can identify the interfaces of analog and digital electronics and the software operations.

3. Student is able to identify and classify electronics components and compare their properties.

4. Students can describe electric conductivity and apply the phenomenon on designing and choosing resistors.

5. Student is able to estimate the difference between dielectric materials and how they affect the properties of a capacitor.

6. Student can compare properties of magnetic materials and how identify they effect on inductive components.

7. Student can identify semiconductivity and is able to list typical semiconductor components.

8. Student can classify different circuit board techniques and is able to choose proper coupling techniques.

9. Student can identify the future technologies of electronics materials.

Contents:

Mode of delivery:
Face-to-face teaching and independent work.

Learning activities and teaching methods:
The implementation methods of the course vary. The course will be arranged utilizing activating teaching methods agreed on together with the students. There will be 48 hours of guided teaching events and 84.5 hours of teaching without guidance either privately or in a group.

Target group:
First year electrical engineering students.

Prerequisites and co-requisites:
No prerequisites.

Recommended optional programme components:
-

Recommended or required reading:
Lecture material; Materials science and engineering: an introduction / William D. Callister, chapters 1, 18 and 20; Electronic components and technology / S. J. Sangwine. Chapters 1, 2, 3, 5 and 7

Assessment methods and criteria:
This course utilizes continuous assessment. During the course, there are two intermediate exams. In addition students will make course work which are graded. The assessment of the course is based on the learning outcomes of the course. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Jari Hannu

Working life cooperation:
No

Other information:
-

521329A: Hands-on Course in Wireless Communication, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Kari Heikki Antero Kärkkäinen

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
- 521316A Broadband Communications Systems 4.0 cp

ECTS Credits:
5 ects credits

Language of instruction:
Finnish

Timing:
The course is organized in the autumn semester during 1. period. It is recommended to complete the course at the 3rd year autumn semester.
Learning outcomes:

After completing course a student
1. is acquainted with the principles of universal software radio peripheral (USRP) technologies and their implementation. That is obtained with the aid of small laboratory exercise work tasks which require understanding theories of basic analog and digital carrier modulation methods.
2. understands the idea of complex-valued I&Q vector-signals, which exist behind software radios and measurement techniques.
3. has learned how to use universal software radio peripheral transceivers, and how to observe them in laboratory environment. Student also understands how to control these FPGA-based (field-programmable gate array) devices with the aid of control software platforms (e.g. Matlab-Simulink, LabVIEW, GNU Radio) and understands their limitations.
4. has implemented and tested various basic modulation methods both in radio channel and coaxial cable channel, and has made real observations and measurements in time-frequency domain using USRP control software.
5. has learned to find and deduct radio signal spectras and time waveforms with the aid of time-frequency analysis.
6. can test and model in laboratory environment during course and later in work life various problems and solutions dealing with wireless communication before construction of a prototype device.

Contents:

Students are introduced to the wireless communication systems and their phenomena with the aid of guided laboratory exercises. The course utilizes National Instruments USRP-2900 universal software radio peripheral transceiver

Mode of delivery:

Face-to-face teaching and guided laboratory exercises in a class. Self-studying at home between work themes. Writing of exercise work reports.

Learning activities and teaching methods:

Course consist of small wireless communication tasks using various analog and digital carrier modulations. Number of exercises is 7. The course utilizes National Instruments USRP-2900 universal software radio peripheral transceiver which is controlled via laptop computer’s USB connection. Transmission and receiving of I&Q signals are controlled with Matlab. Students are required to have competent laptop with Matlab license. If necessary, students have to participate in short briefing lectures to get instructions for each exercise work. Exercises are done by a group of 2 students. Results are summarized in a written report for each task according to given instructions. Students have to return report two weeks after each work session.

Course contains 7 hours lectures for work instructions and 28 hours of measurement work. In addition, students perform self-study and reporting at home.

Target group:

Third year bachelor level electrical engineering students

Prerequisites and co-requisites:

031080A Signal analysis and 521330A Telecommunication engineering

Recommended optional programme components:

The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

No course book. Lecture slides, and problem assignments together with work instruction are given during the course. Materials will be placed into TTK-Optima environment. In addition, some NI USRP-2900 related material will be placed into Optima. Some materials and links can be found also from the Noppa page: https://noppa.oulu.fi/noppa/kurssi/521329a/etusivu

Assessment methods and criteria:
All students of a group have to participate in introductory face-to-face teaching and will prepare a final report according teacher's instructions. Before student's mandatory absence, a student has to negotiate that with a teacher. Participation in all introductory lectures and laboratory exercises is mandatory for all members of a group. Presence of each student is monitored by a teacher. In addition, final report has to be in form required by a course teacher, and the content has to be satisfying from acceptance standpoint. Course does not contain final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
For each exercise work grading is done with the numbers 0...5. Grade 0 is interpreted as failed. Each work must have at least grade 1. Final grade is an average of sub-tasks with standard rounding technique.

Person responsible:
Kari Kärkkäinen

Working life cooperation:
-

Other information:
-

521104P: Introduction to Material Physics, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jani Peräntie, Juha Hagberg
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 132.5 hours of work

Language of instruction:
Finnish.

Timing:
Autumn semester period 1

Learning outcomes:
1. is able to explain the principal solid state crystal structures
2. can explain how propagating waves and electrons in a crystal lattice can be presented
3. can explain the free electron model of metals and the formation of the energy band structure in crystals and their significance to the electrical properties of materials
4. is able to explain the basic phenomena related to semiconductors and is able to calculate the charge carrier concentrations in them

Contents:

Mode of delivery:
Will be notified in the beginning of lectures
Learning activities and teaching methods:
Will be notified in the beginning of lectures

Target group:
Second year electrical engineering students

Prerequisites and co-requisites:
Basic physics and mathematics.

Recommended optional programme components:
Basic course for 521071A Principles of Semiconductor Devices.

Recommended or required reading:

Assessment methods and criteria:
Will be notified in the beginning of lectures.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Will be notified in the beginning of lectures. Read more about assessment criteria at the University of Oulu webpage.

Person responsible:
Juha Hagberg

Working life cooperation:
No

Other information:

521071A: Principles of Semiconductor Devices, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jani Peräntie, Juha Hagberg
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
521205A Principles of Semiconductor Devices 4.5 cp

ECTS Credits:
5 ECTS credits / 132,5 hours of work

Language of instruction:
Finnish

Timing:
Spring semester period 3

Learning outcomes:
1. will be able to explain physical phenomena in semiconductor materials and junctions; describe main types and characteristics of semiconductor diodes and transistors
2. will be able to explain physical principles of operation and to estimate ideal characteristics of the devices

Contents:

Mode of delivery:
Will be notified in the beginning of lectures.

Learning activities and teaching methods:
Will be notified in the beginning of lectures.

Target group:
Second year electrical engineering students

Prerequisites and co-requisites:
521104P Introduction to materials physics.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Will be notified in the beginning of lectures.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Hagberg

Working life cooperation:
No.

Other information:
-

521303A: Circuit Theory 2, 5 cp

Validity: 01.08.2015 -

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Rahkonen, Timo Erkki

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

521306A Circuit Theory 2 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Autumn, period 2

Learning outcomes:
After the course the student can:
1. use Laplace transform for solving time and frequency response of electric circuits;
2. derive continuous-time transfer functions;
3. solve their poles and zeros and understand the meaning of those;
4. draw the pole-zero map and Bode plots of any given transfer function;
5. construct 2-port parameter models of a given circuit

Contents:
Use of Laplace transform in network analysis. Properties of network functions, poles and zeros, Boden magnitude and phase plots. 2-port parameter models.

Mode of delivery:
Classroom

Learning activities and teaching methods:
30h lectures, 22 h exercises, and simulation exercises.

Target group:
Finnish BSc students

Prerequisites and co-requisites:
Basics of circuit theory, differential equations.

Recommended optional programme components:
Continuation for Circuit theory 1. Needed in most analog electronics courses.

Recommended or required reading:

Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical 1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

521432A: Electronics Design I, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish.

Timing:
Spring, period 4.
Learning outcomes:
1. should be able to recount the principles covering the design of multistage amplifiers
2. should be able to analyze and set the frequency response of a transistor amplifier
3. should be able to make use of feedback to improve the properties of an amplifier in the desired manner
4. should be able to analyze the stability of a given degree of feedback amplification and to dimension an amplifier correctly to ensure stability
5. should be able to describe the principles governing the design of power amplifiers
6. should be able to make widespread use of operational amplifiers for realizing electronic circuits and to take account of the limitations imposed by the non-idealities inherent in operational amplifiers
7. should be able to design low-frequency oscillators, to explain the operating principles of radio frequency oscillators and tuned amplifiers

Contents:
Differential amplifier, frequency response of a transistor amplifier, feedback, stability and nonidealities of a feedback amplifier, terminals and power amplifiers, oscillators and tuned amplifiers, non-adventional operations amplifier, applications of operational amplifier, comparator

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 40 h and exercises 20 h.

Target group:
Students of Electrical engineering. Other students of the University of Oulu may also participate.

Prerequisites and co-requisites:
Principles of electronic design

Recommended optional programme components:
This course is required when participating in Laboratory Exercises on Analogue Electronics.

Recommended or required reading:
John Wiley & Sons 2015

Assessment methods and criteria:
Final or 2 mid-term exams.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara

Working life cooperation:
-

Other information:
-
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jukka Lahti
Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
In Finnish. Exams can be arranged in English on demand.

Timing:
Autumn, period 2

Learning outcomes:
1. knows the common architectures of synchronous digital logic circuits, and the building blocks they consist of, and can design digital circuits that realize complex data and signal processing functions.
2. knows most common combinational and sequential logic based building blocks, and can use them to design and realize complex digital circuits.
3. knows digital logic design methods, such as use of hardware description languages, functional verification using simulation, realization of logic with a logic synthesis program, and functional and timing verification of gate-level models.

Contents:

Mode of delivery:
Classroom

Learning activities and teaching methods:
Lectures 24h/ exercises 30h (group work)/independent work 84h.

Target group:
Primarily electrical and computer science and engineering students. Also other student of University of Oulu can take the course.

Prerequisites and co-requisites:
Digital techniques 1

Recommended optional programme components:
No

Recommended or required reading:
Lecture textbook (in finnish) and literature announced during course.

Assessment methods and criteria:
Final exam and a design exercise, or weekly assignments consisting of theoretical and design exercises. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5, The grade is the average of the exam and the design exercise.

Person responsible:
Jukka Lahti
Working life cooperation:
No

Other information:
-

521384A: Basics in Radio Engineering, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Risto Vuohtoniemi, Aarno Pärssinen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Autumn, 1st period

Learning outcomes:
1. can define what radio engineering is and list its separate areas and applications from FM-radio to 5G systems.

2. understands the meaning of Maxwell's equations and can solve the propagation of radio waves in a homogeneous medium.

3. can solve EM-fields at an interface of two lossless media.

4. knows main properties of most common transmission line types and can solve EM-fields for coaxial lines and rectangular waveguides.

5. can utilize the methods based on the Smith chart for the impedance matching of microwave circuits and antennas.

6. understands the meaning of Y-, Z-, and S-matrix and can use S-parameters for solving characteristics of microwave circuits.

7. can describe the operation of passive transmission line devices, resonators, filters and circuits based on the semiconductor devices.

8. knows the terms to describe antenna characteristics and can define radiation patterns of simple antennas and antenna arrays.

9. knows different propagation phenomena and can evaluate, which phenomena are relevant in different radio systems in different frequency bands.

10. can describe the structure of a typical radio system and can calculate the S/N-ratio link budget for a radio system on a free-space radio link.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 26 h and exercises 16 h including graded exercise problems.

Target group:
3rd year bachelor’s degree students.

Prerequisites and co-requisites:
Elementary knowledge of the electromagnetic theory.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Risto Vuohtoniemi, Aarno Pärssinen.

Working life cooperation:

Other information:

521070A: Introduction to Microfabrication Techniques, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teirikangas, Merja Elina
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
- 521218A Introduction to Microelectronics and Micromechanics 4.0 cp
- 521218A-02 Introduction to Microelectronics and Micromechanics, demonstration 0.0 cp
- 521218A-03 Introduction to Microelectronics and Micromechanics, exercise 0.0 cp
- 521218A-01 Introduction to microelectronics and micromechanics, exam 0.0 cp

ECTS Credits:
Language of instruction:
Finnish

Timing:
2nd period

Learning outcomes:
1. Can present the process of source materials used to manufacture micro- and nanoelectronics/mechanics and analyse the required material properties depending of the application
2. Can explain the fabrication methods and discuss the characteristic features of each fabrication method, including their utilisation and restrictions.
3. Is capable of designing a fabrication process for a simple microelectronics application and is able to identify the process steps also in complex application.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (20 hours) and exercises (10+10).

Target group:
Electrical engineering bachelor degree students.

Prerequisites and co-requisites:
Course content of 521104P Introduction to Materials Physics and 521071A Principles of Semiconductor Devices.

Recommended optional programme components:
-

Recommended or required reading:
Lecture notes, Franssila Sami: Introduction to Microfabrication

Assessment methods and criteria:
Final written exam and passes laboratory exercises.

Grading:
Numerical grading 1-5.

Person responsible:
Merja Teirikangas

Working life cooperation:
No

521304A: Filters, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521331A Filters 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish. Exams can be arranged in English on demand.

Timing:
Spring, period 3

Learning outcomes:
After the course the student can:
1. draw a pole-zero map for a given transfer function;
2. perform impedance and frequency scaling for component values;
3. choose an appropriate prototype filter and filter degree;
4. synthesize passive RLC filters;
5. synthesize active opamp based filters;
6. can compare various filter technologies;
7. understands the basics of scaling the dynamic range of active filters

Contents:
Filter types and prototypes, component scaling. Synthesis of active and passive filters. Sensitivity analysis and scaling of the dynamic range.

Mode of delivery:
Lectures, excercise and design excercise

Learning activities and teaching methods:
30 h lectures, 16 h exercises. A design excercise.

Target group:
Finnish electrical engineering students

Prerequisites and co-requisites:
Basics of circuit theory, Bode plots and analog design.

Recommended optional programme components:
Course Digital filters expands the topic into digital domain.

Recommended or required reading:

Assessment methods and criteria:
Circuit is examined by a final exam. Also the obligatory design exercise must be passed. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

Other information:
-

521092A: Electronic Measurement Techniques, 5 cp
Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Saarela
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521171A Electronic Measurement Techniques 6.5 cp
 521171A-01 Electronic measurement techniques, exam 0.0 cp
 521171A-02 Electronic measurement techniques, exercise work 0.0 cp
 521430A Electronic Measurement Techniques 6.0 cp

ECTS Credits:
5 ECTS credits / 136 h

Language of instruction:
Course is lectured in Finnish. Lecture notes are available in English. Calculation exercises, laboratory exercises and the exam can be done in English.

Timing:
Period 4

Learning outcomes:
1. can name the electrical measurement technique terminology associated to measurement systems, sensors and buses to candidate level.
2. can plan and implement complicated measurements with oscilloscopes
3. can plan and implement basic measurements with spectrum analyzers
4. can plan and implement basic measurements with light detectors
5. can name common sources of noise and interference
6. name means to control noise and interference
7. can name methods to realize electrical quantities

Contents:
Broad view to electronic measurements.

Mode of delivery:
Pure face-to-face teaching.

Learning activities and teaching methods:
Lectures and calculation exercises 30h, laboratory exercises 16 h and self-study 90h

Target group:
Course is compulsory for most electrical engineering students. Course is open for all students in University of Oulu.

Prerequisites and co-requisites:
Courses of Electrical Measurement Principles and Analogue Electronics I are recommended.

Recommended optional programme components:
The course replaces previous courses with same name, but different credits and code.

Recommended or required reading:
Course material is in English and Finnish and can be found in Optima.

Assessment methods and criteria:
Exam and passed lab exercises.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grade is based on exam and grade is on numerical scale 1-5.

Person responsible:
Juha Saarela

Working life cooperation:
None.

Other information:

521307A: Laboratory Exercises on Analogue Electronics, 5 cp

- **Validity:** 01.08.2015 -
- **Form of study:** Intermediate Studies
- **Type:** Course
- **Unit:** Electrical Engineering DP
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Kari Määttä
- **Opintokohteen kielet (E):** Finnish
- **Leikkaavuudet (E):**
 - 521316A Broadband Communications Systems 4.0 cp
 - 521433A Laboratory Exercises on Analogue Electronics 3.0 cp

- **ECTS Credits:**
 5
- **Language of instruction:**
 Finnish
- **Timing:**
 Autumn, periods 1-2

- **Learning outcomes:**
 1. is able to design basic electronic structural blocks and verify their functionality in a CAD simulation environment.
 2. is able independently to realize and test a small-scale design object employing analogue circuit techniques.

 Design exercises to deepen the understanding of the material presented in Principles of Electronics Design and Analogue Electronics I.

- **Contents:**
 Passive RC-circuits, diodes and their applications, bipolar transistor amplifiers, operational amplifiers and their applications, MOS-transistor, tuned circuit and amplifier, oscillator.

- **Mode of delivery:**
 Face-to-face teaching, partially independent work

- **Learning activities and teaching methods:**
Independent design and simulating exercise 26 h and guided laboratory work 15 h. Group size is 1 - 2 students.

Target group:
Primarily in electrical engineering students. Other University of Oulu students can complete the course.

Prerequisites and co-requisites:
Student must participate to courses Principles of Electronics Design and Electronics Design I, or he/she must have passed these courses earlier.

Recommended optional programme components:
Parallel to Electronics Design I.

Recommended or required reading:
Lecture notes of Principles of Electronic design and Electronics design 1.

Assessment methods and criteria:
Teacher accepts student's design work and measurement results in laboratory. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes verbal grading scale pass or fail

Person responsible:
Kari Määttä

Working life cooperation:
No

Other information:
-

Supplementary Module: Information Processing Science. (15 ECTS cr)

810136P: Introduction to Information Processing Sciences, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Henrik Hedberg
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay810136P Introduction to information processing sciences (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the autumn semester, during period 1. It is recommended to complete the course at the 1st autumn semester. Another implementation, targeted especially for Open University and minor students, is held in the spring semester, during period 3.

Learning outcomes:
After passing the course, a student will be able to
- describe the disciplines of Information Processing Science,
- explain the essential Information Processing Science concepts,
- name historically significant and current research topics in Information Processing Science,
- identify the characteristics and requirements of work tasks in the field of Information Processing,
- retrieve, analyse, contest and classify information related to those, as well as
- discuss and report in written form on those.

Contents:
The course consists of lectures on disciplines, essential concepts, historically significant and current research as well practical work life in Information Processing Science. In addition, the student will familiarize with scientific work skills by listening, discussing, reading, thinking critically and creatively, retrieving data, classifying and presenting in written form.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Blended studies 133 h.

Target group:
BSc students

Recommended optional programme components:

Recommended or required reading:
Digital study material, material searched by students themselves.

Assessment methods and criteria:
Exercise tasks.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Henrik Hedberg

811122P: Introduction to Programming, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Ilkka Räsänen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay811122P Introduction to Programming (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the autumn semester, during periods 1-2. It is recommended to complete the course at the 1st autumn semester.

Learning outcomes:
• After completing the course the student is able to design a programme by splitting main problem into solvable sub problems.
• The outcome of design process is modules which she / he is able to write by using chosen programming language.
• Student is able to use selection and loop structures to control execution of a module and control execution between modules.
• Student is able to use basic data types for saving and processing data and she / he is able to use right operations to this data.
• Student is able to use arrays to handle large amounts of same type of data and is able to use control structures to flexibly manipulate the data of arrays.
• Student is able to use pointers for example to enhance passing large amount of data between modules and at the same time taking care of the risks of using pointers.
• Student is able to use structured data types that contain fields of different data types and is able to manipulate the fields of these data structures.
• Student is able to programatically use files to save permanently large amount of data she/he is able programatically read data from files for further processing.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 40 h, home programming assignment 24 h, self-study 70 h.

Target group:
BSc students

Recommended or required reading:
Course book: Deitel, Deitel: C HOW TO PROGRAM; Pearson Education Inc. 2007, or a newer edition. Lecture slides.

Assessment methods and criteria:
1. Final exam and exercise points and programming assignment. OR 2. Mid-term exams (2) and exercise points and home programming assignment.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Ilkka Räsänen

813316A: Business Process Modeling, 5 cp

Validity: 01.08.2010 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Karin Väyrynen
Opintokohteen kielet (E): English
ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the spring semester, during period 4. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
After completing the course, students are able to model and design business processes. The student is able to use a computer-based process modeling tool. The student is able to distinguish between business process change on the enterprise level, business process level and the implementation level. The student is able to design process architecture in teamwork with other students.

Contents:
Process architecture and how it can be fitted to the organisation, process modelling, process performance measurement, understanding process-related problems, process development, software tools for modelling and analysing processes, exercises.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 26 h (or exam), exercises 13 h, individual assignments (lecture assignments, small process model, etc.) 34 h, large process model (group work) 60 h.

Target group:
BSc students.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. Students can either participate in the lectures (min. 85 % attendance required) or take the exam. All students will write lecture assignments, and will create a process architecture / model with a software tool. The assessment of the course unit is based on the learning outcomes of the course unit.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Karin Väyrynen.

811177P: Humans as Users and Developers of Information Technology, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Tonja Molin-Juustila
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay811177P Humans as Users and Developers of Information Technology (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish.

Timing:
The course is held in the autumn semester, during period 2. It is recommended to complete the course at the 1st autumn semester.

Learning outcomes:
After completing the course, students will be able to examine humans as both users and developers of information technology. The student learns core concepts of the phenomenon, and understands their meaning in relation to practice. Students are also familiar with the background of usability research and some of its scientific theories.

Contents:
The key themes and concepts of the course are the diversity of information technology, humans as users and developers of information technology, usability, use and user experience, user-centred design and service design.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Lectures (24 h), home assignments and written task based on required reading (about 106 h).

Target group:
BSc students.

Recommended or required reading:
Antti Oulasvirta (ed.): “Ihmisen ja tietokoneen vuorovaikutus” (2011), parts I and II. In addition, the material during lectures and other supplementary material.

Assessment methods and criteria:
Home assignments, individual essay, and optional advanced assignment.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Tonja Molin-Juustila

811375A: User Interface Programming, 5 cp

Validity: 01.08.2010 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Lappalainen, Jouni Esko Antero
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during periods 3 and 4. It is recommended to complete the course at the 2nd spring semester.

Learning outcomes:
After completing the course, the student can implement a software application that has a graphical user interface. The GUI (as well as the entire application) must be developed by implementing usability design principles from the beginning of the development process.

Contents:
User interface elements, foundations of user interface libraries, user interface design principles, user interface layout, the relationship between user interfaces and software architectures, event-driven programming, web usability, web user interfaces, web programming.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Exercise 24 h, coursework 75 h, independent study 35 h.

Target group:
BSc students

Prerequisites and co-requisites:
Fundamentals of user interface design. In addition, the knowledge and skills of object-oriented programming are needed.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
The student must submit coursework that fulfils the given requirements (defined during the course).

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Jouni Lappalainen

811379A: Basics of Human Computer Interaction, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Netta Iivari
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay811379A Basics of Human Computer Interaction (OPEN UNI) 5.0 cp
 812327A Introduction to HCI design 4.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the autumn semester, during period 2. It is recommended to complete the course at the 2nd autumn semester.

Learning outcomes:
Upon completion of the course, the student will be able to define basic concepts of user interface design, introduce basic design process with design and evaluation methods and tasks, and apply graphical user interface design from the viewpoint of a certain user group and system.

Contents:
Basic concepts of user interface design and usability evaluation; user-centred design process; gathering of user data, analysis, expert evaluation and design by prototyping, user-based evaluation; universal design and user support; user interface description.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, guided group assignment tasks in exercises 21 h and without guidance in assignment groups 58 h; seminar 3 h; individual tasks 31 h.

Target group:
BSc students.

Prerequisites and co-requisites:
Humans as Users and Developers of Information Technology (811177P) -course or related knowledge.

Recommended optional programme components:

Recommended or required reading:
Dix et al. (2004, third or later edition) Human-Computer Interaction and lecture and assignment materials.

Assessment methods and criteria:
During the course, the students will be compiling the group assignments and individual integration tasks on their implementation. These will be assessed based on the learning outcomes of the course. The assessment criteria and the requirements will be explained in detail during the opening lecture of the course.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Netta Iivari
815345A: Software Architectures, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Juustila, Antti Juhani

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during periods 3 and 4. It is recommended to complete the course at the 3rd spring semester.

Learning outcomes:
The goal of the course is to give the students an overview of the concepts and techniques related to software architectures. The focus of the architectural solutions is in the object oriented systems, but the course addresses also generic architectural models and techniques supporting architectures. After the course, the student is able to identify and analyse different architectural solutions and understands the pros and cons of these, from the perspective of building and running software, as well as from the viewpoint of quality and maintainability. The student is able to describe architectural solutions and elements of these, as well as different interfaces, using the modeling techniques of UML. The student is able to create alternative architectural solutions based on functional and non-functional requirements, using different design methods and techniques of architectural design, as well as evaluate the solutions' fit to use. The student is able to differentiate the design of product and product family architectures from the design of more usual software architectures.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 20 h, exercise work as group work 90 h.

Target group:
BSc students.

Prerequisites and co-requisites:
The knowledge of the software development process in general, the basics of UML in modelling, introductory experience in object oriented programming (e.g. courses 811335A Software engineering, 812346A Object Oriented Analysis and Design, 812347A Object-Oriented Programming). Recommended previous course is the 812339A Advanced Object-Oriented Programming.

Recommended or required reading:

Assessment methods and criteria:
The evaluation of the course is based on the learning outcomes of the course. The course is passed by participating in the course assignments as well as by evaluation of the exercise work. Detailed evaluation principles are announced in the wiki page of the course.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Antti Juustila

Other information:
Course is potentially implemented in cooperation with the Tampere university.

811174P: Introduction to Software Business, 5 cp

Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Marianne Kinnula
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay811174P Introduction to Software Business (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 4. It is recommended to complete the course at the 1st spring semester.

Learning outcomes:
After completing the course, a student can:
• Explain how the industry is structured
• Describe the software industry’s business logic as typically used in business models and the reasoning behind their use
• Describe the important areas of the software business.

Contents:
This course provides an overview of software business from three different viewpoints: software industry, business logic, and functions of a software company. The course topics include history of software business, structuring and clusters of software industry, business models in software industry, networking and outsourcing, growth and development of a software company, software marketing and sales, and internalization of a software company.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 26 - 30 h, exercises 20 h, independent work 54 - 58 h, take home examination 30 h
Target group:
BSc students.

Recommended optional programme components:

-

Recommended or required reading:
Course material and related literature.

Assessment methods and criteria:
Assignments, take home examination.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Marianne Kinnula

812341A: Object-Oriented Programming, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Ilkka Räsänen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay812341A Object-oriented Programming (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 1st spring semester.

Learning outcomes:
• After completing the course, the student is able to explain the general objectives and techniques of object-oriented programming paradigm.
• Furthermore, the student can describe the practical meaning of concepts of object-oriented programming.
• The student can construct Java programs that apply inheritance, composition, and polymorphism.

Contents:
Introduction to object-orientation, Basics of programming in Java language, Composition, inheritance and polymorphism, Java collections and exception handling.

Mode of delivery:
Learning activities and teaching methods:
Lectures 32 h, laboratory exercises 21 h, weekly assignments and independent work 82 h.

Target group:
BSc students.

Prerequisites and co-requisites:
Course Introduction to Programming or similar knowledge.

Recommended or required reading:
- Timothy Budd: Introduction to object-oriented programming, 3rd edition.
- Bruce Eckel: Thinking in Java 3rd edition or later.

Assessment methods and criteria:
Weekly assignments (preferred) or final exam + programming assignment.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Ilkka Räsänen

812342A: Object Oriented Analysis and Design, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Iisakka, Juha Veikko
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
- ay812342A Object Oriented Analysis and Design (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish. If at least four non-Finnish students take the course, an English exercise group will be organised.

Timing:
The course is held in the autumn semester, during period 1. It is recommended to complete the course in the 2nd autumn semester.

Learning outcomes:
After completing the course, the students know possibilities of UML-language family to describe different views. They can picture a task using Use cases and scenarios. Moreover they can produce detailed descriptions using activity-, class-, interaction- and state diagrams. They know principles of object-orientedness and can use abstract as well interface classes. Additionally they can model user interface by state diagrams. They understand what design patterns are and how they are described and categorised.

Contents:
Principles of object orientation and object-oriented programming; quality criteria of object orientation; design patterns; case use; activity, class, interaction and state machine diagrams; class realisation.

Mode of delivery:
Face-to-face teaching.
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (in Finnish) 30 h, exercises and assignments 28 h, independent work 85 h.

Target group:
BSc students.

Prerequisites and co-requisites:
Elementary course of object-oriented programming is a compulsory prerequisite. Basic knowledge of object programming and information systems analysis and design are assumed.

Recommended or required reading:
Bennet, McRobb & Farmer: Object-oriented systems analysis and design, Using UML.

Assessment methods and criteria:
Examination. At least 50% on points needed for passing the course.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Juha Iisakka

812305A: Information Systems in Organisations, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Pasi Karppinen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the autumn semester, during period 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
After completing the course, the student:
- is able to explain the importance of information systems in organizations,
- is able to define the conditions for the successful operation of the information in the organization.

Contents:
The basics issues of organization, structure, and operation, the basics of a digital organization, information types and roles of the organizations, interaction between information and organization, the role of information systems in the management of organizations and decision-making, formation of
organizational knowledge and management, enterprise resource planning (ERP) systems, organizational reform of information systems and the economic importance of information systems.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, independent study of the course literature, weekly tasks and scientific essay 110 h.

Target group:
BSc students.

Recommended or required reading:

Assessment methods and criteria:
Active participation in lectures. Weekly tasks and scientific essay.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Pasi Karppinen

811167P: Introduction to Information Systems Design, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Mikko Rajanen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay811167P Introduction to Information Systems Design (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 2nd spring semester.
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 1st study year.

Learning outcomes:
After completing the course, the student will be able to: Explain the main areas of the information system design on technical level, main design process models for the information system design, basics of the requirement gathering, basics of the information system initialization, and basics of how to evaluate information systems.; Produce use-case descriptions, use-case diagrams and other types of diagrams and descriptions needed to model the operational environment of the information system.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 27 h, exercises 21 h, assignment 85 h, exam 3 h.

Lectures (27h), Exercises (21h), Assignment (85h), Exam (3h).

Target group:
BSc students.

Recommended or required reading:

Assessment methods and criteria:
Exam and mandatory assignment.
Grading:
Numerical scale 1-5 or fail.

Person responsible:
Mikko Rajanen

812332A: Information Systems Design, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Pasi Karppinen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.
Language of instruction:
Finnish
Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 3rd year spring semester.

Learning outcomes:
After completing the course, the student is able to understand the link between information system design and organizational development, and to apply such a system design method in an organizational context.

Contents:
During the course the students complete a group exercise (typically in groups of 4 persons) using Contextual Design method and its design stages that lead to actual information systems implementation.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 18 h, seminar 12 h.

Target group:
BSc students

Prerequisites and co-requisites:
Prerequisite is 811169P Introduction to Information Systems Design.

Recommended or required reading:

Assessment methods and criteria:
The course is normally completed as group work, and the output is presented in a course seminar. The work follows the stages of Contextual Design method and the exercise assignments support the completion of the course work. Course work reports are presented and reviewed in a final seminar. In special circumstances the course can also be completed as individual work.

Grading:
Numerical scale 1-5 or fail.
Person responsible:
Pasi Karppinen

811394A: Database systems, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Iisakka, Juha Veikko
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish, partly in English.

Timing:
The course is held in the spring semester, during period 4. It is recommended to complete the course in
the 2nd spring semester.

Learning outcomes:
The students have knowledge of some modern database principles - such as non-relational database
structures and they have prefatory knowledge of making use of those non-relational databases (such as
data mining and techniques). Moreover, after completing the course, students have constructed a small
(object-)relational database application.

Contents:
Modern database solutions and the use of them. Realational database application, Object- and XML
extensions in relational databases.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures and seminars 41 h, computer exercises 54 h, self-study 32 h.

Target group:
Bachelor students.

Prerequisites and co-requisites:
Basics of database -course (such as 811395A) and Object-Oriented Programming course (such as
812341A) are compulsory prerequisites.

Recommended or required reading:
Will be announced in lectures.

Assessment methods and criteria:
Will be announced in lectures.

Grading:
Numerical scale 1-5 or fail.
Person responsible:
Juha Iisakka.

811395A: Basics of Databases, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Iisakka, Juha Veikko
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish. If at least four non-Finnish students take the course, an English exercise group will be organised.

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 1st spring semester.

Learning outcomes:
After completing the course, students will understand what the databases are and what are their relevance to information systems. They know the concept model for building databases, design a relational database with a good quality and make queries. Students understand the transactions, schedules, serialiseability and recovery options.

Contents:
Conceptual modelling (ER- and EER-diagrams), relational model (theory, databases, query techniques and normalization), transactions.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 45 h (in Finnish), compulsory exercises 24 h, reading 20 h, exams 21 h and self-studying 23 h.

Target group:
BSc students.

Prerequisites and co-requisites:
The student knows basics of programming.

Recommended or required reading:

Assessment methods and criteria:
The course is divided to five parts. All parts must be passed in a year. Students must show they achieve at least half of required knowledge of each part.

Grading:
Numerical scale 1-5 or fail.
Person responsible:
Juha Iisakka

810122P: Computer Architecture, 5 cp

Validity: 01.08.2015 -
Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Ilkka Räsänen

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

521267A Computer Engineering 4.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 4. It is recommended to complete the course in the 1st spring semester.

Learning outcomes:
After completing the course, students understand and manage the building blocks of computer architectures, the execution and performance of computer platforms as well as activities related to performance, resource needs, and error situations. Students master the basic vocabulary, which is required in communication and documentation in software development, particularly in the close to device level applications such as embedded software, mobile systems, multimedia and scientific computing.

Contents:
1. Basics of digital logic and components of a processor
2. Formats of digital information
3. The processor and its functions
4. The processor instruction set
5. Assembly language
6. Operating system services
7. Memory management
8. Input and output
9. Interrupts, device drivers and BIOS
10. Multimedia support
11. Mobile processors
12. Parallel computing.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 32 h, homework assignments 21 h, laboratory exercises 15 h, examination either through two intermediate exams (preparation 65 h) or through final exam (preparation 65 h).

Target group:
BSc students.

Recommended or required reading:

Assessment methods and criteria:
Active participation and mid-term exams (2) or final exam.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Ilkka Räsänen.

811168P: Information Security, 5 cp

Validity: 01.08.2010 -
Form of study: Basic Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Mari Karjalainen

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay811168P Information Security (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 4. It is recommended to complete the course in the 2nd spring semester.

Learning outcomes:
After completing the course a student is able to define essential information security concepts, is aware of the common types of security threats, and their managerial and technical protection mechanisms. The student recognizes the different phases of secure systems development and can describe the fundamental characteristics of risk management. The student gets familiar with basics of technical information security methods and cryptography.

Contents:

Mode of delivery:
Face-to-face-teaching

Learning activities and teaching methods:
Lectures and related quizzes or final exam 26 h, weekly assignments and scientific essay 107 h.

Target group:
BSc students.
Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Lecture tasks or exam, weekly assignments and essay.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Mari Karjalainen

811391A: Requirements Engineering, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Jouni Markkula
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
Finnish

Timing:
The course is held in the spring semester, during period 3. It is recommended to complete the course in the 2nd study year.

Learning outcomes:
After completing this course, the student can analyse the requirements from the problem-domain and solution-domain viewpoints, and understands the special issues associated with these viewpoints. The student can distinguish the roles of problem-domain and solution-domain requirements for the customer and developer; he/she is able to identify various project types and knows which requirement style fits best to each project type. The student will be familiar with various requirement definition styles together with their pros and cons, and is able to use some of the most important definition styles. Several requirements of elicitation techniques will be added to the student's toolbox with the skills of mastering some of them. The principles of requirements management, validation and verification during the product life cycle will be familiar to the student at the end of this course.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 32 h, weekly assignments and project assignment about 102 h.

Target group:
B.Sc. students.

Prerequisites and co-requisites:
We assume the basic skills from the following courses: 811167P Introduction to Information System Design, 812342A Object-Oriented Analysis and Design, 811395A Basics of Databases, 811346A Software Engineering.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Two ways of passing: 1) Active participation: weekly assignments and project assignment (only for Finnish-speaking students); 2) Exam.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Jouni Markkula

Supplementary Module: Industrial Engineering and Management (15 ECTS cr)

555225P: Basics of industrial engineering and management, 5 cp

- **Validity:** 01.01.2014 -
- **Form of study:** Basic Studies
- **Type:** Course
- **Unit:** Field of Industrial Engineering and Management
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Jukka Majava
- **Opintokohteen kielet (E):** Finnish
- **Leikkaavuudet (E):**

 ay555225P Basics of industrial engineering and management (OPEN UNI) 5.0 cp
 555221P Introduction to Production 2.0 cp
 555220P Basic Course in Industrial Engineering and Management 3.0 cp

ECTS Credits:
5 ECTS credits.

Language of instruction:
Finnish. English material is also used.

Timing:
Periods 1-2.

Learning outcomes:
Upon completion of the course, the student will be able to:
- describe what industrial engineering and management (or operations management) means
- explain the core concepts of business operations and utilise these concepts in describing and analysing operations of an organisation
- explain in general terms the factors that affect economic performance of organisations
• utilise the terminology used in industrial engineering and management (operations management), describe the financial processes of companies and based on this describe the use of cost accounting in organisational decision-making
• calculate unit costs in various simplified settings, calculate various alternatives, as well as perform planning and goal oriented calculations based on given data, and draw conclusions based on the calculation results

Contents:
Operations and productivity, operations strategy, forecasting, accounting and cost accounting, investments and financial planning, sustainability, capacity management, location decisions, layout strategies, human resources management, supply chain management, subcontracting, inventory management, production planning, MRP & ERP, production scheduling, Just-in-Time & Lean operations, maintenance.

Mode of delivery:
The tuition will be implemented as blended teaching (web-based teaching and face-to-face teaching).

Learning activities and teaching methods:
Web-based lectures 20 h / exercises 18 h / self-study 96 h.

Target group:
Industrial Engineering and Management students and other students taking Industrial Engineering and Management as minor.

Prerequisites and co-requisites:
No prerequisites exist.

Recommended optional programme components:
This course is part of the 25 ECTS module of Industrial engineering and management that also includes 555285A Project management, 555242A Product development, 555264P Managing well-being and quality of working life, and 555286A Process and quality management.

Recommended or required reading:

Assessment methods and criteria:
This course utilises continuous assessment. During the course, there are nine mandatory weekly assignments. At least half of the assignments must be passed.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Adjunct professor Jukka Majava

Working life cooperation:
-

Other information:
Substitutes courses 555220P Basic Course in Industrial Engineering and Management 3 ECTS cr and 555221P Introduction to Production 2 ECTS cr.

555285A: Project management, 5 cp

Validity: 01.01.2014 -
Form of study: Basic Studies
Type: Course
Unit: Field of Industrial Engineering and Management
Grading: 1 - 5, pass, fail
Teachers: Kirsi Aaltonen

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
- 555288A Project Management 5.0 cp
- ay555285A Project management (OPEN UNI) 5.0 cp
- 555282A Project Management 4.0 cp
- 555280P Basic Course of Project Management 2.0 cp

ECTS Credits:
5 ECTS credits.

Language of instruction:
Finnish. English material may also be used.

Timing:
Period 2.

Learning outcomes:
Upon completion of the course, the student will be able to:
- describe explain the essential concepts and methods related to project management
- apply project management methods to create a schedule for a project and calculate critical path
- understand essential concepts related to project cost management and able to apply earned value method and three point estimate to manage project costs
- recognises the essential tasks of project risk management

Contents:
Defining project management, project goals and objectives, project phases and project life-cycle management, project planning, organising and scope management, schedule management, cost management, earned value calculation and project risk management, project stakeholder management, project communications management, the role of project manager, new modes of project delivery

Mode of delivery:
The tuition will be implemented as web-based teaching.

Learning activities and teaching methods:
Web-based lectures 16h, self-study 118h

Target group:
Industrial Engineering and Management students and other students taking Industrial Engineering and Management as minor.

Prerequisites and co-requisites:
No prerequisites exist.

Recommended optional programme components:
This course is part of the 25 ECTS module of Industrial engineering and management that also includes 555225P Basics of industrial engineering and management, 555242A Product development, 555264P Managing well-being and quality of working life, and 555286A Process and quality management.

Recommended or required reading:
Lecture material, exercise book, Artto, Martinsuo & Kujala 2006. Projektiliiketoiminta. WSOY
Assessment methods and criteria:
Assignments, exercise book and exam. The course grading is based on the exam. Well completed assignments and exercise book may raise grading.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Assistant professor Kirsi Aaltonen

Working life cooperation:
The course includes guest lectures from industry

Other information:
Substitutes courses 555280P Basic Course of Project Management + 555282A Project Management.

555242A: Product development, 5 cp

Validity: 01.01.2014 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Industrial Engineering and Management
Grading: 1 - 5, pass, fail
Teachers: Haapasalo, Harri Jouni Olavi
Opintokohteen kielet (E): English
Leikkaavuudet (E):
ay555242A Product development (OPEN UNI) 5.0 cp
555240A Basic Course in Product Development 3.0 cp

No course descriptions.

555286A: Process and quality management, 5 cp

Validity: 01.01.2014 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Industrial Engineering and Management
Grading: 1 - 5, pass, fail
Teachers: Osmo Kauppila
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay555286A Process and quality management (OPEN UNI) 5.0 cp
555281A Basic Course of Quality Management 5.0 cp

ECTS Credits:
5 ECTS credits.
Language of instruction:
Finnish.

Timing:
Period 4.

Learning outcomes:
Upon completion of the course, the student will be able to:
- explain the role of process and quality management in a business organisation
- develop business processes based on the principles of quality management and appropriate tool

Contents:
Foundations of total quality management, planning of quality, performance measurement, process management, people management in relation to quality management, implantation of total quality management.

Mode of delivery:
The tuition will be implemented as face-to-face teaching (integrated classroom lectures and exercises).

Learning activities and teaching methods:
20 h lectures, 114 h independent study

Target group:
Industrial Engineering and Management students and other students studying Industrial Engineering and Management as minor.

Prerequisites and co-requisites:
-

Recommended optional programme components:
This course is part of the 25 ECTS module of Industrial engineering and management that also includes 555225P Basics of industrial engineering and management, 555285A Project management, 555242A Product development, and 555264P Managing well-being and quality of working life.

Recommended or required reading:

Assessment methods and criteria:
To pass the course, the student must pass the weekly course exercises (50 % of the course grade) and an exam (50 %).

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University lecturer Osmo Kauppila.

Working life cooperation:
No.

Other information:
Substitutes course 555281A Basic Course of Quality Management.

555264P: Managing well-being and quality of working life, 5 cp

Validity: 01.01.2014 -
Form of study: Basic Studies
Type: Course
Unit: Field of Industrial Engineering and Management
Grading: 1 - 5, pass, fail
Teachers: Arto Reiman
Opintokohde, kielet (E): Finnish
Leikkaavuudet (E):
ay555264P Managing well-being and quality of working life (OPEN UNI) 5.0 cp
555261A Basic Course in Occupational Psychology 3.0 cp
555262A Usability and Safety in Product Development 3.0 cp

ECTS Credits:
5 ECTS credits.

Language of instruction:
Finnish. English material is also used.

Timing:
Periods 3-4.

Learning outcomes:
Upon completion of the course, the student will be able to:
- set targets and choose appropriate methods of developing well-being at work both at personal and organizational levels
- develop well-being at work in the contexts of labor legislation, good practices, productivity, occupational safety expertise, management and human resources
- know the key sources of information, typical goal-setting and management practices and the methods for assessing the performance at individual and organizational levels
- assess the economic impacts of well-being at work, especially in cases of work ability, occupational health, job satisfaction, occupational safety, productivity and the overall quality of working life
- know essential national and international regulation and strategic goal setting practices, good practices of the case companies, current trends, and methods in research.

Contents:
The course gives the student a vision of building sustainable, productive and satisfactory career. The contents cover the whole area of basic quality issues of working life analysing them in the following framework "Well-being at work means safe, healthy, and productive work in a well-led organisation by competent workers and work communities who see their job as meaningful and rewarding, and see work as a factor that supports their life management".

Mode of delivery:
The tuition will be implemented as blended teaching (web-based teaching and face-to-face teaching).

Learning activities and teaching methods:
Lectures 22 h / self-study 70 h / group work & exercises 42 h.

Target group:
Industrial Engineering and Management students and other students taking Industrial Engineering and Management as minor.

Prerequisites and co-requisites:
No prerequisites exist.

Recommended optional programme components:
This course is part of the 25 ECTS module of Industrial Engineering and Management that also includes 555225P Basics of industrial engineering and management, 555285P Project Management, 555242A Product development, and 555286A Process and quality management.

Recommended or required reading:
Applicable parts of Arnold, J. et al. (2010), Work Psychology; Understanding Human Behaviour in the Workplace. 5th Edition. Financial Times/Prentice Hall and Aura, O. & Ahonen, G. Strate-gisen hyvinvoinnin johtaminen, Alma Talent. Other literature will be informed during the course.
Assessment methods and criteria:
This course utilises continuous assessment including exercises during the lectures (weight 20 %), group work (weight 40 %) and examination (weight 40 %).

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Dr. Arto Reiman

Working life cooperation:
-

Other information:
Substitutes courses 555261A Basic Course in Occupational Psychology + 555262A Usability and Safety in Product Development.

Supplementary Module: Working life & Entrepreneurship (15 ECTS cr)

A631401: Entrepreneurship, Basic Studies, 25 cp

Form of study: Basic Studies
Type: Study module
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

Choose five of the following courses (25 ECTS)

724811P: Entrepreneuring for Sustainability, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Anne Keränen
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5
Language of instruction:
English
Timing:
Period B
Learning outcomes:
Students develop skills for creative problem solving; students understand that entrepreneurial behavior can take place within many contexts (new ventures, associations, government agencies, and existing businesses); students are able to recognize and analyze business opportunities and social problems.

Contents:
The course outlines interdisciplinary skills that foster the creation of an entrepreneurial mindset. These skills include problem solving, creativity, networking, communications, risk-taking and adaptability. Entrepreneurship is approached through its different forms and roles in society. The focus is on entrepreneurial mindsets and what entrepreneurship requires from individuals and teams, especially from the “me/us as entrepreneur” standpoint. During the course students familiarize themselves with the role of business in society.

Mode of delivery:
Blended study methods including workshop, face-to-face teaching, coaching and online assignments.

Learning activities and teaching methods:
Learning takes place by means of intensive lectures, visitor presentations and discussions, workshops and exercises both in class and in different places with real life entrepreneurship professionals.

Target group:
University students

Prerequisites and co-requisites:
No

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Articles and course specific material.

Assessment methods and criteria:
Assessment is based on learning diary type reflection reports prepared by the student based on course materials, lectures and meetings with entrepreneurship professionals.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Jan Hermes, Petri Ahokangas and Anne Keränen

Working life cooperation:
The course includes real life case examples and meetings with entrepreneurship practitioners. Students learn interdisciplinary skills that can be applied in real work life.

Other information:
no

724812P: Building Change Through Entrepreneurship, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5

Language of instruction:
English

Timing:
Period C

Learning outcomes:
Students (1) understand the key terms, concepts and processes of entrepreneurship, (2) are able to analyze the feasibility and viability of a business opportunity, (3) know how to create a start-up, (4) understand the elements of marketing of a start-up, (5) know how to build a team and lead a start-up and (6) are able to reflect on the ethical and social impact of entrepreneurship.

Contents:
Introducing entrepreneurship, discovering opportunities, business planning, effective business model, ethical and social foundation, financial viability, acquiring financing, marketing issues, building a team, preparing for growth, strategies for growth

Mode of delivery:
Face-to-face teaching and coaching

Learning activities and teaching methods:
16 hours of lectures with reflection of lectures, 20 h workshops and preparing for the workshops, writing the assignment reports. The course includes lectures, study group work and individual work. In addition, the students are required to independently read course literature and prepare for the assignments (98 hours). Further details will be provided by the responsible persons in the first session.

Target group:
University students

Prerequisites and co-requisites:
No

Recommended optional programme components:
No

Recommended or required reading:

Assessment methods and criteria:
Assessment will be based on the presence in the lectures, study group work and individual assignments.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for fail.

Person responsible:
Ahmad Arslan

Working life cooperation:
The course includes workshops coaching on new business creation. In the workshops are analyzed real-life situations, designed solutions and practiced new business creation skills.

Other information:
No

724813P: Entrepreneurship in Action, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Niina Karvinen
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5
Language of instruction:
English
Timing:
Periods A-D
Learning outcomes:
Upon completion of the course, the students are able to apply the core competencies of his/her studies in a real life entrepreneurship context. Students are able to realize and start working with a business opportunity or social problem in practice to find a solution. The student will improve his/her entrepreneurial skills; multicultural group working, problem solving, communicating and presenting. Students choose one of the Business Kitchen's Programmes; Demola, Avanto Accelerator or Arctic Business Corridor to entrepreneurship in action course.

Contents:
In these studies students generally co-operate in workshops where they learn practical methods of entrepreneurship like business model creation and validation processes, lean methodology, marketing, branding, basic financial management and presenting ideas e.g. pitching.

Mode of delivery:
Face-to-face teaching and coaching.

Learning activities and teaching methods:
Bootcamps, workshops, group work, individual guidance. Most of the exercises are completed as group work (132 h).

Target group:
University students

Prerequisites and co-requisites:
No

Recommended optional programme components:
No

Recommended or required reading:
Materials vary according to the programme

Assessment methods and criteria:
Programme specific assessment that may include both group and individual assessment methods.

Grading:
The course utilizes grading scale “pass/fail”

Person responsible:
Minna Törmälä and Anne Keränen.

Working life cooperation:
The programs of this course are run in close co-operation with relevant business partners or applied to practice. Students also learn practical entrepreneurship skills.

Other information:
The number of students is limited

724814P: Introduction to Business Development, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Teachers: Antti Muhos

Opintokohteen kielet (E): English

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5

Language of instruction:
English

Timing:
Period A

Learning outcomes:
Students are familiar with basic business concepts and theories in SME context. On successful completion of the course, students understand the business development process from opportunity recognition to a launch and development of a sustainable business. The students are able to identify basic business processes in practice.

Contents:
The course focuses on the basic concepts of SME business management and development including opportunity recognition, experimentation and testing of a new business idea, strategy, business model development and business planning, financing and planning and management of growth and change.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Face-to-face teaching including lectures, guest lectures, company visit/s and variable action-based learning methods (36h). Individual assignment (20h) and reading of course materials (76 h).

Target group:
Open to all.

Prerequisites and co-requisites:
No
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Learning diary, group assignment/s

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for fail.

Person responsible:
Adjunct professor Matti Muhos

Working life cooperation:
This course is designed as an integral part of entrepreneurship studies. This course will include real life case studies of established and emerging businesses by company visits.

Other information:
No

724815P: Entrepreneurial Assignment, 5 cp

Validity: 01.06.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Teachers: Sari Perätalo

Opintokohteen kielet (E): English

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5

Language of instruction:
English

Timing:
Free. The schedule for the course is agreed on the individual basis.

Learning outcomes:
Upon completion of the course the students are familiarized with entrepreneurial activity in society and possess skills that help to solve entrepreneurial problems and make change. Students will have an insight into the diversity of entrepreneurship and gain understanding of the specific aspects of entrepreneurship.

Contents:
Studies are individually tailored upon acceptance by the course instructor. Students compile the course through participating in different entrepreneurship supporting activities. The students can for example participate in TellUs Innovation Arena boot camps, events or volunteering program. In addition students can include activities organized by other stakeholders (e.g. faculties, public organizations or third sector organizations). In addition, the students reflect their learning in a report.
Mode of delivery:
Face-to-face

Learning activities and teaching methods:
Individual and group work (132h). Teaching methods vary depending on the entrepreneurial project, event, workshop, etc. a student has participated in.

Target group:
University students

Prerequisites and co-requisites:
Student should have completed 724813P Entrepreneurship in action -course before taking this course.

Recommended optional programme components:
The course does not require additional studies carried out at the same time.

Recommended or required reading:
Reading materials are agreed individually with the responsible person.

Assessment methods and criteria:
Assessment is based on an individual report that a student is expected to deliver after participating in an entrepreneurship-related event, workshop, project, etc.

Grading:
The course utilizes verbal grading scale “pass/fail”.

Person responsible:
Sari Perätaalo

Working life cooperation:
The course allows the students to gain first-hand entrepreneurial experience in various forms.

Other information:
No

724816P: Building Business Through Creativity and Collaboration, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Anne Keränen
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5

Language of instruction:
English

Timing:
Period B

Learning outcomes:
Upon completion of the course, the student will be familiarized with concepts of learning, collaboration, creativity and emotions. The student will explore entrepreneurship from the perspective of artistic process, experience and learn the process of artistic creation in teams,
experience and analyze emotions, such as uncertainty, frustration, enthusiasm and joy alone and in teams. The students will produce a piece of art as an outcome of the course workshops, and organize and host an art exhibition together.

Contents:
The method of this course is based on studio pedagogy. In practice the course employs creative collaborative methods to learn and experience entrepreneurship through art. This process enables outside of the -box thinking, creative propositions and getting to know multidisciplinary team members through concrete learning -by doing approach. Art is used as an illustration, as materials for case studies, and as a place to work and develop business oriented thinking. The art world is a new 2 metaphor to describe our economy based on innovations and digitalization. The participants will learn a creative mindset and bonding of closer ties in teams. More information from the concept behind the course can be found from http://improbable.strikingly.com/

Mode of delivery:
Face-to-face sessions and workshops

Learning activities and teaching methods:
Producing a piece of art and presenting it in an exhibition together with others (36 hours). Reflecting the learning experiences in a personal learning diary during the course (30 hours). Reading course materials (66 hours).

Target group:
Open to all

Prerequisites and co-requisites:
No

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Materials provided during the course

Assessment methods and criteria:
Compulsory participation and commitment to the teamwork. Learning diary assessment.

Grading:
The course utilizes verbal grading scale “pass/fail”

Person responsible:
Johanna Bluemink

Working life cooperation:
Students learn practical entrepreneurial skills through artistic process.

Other information:
The number of students is limited

Supplementary Module: Economics and Management (15 ECTS cr) (* The module is intended only for students of Applied Computing (in MSc).)

724103P: Strategic Management, 5 cp

Validity: 01.08.2014 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Anniina Rantakari
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay724103P Strategic Management (OPEN UNI) 5.0 cp
 721519P Business Management 5.0 cp
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 credits / 133 hours of work

Language of instruction:
Finnish

Timing:
Period A (2nd year).

Learning outcomes:
After the course students understand the purpose of the different schools of strategic management and recognize the role of the represented viewpoints in organizations' strategy formation. Students are able to define the core concepts of strategic management and analyze the relations between strategy, markets and operations.

Contents:
The course aims at analyzing how we could model organizational change processes involving genuine uncertainties, and, at the same time, model individuals and organizations as being able to make strategic choices. The purpose of this course is twofold: First, the aim is to introduce the basic concepts, historical developments and schools of strategic management. Second, the course explores the contemporary developments in strategic thinking.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Intensive contact learning with 18 hours of functional lectures with reflection (54 h) and with 18 hours of workshop sessions with cases (54 h). In addition, the students are required to independently read the course literature and prepare for the workshops (25 h). Further details will be provided by the responsible person in the first session.

Target group:
Major students in economics and business administration

Prerequisites and co-requisites:
Earlier module (introduction to business studies)

Recommended optional programme components:
This course is part of "Business Processes" -module

Recommended or required reading:
Johnson, G., K. Scholes & R. Whittington. Exploring corporate strategy (Prentice Hall);
Mintzberg, H., B. Ahlstrand & J. Lampel. Strategy safari: the complete guide through the wilds of strategic management (Prentice Hall/Financial Times);
Article collection.

Assessment methods and criteria:
Assessment will be based on group assignment and individual assignments based on the criteria presented during the course.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Jenni Myllykoski and Anniina Rantakari
Working life cooperation:
The course develops abilities in reflective and critical thinking and writing. These skills form the core in strategic thinking. Making learning and thinking visible enables the activities of both oneself and the organization to be examined critically and developed.

Other information:
The number of students is limited.

724105P: Management Accounting, 5 cp

Validity: 01.08.2014 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Kristiina Henttu-Aho
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay724105P Management Accounting (OPEN UNI) 5.0 cp
 721172P Management Accounting 5.0 cp
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 credits / 133 hours of work
Language of instruction:
English (course is lectured separately in Finnish and in English).
Timing:
Period A (2nd year)
Learning outcomes:
After passing the course, the student knows the basic cost concepts and the elements of cost accounting systems. Students are also able to apply the basic cost information in the company's decision making and explain which costs should be included in these calculations under different circumstances.
Contents:
Theoretical framework for understanding cost accounting, cost concepts, cost recording, different product costing methods, cost-volume-profit analysis, using cost accounting information in decision making.
Mode of delivery:
Face-to-face teaching.
Learning activities and teaching methods:
20 h lectures, 16 h exercises and independent reading of study materials (97 hours).
Target group:
Major students in economics and business administration
Prerequisites and co-requisites:
Earlier module (introduction to business studies)
Recommended optional programme components:
This course is part of "Business Processes" -module
Recommended or required reading:
Assessment methods and criteria:
Lectures and literature examination.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor in Management Accounting.

Working life cooperation:
Understanding of management accounting systems is typically an important part of work for graduates in economics and business administration and an essential part of occupations like management accountant or controller.

Other information:
The number of students is limited.

724106P: Principles of Marketing, 5 cp

Validity: 01.08.2014 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Satu Nätti
Opintokohde kielet (E): Finnish
Leikkaavuudet (E):
 ay724106P Principles of Marketing (OPEN UNI) 5.0 cp
 ay721409P Principles of Marketing (OPEN UNI) 5.0 cp
 721409P Firm in the Network Contexts 5.0 cp

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 credits / 133 hours of work
Language of instruction:
Finnish
Timing:
Period C (1st year).

Learning outcomes:
Upon completion of this course, students are able to define the role of marketing in the organization, likewise define basic concepts of marketing (customer perceived value, value creation process, value-based market analysis and strategy, segmenting, targeting and marketing mix, for example). After completing this course, the student is able to differentiate variety of marketing logics in variety of contexts (for example, differences between consumer marketing and B-to-B marketing). The student is able to use concepts of marketing to aid decision making and evaluate the suitability of these decisions from customer viewpoint.

Contents:
During the course, following themes will be discussed: 1) Basic concepts and phenomena: e.g., value creation in customer relationships and marketing in different contexts, 2) Strategic tools of marketing
and latest trends. 3) Basics of consumer behavior, 4) Marketing and sustainable development, 5) B-to-B marketing and sales, 6) integrated marketing communications, 7) Digital marketing, 8) Distribution channels.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
36 hours of lectures and visiting lecturer presentations, group-based business simulation and related group’s learning diary (20h), independent reading of the textbook and articles (77 h). This course can be passed by doing weekly learning assignments OR an exam.

Target group:
Major students in economics and business administration

Prerequisites and co-requisites:
-

Recommended optional programme components:
This course is part of “Introduction to business studies” -module

Recommended or required reading:

Assessment methods and criteria:
Group work (business simulation) and exam OR weekly learning assignments.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor of Marketing Satu Nätti and Doctoral Student Outi Keränen.

Working life cooperation:
Upon completion of this course, the student recognizes the meaning of customer-orientation in organizations and in one’s individual actions and professional development. Group work (business simulation) gives wide view on organization entity and activities, likewise understanding of the link between decision making, customer experience and consequent profitability of organization.

Other information:
The number of students is limited.

724109P: Investment Decisions, 5 cp

Validity: 01.08.2014 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Teachers: Markku Vieru

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
ay724109P Investment Decisions (OPEN UNI) 5.0 cp
ay721178P Fundamentals of Corporate Finance (OPEN UNI) 5.0 cp
721178P Principles of Corporate Finance 5.0 cp

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 credits / 133 hours of work

Language of instruction:
Finnish

Timing:
Period B (2nd year)

Learning outcomes:
The course is an introduction to the theory and practice of capital budgeting. Upon successful completion of the course, the student will be able to evaluate the profitability of an investment project using various capital budgeting techniques.

Contents:
1) the most common capital budgeting techniques, 2) determining the appropriate discount rate for a project, 3) scenario and sensitivity analyses, 4) capital budgeting in practice

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (36 h), self-study (94 h), exam (3 h)

Target group:
Major students in economics and business administration

Prerequisites and co-requisites:
Earlier module (introduction to business studies)

Recommended optional programme components:
This course is part of “Business Processes” -module

Recommended or required reading:

Assessment methods and criteria:
Faculty examination

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Markku Vieru

Working life cooperation:
Upon successful completion of the course, the student will be able to apply the tools that financial managers need when making their investment decisions.

Other information:
The number of students is limited.

724110P: Introductory Economics, 5 cp

Validity: 01.08.2014 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Teachers: Marko Korhonen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ECTS Credits:
5 credits / 133 hours of work

Language of instruction:
Finnish

Timing:
Period A. It is recommended that students complete the course during the first autumn semester.

Learning outcomes:
After completing the course students (i) understand the basic concepts of economics and the rudiments of economic theory, (ii) can explain the determination of resource allocation and prices in a market economy, (iii) know how the aggregate economy operates in the short and long run, and (iv) how economic policy affects the Finnish economy and also the European economy.

Contents:
The course introduces students to the tools and ideas economics uses to describe and explain economic phenomena. The topics include:
- the long-term development of the Finnish and World economy
- basic ideas and principles of economics
- opportunity cost and comparative advantage
- market equilibrium: demand and supply
- how well does market economy work?
- firms and competition in market economy
- aggregate economic activity and its measurement
- business cycles
- monetary and fiscal policy
- economic growth

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
36 lectures including problem sets. Students are expected to do the problem sets on their own and familiarize themselves with the required and recommended materials (93 h). Mid-term exams (2) or Final exam (3 h).

Target group:
Major students in economics and business administration

Prerequisites and co-requisites:
-

Recommended optional programme components:
This course is part of “Introduction to business studies” -module

Recommended or required reading:
Material posted at the webpage.

Assessment methods and criteria:
Final Exam.
Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
University lecturer Marko Korhonen

Working life cooperation:
Students learn relevant and useful facts about the operation of the markets, and the aggregate economy to an extent that they can reasonably utilize those facts and knowledge in the decision making of the business they are working at.

Other information:
The number of students is limited.

Basic Business Studies

A635801: Basic Business Studies, 25 - 40 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Study module
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

Student can select individual courses or complete the whole minor (minimum 5 courses, 25 ECTS).

724830P: Introduction to Accounting and Financial Management, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

724831P: Introduction to Business Law, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

724832P: Economics and The Business Environment, 5 cp
Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS

Language of instruction:
Finnish

Timing:
March - April 2019

Learning outcomes:
On successful completion of the course, students will be able to:
- define basic economic concepts
- understand economic thinking and apply economic theory in the analysis of a business environment and market economies

Contents:
The course provides students with basic skills in analyzing the business environment and its evolution from an economic perspective. Proactive identification of opportunities and threats of the business environment is increasingly important for successful businesses in the global economy.

During the course, students will familiarize themselves with the decision-making of firms and consumers and how the markets function (microeconomics); economic growth, business cycles, labor markets, inflation, monetary policy and economic policy (macroeconomics); the role of the public sector and focal public policy instruments in market economies (public economics); international trade, financial markets, European integration and multinational companies (global economy).

Mode of delivery:
On-line course

Learning activities and teaching methods:
Individual assignments according to the instructions given at the beginning of the course. 133h (5 ECTS)

Prerequisites and co-requisites:
No requirements

Recommended or required reading:
The teachers will specify the literature at the beginning of the course.

Assessment methods and criteria:
Evaluation scale 1 -5
Grading:
1-5

Person responsible:
Jussi Heikkilä ja Sami Remes

Other information:
Further instructions on the course are available at: LITO cooperation.
724833P: Introduction to Entrepreneurship, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits:

5 ECTS

Language of instruction:

Finnish and English

Timing:

November - December 2018

Learning outcomes:

During the course, the student will learn to understand the significance of an entrepreneurial team, and will form an understanding of entrepreneurship as a creative activity that happens in the form of business.

After completing the course, the student will be able to:

- define business-related principles, possibilities and challenges
- plan business initiating from customer needs, value creation, testing and agility
- interpret business-related substance areas where competence is needed

Contents:

The decision to become an entrepreneur:

- Introduction to entrepreneurship

Creating viable business ideas:

- Creating business opportunities
- Preliminary research
- Industry analysis
- Business plan

From an idea to an entrepreneurial firm:

- Building a team
- Analyzing start-up strengths and weaknesses from the funding perspective
- Ethical and legal issues in starting a firm
- Writing a business plan and constructing a story
- Attracting funding

Managing an entrepreneurial firm and creating growth:

- Marketing
- Understanding VC operations
- IPRs
- Challenges of growth and managing growth
- Growth strategies

Mode of delivery:

On-line teaching

Learning activities and teaching methods:

Course assignments include:

- Familiarization with the course book
- Learning and reflection assignments
- Grouping exercises
The assignments are done on the online learning platform as both individual and group work.

Prerequisites and co-requisites:
No pre-requisites.

Recommended or required reading:

Assessment methods and criteria:
Student performance will be evaluated on a scale from 1 to 5. The course consists of five modules and each module is linked to two chapters in the course book. Each module that the student completes contributes one grade point to the final grade. Hence, passing each of the five modules gives the grade five.

Grading:
1-5

Person responsible:
Vesa Puhakka, Jenni Myllykoski, Markku Ikävalko & Elena Rukovaara

724834P: Basics of Marketing and Sales, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Teachers: Pauliina Ulkuniemi

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS

Language of instruction:
Finnish and English

Timing:
March - April 2019

Learning outcomes:
Upon completion of the course, students will be able to:
- describe the role of marketing in an organization and identify the significance of customer-orientation in both development of the organization and personal actions
- apply key concepts of marketing (e.g., customer-perceived value, value creation process, brand, marketing mix and segmentation) in decision-making and in the evaluation of made decisions
- describe the diverse emphasis of B-to-B and consumer marketing and the key characteristics of both logics
- identify and utilize key marketing communication channels in the fickle business environment
- understand the sales process in its entirety and the content of different parts of the sales process in practice in both consumer and in B-to-B sales

Contents:
- Key marketing concepts, definitions and phenomena now and before, such as value, value creation and marketing mix
- Understanding these concepts in diverse contexts: the differences between consumer and B-to-B logics
- Customer-centric thinking and value creation
- Customer-oriented strategy in a changing business environment
- The key concepts and phenomena in consumer marketing
- B-to-B marketing and organizational buying behavior
- Marketing communication channels and contents
- Sales process in consumer and B-to-B contexts as well as personal sales and interaction skills at different phases of the sales process

Mode of delivery:
On-line teaching

Learning activities and teaching methods:
Students will complete weekly exercises and the final essay. In addition, a customer experience exercise is done to analyze and evaluate the sales process and a salesperson's interaction skills from the customer perspective. Assignments are done both individually and in groups. The customer experience exercise will help analyze and evaluate the sales process and salesperson interaction from the customer perspective.

Prerequisites and co-requisites:
No pre-requisites.

Recommended or required reading:
The teachers will specify the literature at the beginning of the course.

Assessment methods and criteria:
Students complete the course by writing a final essay. In the essay, the students analyze a firm that they have chosen for weekly exercises by applying the theoretical content of the course. Grading is from 1 to 5. In addition, weekly exercises are evaluated as a pass/fail.

Grading:
1-5

Person responsible:
Minna-Maarit Jaskari, Hanna Komulainen

Other information:
Further instructions on the course are available at: LITO cooperation.

724835P: Basics of Management and Organizations, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS

Language of instruction:
Finnish and English

Timing:
September - October 2018

Learning outcomes:
On successful completion of the course, the students will be able to:
name the key concepts and theories in the areas of organization, management and leadership
- name the key concepts and evaluate the functions of human resource management
- understand major tools of strategic management
- understand business in the network of global interactions
- apply theory on practical leadership and management situations

Contents:
Organizations and organizational behavior:
- Organizational structure
- Organizational culture
- Organizational life
Management and leadership:
- The development of leadership thinking and leadership theory
- Key concepts of management
- Leading culture, innovation and change
Strategic thinking and strategic tools:
- The development of strategic thinking and strategy models
- Strategic tools
- Strategic management in global environment
- Ethics, corporate social responsibility
Human resource management:
- Human resource management
- Leading individuals, teams and groups
- Motivation and coaching
- Learning organization

Mode of delivery:
On-line teaching

Learning activities and teaching methods:
- Portfolio (including weekly assignments)
- Peer evaluation
- Vocabulary assignment (key concepts)

Prerequisites and co-requisites:
No pre-requisites

Recommended or required reading:
Stephen P. Robbins, Tim Judge: Essentials of Organizational Behavior, Global Edition, Dawsonera e-Book collection. The course instructors may ask students to read additional literature (e.g. articles). Details of additional readings are given at the beginning of the course.

Assessment methods and criteria:
Evaluation: numeric, scale 1-5.

Grading:
1-5

Person responsible:
Mirjami Ikonen ja Susanna Kultalahti

724836P: Introduction to Corporate Social Responsibility, 5 cp

Validity: 01.08.2017 -
Form of study: Basic Studies
Type: Course
Unit: Oulu Business School
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English
 voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
January - February 2019

Learning outcomes:
Upon completion of the course, students will be able to:
- define and apply key concepts and perspectives regarding CSR
- identify relevant issues and analyze the challenges related to corporate responsibility in selected industries
- describe the role of CSR in business and in relation to wider international political and economic relations
- describe the different aspects through which organizational practices can be CSR oriented
- apply key concepts of CSR in their daily work

Contents:
Definitions and historical roots
- Historical roots – sustainable development
- Definitions of CSR
- Why CSR matters – the business case
- Stakeholder salience
Regulatory aspects
- Political CSR
- CSPs and CSR
- MSIs and CSR
- CSR and human rights
- CSR – minimum wage and living wage
Human resource, supply and consumption
- HRM and CSR
- CSR and supply chain
- CSR and sustainable consumption
Relational aspects
- CSR and communication
- CSR and corruption
- CSR and leadership
CSR and responsible investment

Mode of delivery:
On-line teaching

Learning activities and teaching methods:
The course has individual and group assignments.

Prerequisites and co-requisites:
No pre-requisites.

Recommended or required reading:
The link to primary reading materials will be provided on the learning platform.

Assessment methods and criteria:
Grading on a scale from 1 to 5. The grade is composed of:
- Quizzes (30%)
- Two short reflections (each 15%/total 30%)
- Case analysis: Final assignment (40%)

Grading:
Person responsible:
Yewondwossen Tesfaye Gemechu

Other information:
Further instructions on the course are available at: LITO cooperation.

724837P: Understanding and Managing A Business as A Dynamic Whole - Business Simulation Game, 5 cp

Validity: 01.08.2017 -

Form of study: Basic Studies

Type: Course

Unit: Oulu Business School

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS

Language of instruction:
Finnish and English

Timing:
October - December 2018, February 2019 and April 2019

Learning outcomes:
After completing the course, the student will:
- understand how different areas in business studies are connected in the entity of enterprise functions and in making a profit
- understand the role of ERP and its meaning in managing a company
- be able to apply different business analysis tools in planning and managing a business and understand the essential role of strategy in the process

A central part of the course is to see the business as a whole: the student will understand why it's not practical to optimize single functions separately and why the management needs to have a holistic perspective of the company.

Contents:
- The foundation for this course is a business simulation game that engages the students in real-time decision-making and provides them with various tasks related to various business topics.
- The participation takes place in small virtual groups, where the team members (3-4 students) may all come from different universities.
- The thematic core for the simulation is supply chain management and the entity formed by different functions of a company. The relevant themes include several areas of cross-company logistics: purchase, inventory management, delivery, customer relations and the reporting related to these topics. The course emphasizes effective management of the supply chain and the impact it has on the company's profit and cash flow.
- During the course, the students are also introduced to the dynamics of supply chains in company networks, where the students' company is a part of a network of suppliers, competitors and customers.
- In addition, the course gives an overall picture of the role of a company's information systems in steering the business as a whole: how the different functions utilize common enterprise resource planning and how the ERP works as an essential tool in decision-making.
- The theoretical material and the exercises distributed on the course are related to the abovementioned supply chain management and other LITO learning themes.

Mode of delivery:
On-line teaching

Learning activities and teaching methods:
The assignments of the course are mainly related to the planning of the simulation company operations and to the analysis of materialized operations. These include:
- developing a business plan
- analyzing the profitability in light of various parameters and reporting these to the different stakeholders
- various strategic analyses of the company operations and of the competitive situation (SWOT, Pester, bench-marking)
- calculations related to the company's basic supply chain and ERP parameters
- income statement and profitability, gross margin and cash flow analysis (the essential parameters covered on the course INTRODUCTION TO FINANCIAL ADMINISTRATION)
- market analysis

Furthermore, there will be a written assignment on team dynamics and a team functionality analysis and reflections.

Prerequisites and co-requisites:
The course serves as a capstone, bridging together the other modules in the entity. The course provides an overall picture of business dynamics and explains how the different fields in business studies are related to it.

It is recommended that before taking this course, the student has taken at least the following LITO courses: Introduction to accounting and financial management and Basics of marketing and sales.

Recommended or required reading:
Simulation game instructions, description on the simulation environment, self-learning videos, course hand-out and a selection of other articles (announced later).

Assessment methods and criteria:
The assignments of the course are mainly related to the planning of the simulation company operations and to the analysis of materialized operations. These include:
- developing a business plan
- analyzing the profitability in light of various parameters and reporting these to the different stakeholders
- various strategic analyses of the company operations and of the competitive situation (SWOT, Pester, bench-marking)
- calculations related to the company's basic supply chain and ERP parameters
- income statement and profitability, gross margin and cash flow analysis (the essential parameters covered on the course INTRODUCTION TO FINANCIAL ADMINISTRATION)
- market analysis

Furthermore, there will be a written assignment on team dynamics and a team functionality analysis and reflections.

Grading:
Evaluation rejected/accepted will be in use. Performance will be rated based on the assignments given out during the course.

Person responsible:
Eeli Saarinen ja Kaisa Koivisto

Statistics

805351A: Linear Regression, 5 cp

Validity: 01.06.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

806359A Regression modelling 10.0 cp

ECTS Credits:
5 ECTS credits

Language of instruction:
Finnish

Timing:
2nd or 3rd year during B.Sc. studies

Learning outcomes:
After successful completion of the course the student can describe basic concepts and assumptions in linear models for continuous outcome variables as well as main principles of regression modelling, and can also apply these methods in analysis of experimental and non-experimental observation data.

Contents:
Linear regression models for a continuous outcome variable; formulation of the model, selection of variables and interpretation of parameters; fitting the models, estimation of parameters and prediction using method of least squares; model criticism and diagnostics; use of R environment and SAS software in modelling.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (28 h), practicals and computer classes (14 h) and independent work.

Target group:
Students having statistics as the major or a minor subject.

Prerequisites and co-requisites:
Basic Methods of Data Analysis; Core courses in the B.Sc curriculum of mathematical sciences.

Recommended optional programme components:
Prerequisite to the course Generalized Linear Models

Recommended or required reading:

Assessment methods and criteria:
Active participation in practicals and final exam. Read more about assessment criteria at the University of Oulu webpage

Grading:
Fail, 1-5

Person responsible:
Esa Läärä

Working life cooperation:
No

Other information:
-

805350A: Estimation and Test Theory, 5 cp

Validity: 01.06.2015 -

Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
805310A Statistical Inference I 10.0 cp

ECTS Credits:
5 ECTS credits

Language of instruction:
Finnish

Timing:
2nd or 3rd year during B.Sc. studies

Learning outcomes:
After successful completion of the course the student can describe the basic principles of frequentist and bayesian statistical inference, compute point and interval estimates, test statistics and P-values based on likelihood function of models with few parameters, and interpret results thus obtained.

Contents:
Statistical model and observational data; construction and properties of point estimators and confidence intervals; likelihood ratio, score and Wald test statistics and their asymptotic sampling distribution; jackknife and bootstrap methods; elements of bayesian inference; use of R environment in inferential problems.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (28 h), practicals and computer classes (14 h), and independent work

Target group:
Students having statistics as the major or a minor subject

Prerequisites and co-requisites:
Likelihood inference, Introduction to probability theory I, Basic Methods of Data Analysis

Recommended optional programme components:
Needed in nearly all intermediate and advanced courses of statistics

Recommended or required reading:

Assessment methods and criteria:
Final Exam. Read more about assessment criteria at the University of Oulu webpage

Grading:
Fail, 1-5

Person responsible:
Esa Läärä

Working life cooperation:
No

Other information:
-
805353A: Statistical Software, 5 cp

Validity: 01.06.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
805340A Statistical Software 4.0 cp

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish
Timing:
3. year studies. Fall semester. Timing varies.
Learning outcomes:
After successful completion of the course the student can use independently major statistical software needed in data analysis.
Contents:
The course covers R, SAS and IBM SPSS, and their most important tools for data management, statistical computation, graphics and programming will be introduced and proficiency for their fluent use is acquired.
Mode of delivery:
Face-to-face teaching
Learning activities and teaching methods:
42 h lectures, exercises and tutoring. 88 h learning tasks and self-study.
Target group:
Major and minor students
Prerequisites and co-requisites:
806112P Basic methods of data-analysis
Recommended optional programme components:
-
Recommended or required reading:
Lecture notes
Assessment methods and criteria:
Home works and/or exam
Grading:
Numerical grading 1-5 (or fail)
Person responsible:
Hanna Heikkinen
Working life cooperation:
No

805349A: Likelihood and Bayesian Inference, 5 cp
Validity: 01.06.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Teachers: Läärä Esa
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 805310A Statistical Inference I 10.0 cp

ECTS Credits:
5 ECTS credits

Language of instruction:
Finnish

Timing:
2nd or 3rd year of B.Sc. studies, spring term

Learning outcomes:
After successful completion of the course the student can describe the basic principles of likelihood inference, derive likelihood functions of models with few parameters, compute likelihood quantities based on them, and interpret results such obtained.

Contents:
Statistical model and observation data; likelihood function, log-likelihood, score, information; maximum likelihood estimation, relative likelihood, likelihood interval and likelihood region, profile likelihood; normal approximation of log-likelihood; use of R environment in inferential problems.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (28 h), practicals and computer classes (14 h), and independent work

Target group:
Students having statistics as the major or a minor subject

Prerequisites and co-requisites:
Introduction to Probability Theory I, Basic Methods of Data Analysis

Recommended or required reading:

Assessment methods and criteria:
Final exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Fail, 1-5

Person responsible:
Esa Läärä

Working life cooperation:
No
805306A: Introduction to Multivariate methods, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Field of Mathematics
Grading: 1 - 5, pass, fail
Teachers: Jari Päkkilä
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction: Finnish
Timing:
Autumn term, 2nd period. Recommended to be taken already in the 2nd year for those aiming at specialization in data science.
Learning outcomes:
Upon successful completion of the course the student can describe the basic concepts and main principles of the logistic regression, principal components analysis, discriminant analysis, classification analysis and clustering analysis, and is able to apply these methods in analysing a small scale data set as well as to apply the necessary computational tools.
Contents:
Logistic regression, principal components analysis, discriminant analysis, classification analysis and clustering analysis; Use of R environment in modelling; Course is an application oriented.
Mode of delivery:
Contact teaching
Learning activities and teaching methods:
Lectures 28 h, practicals 14 h, and independent work. The practicals include both homework and computer class exercises.
Target group:
Students of mathematical sciences and other interested. The course belongs to core studies for those with an orientation to data science. It is a prerequisite for those doing M.Sc. in computational mathematics and data science having data science as the specialization profile. The course is useful also for students of the Faculty of Science and the Oulu Business School as well as those of computer science or computational engineering, who have statistics as a minor subject.
Prerequisites and co-requisites:
806113P Introduction to Statistics or 806119P A Second Course in Statistics and 805305A Introduction to Regression and Analysis of Variance or corresponding abilities acquired otherwise.
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
Assessment methods and criteria:
Practical exercises and final exam. Passing the course requires adequate participation in practical sessions and sufficient homework activity.

Grading:
Numeric assessment scale from 1 to 5, Fail

Person responsible:
Jari Päkkilä

Working life cooperation:
No

521285S: Affective Computing, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Fall, periods 1
Learning outcomes:
After completing the course, student
1. is able to explain the emotion theory and modeling
2. is able to implement algorithms for emotion recognition from visual and audio signals or the fusion of multi-modalities
3. has the ideas of wide applications of affective computing

Contents:
The history and evolution of affective computing; psychological study about emotion theory and modeling; emotion recognition from different modalities: facial expression, speech, EEG; crowdsourcing study; synthesis of emotional behaviors; emotion applications.

Mode of delivery:
Face to face teaching
Learning activities and teaching methods:
The course consists of lectures and exercises. The final grade is based on the points from exam while there are several mandatory exercises.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
A prior programming knowledge, possibly the bachelor level mathematical studies and/or some lower level intermediate studies (e.g. computer engineering or artificial intelligence courses). The recommended optional studies include the advanced level studies e.g. the pattern recognition and neural networks and/or computer vision courses.

Recommended optional programme components:
-

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory exercises.
521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ekaterina Gilman, Susanna Pirttikangas
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits
Language of instruction:
English
Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.

Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundamentals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work

Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.

Recommended optional programme components:

Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the reference list for recommended reading. Instructions to necessary installations will be given.

Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Ekaterina Gilman

Working life cooperation:
The course includes also invited lectures from industry.

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Tapio Seppänen

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 50 hours of work

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to biosignal analysis
3. implement small-scale software for signal processing algorithms

Contents:

Mode of delivery:
Face-to-face teaching and guided laboratory work.

Learning activities and teaching methods:
Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.

Target group:
Students interested in biomedical engineering, at their master's level studies.

Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Tapio Seppänen

Working life cooperation:
No.
521140S: Computer Graphics, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao

Opintokohteen kielet (E): English
Leikkaavuudet (E):

521493S Computer Graphics 7.0 cp

ECTS Credits:
5 ECTS credits
Language of instruction:
In English
Timing:
Spring, period 4.
Learning outcomes:
1. is able to specify and design 2D graphics algorithms including: line and circle drawing, polygon filling and clipping
2. is able to specify and design 3D computer graphics algorithms including transformations, viewing, hidden surface removal, shading, texture mapping and hierarchical modeling
3. is able to explain the relationship between the 2D and 3D versions of such algorithms
4. possesses the necessary basic skills to use these basic algorithms available in OpenGL

Contents:
The history and evolution of computer graphics; 2D graphics including: line and circle drawing, polygon filling, clipping, and 3D computer graphics algorithms including viewing transformations, shading, texture mapping and hierarchical modeling; graphics API (OpenGL) for implementation.

Mode of delivery:
Face to face teaching.

Learning activities and teaching methods:
Lectures 28 h / Self-study and programming assignments 105h

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills using C++; basic data structures; simple linear algebra.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
4) Lecture notes (in English)

Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory returned programming assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5, zero stands for fail.

Person responsible:
031025A: Introduction to Optimization, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Applied Mathematics and Computational Mathematics
Grading: 1 - 5, pass, fail
Teachers: Ruotsalainen Keijo
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work
Language of instruction:
English
Timing:
The course is held in the autumn, during period 1.
Learning outcomes:
After completing the course the student is able to solve optimization convex optimization problems with the basic optimization algorithms. The student is also able to form the necessary and sufficient conditions for the optimality.
Contents:
Linear optimization, Simplex-algorithm, nonlinear optimization, KKT-conditions, duality, conjugate gradient method, penalty and barrier function methods.
Mode of delivery:
Face-to-face teaching
Learning activities and teaching methods:
Lectures 28 h / Group work 14 h / Self-study 93 h.
Target group:
Students in Wireless Communication Engineering
Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses Calculus I and II, Matrix algebra
Recommended optional programme components:

Recommended or required reading:
P. Ciarlet; Introduction to numerical linear algebra and optimization, M. Bazarraa, H. Sherali, C.M. Shetty; Nonlinear programming
Assessment methods and criteria:
The course can be completed by a final exam.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail
Person responsible:
Keijo Ruotsalainen
Working life cooperation:

521289S: Machine Learning, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
- 521497S-01 Pattern Recognition and Neural Networks, Exam 0.0 cp
- 521497S-02 Pattern Recognition and Neural Networks; Exercise Work 0.0 cp
- 521497S Pattern Recognition and Neural Networks 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the spring semester, during period III. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. can design simple optimal classifiers from the basic theory and assess their performance.
2. can explain the Bayesian decision theory and apply it to derive minimum error classifiers and minimum cost classifiers.
3. can apply the basics of gradient search method to design a linear discriminant function.
4. can apply regression techniques to practical machine learning problems.

Contents:

Mode of delivery:
Face-to-face teaching, guided laboratory work and independent assignment.

Learning activities and teaching methods:
Lectures 2h, Laboratory work 16h, Exercise 16h and Self-study the rest (Independent task assignment, written examination).

Target group:
Students who are interested in data analysis technology. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. The independent task assignment is graded. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. The final grade is established by weighing the written exam by 2/3 and the task assignment by 1/3.

Person responsible:
Tapio Seppänen

Working life cooperation:
No
521466S: Machine Vision, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Spring, period 3.
Learning outcomes:
Upon completion of the course the student
1. understands the fundamentals of image acquisition, representation and modeling
2. can utilize elementary methods of machine vision for image recognition problems
3. can use 2D transformations in model fitting and image registration
4. can explain the basics of 3D imaging and reconstruction

Contents:
1. Introduction, 2. Imaging and image representation, 3. Color and shading, 4. Image features, 5. Recognition, 6. Texture, 7. Motion from 2D image sequences, 8. 2D models and transformations, 9. Perceiving 3D from 2D images, 10. 3D transformations and reconstruction.

Mode of delivery:
Face-to-face teaching, homework assignments.
Learning activities and teaching methods:
Lectures (20 h), exercises (16 h) and Matlab homework assignments (30 h), self-studying (67 h).
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
521467A Digital Image Processing or an equivalent course
Recommended optional programme components:
521289S Machine Learning. This course provides complementary knowledge on machine learning methods needed in machine vision.
Recommended or required reading:
Assessment methods and criteria:
The course is passed with final exam and accepted homework assignments. Read more about assessment criteria at the University of Oulu webpage.
Grading:
Numerical grading scale 1-5. Zero stands for a fail.
Person responsible:
Janne Heikkilä
Working life cooperation:
No.

521161S: Multi-Modal Data Fusion, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS / 135 hours of work

Language of instruction:
English

Timing:
Period 2

Learning outcomes:
Upon completion the student should be able to understand the problem of combining data (such as images and audios) of different natures and coming from different sources. The student should be able to implement basic solutions towards the accomplishment of a given task requiring the integration and combination of data.

Contents:
This course will provide a comprehensive introduction to the concepts and ideas of multi-sensor data fusion. The course will be illustrated with many real-life examples taken from a diverse range of applications. The course will be self-contained as much as possible (no previous knowledge of multisensor data fusion is assumed). Basic knowledge on related topics like image processing and signal processing will be a plus.

The course will discuss the following topics:
Introduction
Sensors
Architecture
Common Representational Format
Spatial Alignment
Temporal Alignment
Semantic Alignment
Radiometric Normalization
Bayesian Inference
Parameter Estimation
Robust Statistics
Sequential Bayesian Inference
Bayesian Decision Theory
Ensemble Learning
Sensor Management

Mode of delivery:
The course will be based on a combination of lectures (face-to-face teaching), home exercises and a final project.

Learning activities and teaching methods:
Face-to-face teaching: 20 h, home exercises: 80 h, final project: 35h

Target group:
Computer Science and Engineering, Ubiquitous Computing (M.Sc level, study years 4-5).

Prerequisites and co-requisites:
The course will be self-contained as much as possible (no previous knowledge is assumed). Basic knowledge on related topics like image processing and signal processing will be a plus.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
To pass the course, the student should retrun the exercises, complete a final programming project and pass an exam.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course will utilize a numercial grading scale 1-5.

Person responsible:
521158S: Natural Language Processing and Text Mining, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works
Language of instruction:
English
Timing:
Period 2. It is recommended to complete the course at the end of period 2

Learning outcomes:
Upon completing the course, the student is expected to i) comprehend, design and implement basic (online) text retrieval and query systems; ii) account for linguistic aspects and perform word sense disambiguation; iii) perform basic (statistical) inferences using corpus; iv) manipulate (statistical) language modelling toolkits, online lexical databases and various natural language processing tools.

Contents:
Foundation of text retrieval systems, Lexical ontologies, word sense disambiguation, Text categorization, Corpus-based inferences and Natural Language Processing tools

Mode of delivery:
Face- to-face teaching and laboratory sessions
Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (16h), seminar (6h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
students with (moderate to advanced) programming skills in Python
Prerequisites and co-requisites:
Programming skills (preferably) in Python

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.
Grading:
1-5

Person responsible:
Mourad Oussalah
Working life cooperation:
-
813621S: Research Methods, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki
Opintokohteen kielet (E): English
Leikkaavuudet (E):

521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English
Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in
the 1st autumn semester.
Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the
practices of scientific methodology. The student is also able to generate research problems in information
processing sciences. The student is able to identify and describe the main research approaches and methods in
information processing sciences, and choose the appropriate approach and method for a research problem. The
student is also able to evaluate the methodological quality of a research publication. After the course the student
is able to choose and apply the proper approach and method for his or her Master's thesis and find more
information on the method from scientific literature.
Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications,
qualitative research approaches and selected research methods, quantitative research approaches and selected
research methods, design science research and selected methods, requirements and examples of Master's theses,
evaluation of research.
Mode of delivery:
Face-to-face teaching, lecture videos.
Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises.
Exercises include group work.
Target group:
MSc students
Prerequisites and co-requisites:
Completion of Bachelor's studies.
Recommended or required reading:
Lecture slides and specified literature.
Assessment methods and criteria:
Accepted learning diary.
Grading:
Pass or fail.
Person responsible:
Arto Lanamäki

521156S: Towards Data Mining, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Satu Tamminen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish or English
Timing:
Autumn, period I.
Learning outcomes:
Student can recognize the type of the data before further analysis and the required preprocessing. The concrete learning outcomes are:
1. Student can design and implement the data gathering
2. Student can combine data from different sources
3. Student can normalize and transform data, and handle missing or incorrect data.
4. Student can ensure the generalizability of the results.

Contents:
Course provides good ability to start Master's Thesis or graduate studies. Topics at the course include data mining process in general level, data gathering and different data types, quality and reliability of the data, data preparation including the processing of missing values, outliers, and privacy issues, combination of signals from several sources, utilization of data bases in data mining process, and normalization and transformation of data and interdependence of the observations and their distributions. Additionally, topics concerning the generality of the results are covered, as well as, the principles of data division, for example, train-test-validate, cross-validation and leave-one-out methods.

Mode of delivery:
Lectures, independent work, group work
Learning activities and teaching methods:
16h lectures, 16h exercises, independent studying.
Target group:
The course is suitable for Master level students in Computer science and engineering study programmes, for minor subject studies or for doctoral students.
Prerequisites and co-requisites:
031021P Probability and Mathematical Statistics or similar
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
Lecture hand-out and exercise material will be provided. The course book will be announced in the beginning of the course. The material is mostly in English.
Assessment methods and criteria:
Participation in mandatory classes and final exam.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
Numerical grading scale 1-5; zero stands for a fail.
Person responsible:
Tamminen Satu
Working life cooperation:
-
Other information:
-

521152S: Applied Computing Project II, 10 cp

Validity: 01.08.2013 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
10 ECTS cr
Language of instruction:
English.
Timing:
Autumn and Spring, periods 1-4.
Learning outcomes:
1. has advanced understanding on how to collaboratively design a medium-scale software project,
2. has advanced understanding on how to implement and evaluate a medium-scale software project,
3. is able to extensively document a medium-scale software project,
4. has advanced skills in presenting and pitching a project work, i.e. give a good, concise presentation of the work,

Contents:
Project work that is typically executed in groups of 3-5 students. Note: the project work cannot be done alone.

Mode of delivery:
3-4 lectures to introduce and conclude the course and project works, collaborative project work for a "client" (teaching assistants and/or industry representatives).

Learning activities and teaching methods:
Practical work in project teams. The course is passed with an approved project work. The implementation is fully in English.

Target group:
Computer Science and Engineering MSc students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that the project work is assessed in stages: design (20% of total grade), implementation (40%), evaluation (20%), and final report (20%). Passing criteria: all stages (design, implementation, evaluation, report) must be completed with an approved grade.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Simo Hosio

Working life cooperation:
No

521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ekaterina Gilman, Susanna Pirttikangas
ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.

Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundamentals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work

Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.

Recommended optional programme components:

Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the reference list for recommended reading. Instructions to necessary installations will be given.

Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ekaterina Gilman

Working life cooperation:
The course includes also invited lectures from industry.

521042S: Creative Design, 5 cp

Validity: 01.08.2018 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Georgi Georgiev

ECTS Credits:
5 ECTS credits/ 135 hours of work
Language of instruction:
English
Timing:
Period 3

Learning outcomes:
Upon completion of this course, students are able to:
- Understand and apply in practice basic creative problem-solving and design thinking approaches.
- Systematically ideate and implement creative solutions to a problem, both independently and within a team.
- Apply creative design thinking and low-resolution prototyping, with emphasis on empathy, iterative strategies, and interactions.

Contents:
The course teaches students of (1) Creative problem-solving; (2) Design thinking and low-resolution prototyping; (3) Teamwork problem-solving; (4) Systematic ideation approaches.

Mode of delivery:
Face-to-face teaching, teamwork/individual work, and independent studying.

Learning activities and teaching methods:
Lectures 21h / Individual work 124h. There are TA hours each week where guidance is available.

Target group:
Primary target group is first year master's level students of computer science and engineering with the applied computing orientation.

Prerequisites and co-requisites:
There are no prerequisites or co-requisites.

Recommended optional programme components:

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
20% attendance of 7 lecture-exercises; 40% exercise completion and performance; 40% individual project outcome.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for fail.

Person responsible:
Georgi Georgiev

Working life cooperation:

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Xiang Su

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>521266S-01</td>
<td>Distributed Systems, Exam</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521266S-02</td>
<td>Distributed Systems, Exercise Work</td>
<td>0.0 cp</td>
</tr>
<tr>
<td>521266S</td>
<td>Distributed Systems</td>
<td>6.0 cp</td>
</tr>
</tbody>
</table>

ECTS Credits:
5 ECTS cr
Language of instruction:
In English.
Timing:
Spring, period 3.
Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault
tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Required literature: Maarten van Steen and Andrew S. Tanenbaum, Distributed Systems – Principles and

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final
exam. The course includes a mandatory project work.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

521043S: Internet of Things, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS / 135 hours of work
Language of instruction:
English
Timing:
Spring semester during period IV

Learning outcomes:
Upon completion of the course, the student will be able to:
1. explain application areas of IoT and requirements from such application areas for IoT systems.
2. will be able to explain the state-of-the-art IoT solutions, and understand the basic technologies behind them.
3. learn the principles of the novel IoT technologies and know important directions IoT research towards.

Contents:
The basic technologies and novel applications of the Internet of Things, including networking technologies as well
as Web of Things. IoT sensor technologies and sensing solutions for smart buildings including smart home, city,
office, or campus environments, and wearables and other personal devices such as fabrication. Exercises will include hands-on programming and sensing data analytics tasks.

Mode of delivery:
face-to-face teaching and exercises (both individual and group work)

Learning activities and teaching methods:
20h lectures, 12h exercise sessions, independent studying 95 hours.

Target group:
M.Sc. students of Computer Science and Engineering, M. Sc. students of Ubicomp International master program. The course fits also for Statistics and Math MSc student interested in applying their knowledge into sensing and IoT data.

Prerequisites and co-requisites:
The Bachelor level knowledge of Computer science and engineering study programmes. Good programming skills in a chosen language.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out, complementary reading list, and exercise material will be provided.

Assessment methods and criteria:
Attending lectures and exercise sessions, and returning the weekly exercises online.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilises a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ella Peltonen

Working life cooperation:
The course may include the invited guest lectures from industry and other top EU universities.

521045S: Mobile Computing, 5 cp

Validity: 01.08.2018 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Denzil Teixeira Ferreira

Opintokohteen kielet (E): English

Leikkaavuudet (E):
- 521046A Mobile Computing 5.0 cp
- 521147S Mobile and Social Computing 5.0 cp

ECTS Credits:
5ECTS / 138 hours of work

Language of instruction:
English

Timing:
Spring, periods 3 and 4

Learning outcomes:
This course focuses on one of the core demands of industry today: deep understanding of mobile interaction, mobile computing constrains and mobile development. After this class, students will possess the:
- ability to design and prototype a mobile user interface taking into account usability aspects of interaction on smaller displays
- ability to explain and leverage the fundamental concepts of context awareness using smartphone hardware, software and human sensors
- ability to understand and implement from scratch a mobile application that leverages both usability and context to create engaging mobile experiences
Contents:
The basic concepts of mobile interface design, implementation, mobile sensor acquisition, context awareness.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
5 ECTS cr = 138h of course work. Lectures (14h), in-class exercises (14h) and practical work (107h) (project, assignments).

Target group:
Computer Science and Engineering students and other students.

Prerequisites and co-requisites:
Recommended to have experience with object-oriented programming (Java, C#).

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment depends on whether the student attends or not the class. For attending students, the assessment is based on 5 laboratory exercises (which the student needs a passing grade). For non-attending students, 5 individual assignments are assigned instead of the laboratory exercises (which the student needs a passing grade). For non-attending students, there is an intermediate exam at the end of period 3 and another at the end of period 4. All students, attending or not, are peer-assessed in a team project during period 4.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Denzil Socrates Teixeira Ferreira

Working life cooperation:

521158S: Natural Language Processing and Text Mining, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works
Language of instruction:
English
Timing:
Period 2. It is recommended to complete the course at the end of period 2
Learning outcomes:
Upon completing the course, the student is expected to i) comprehend, design and implement basic (online) text retrieval and query systems; ii) account for linguistic aspects and perform word sense disambiguation; iii) perform basic (statistical) inferences using corpus; iv) manipulate (statistical) language modelling toolkits, online lexical databases and various natural language processing tools.

Contents:
Foundation of text retrieval systems, Lexical ontologies, word sense disambiguation, Text categorization, Corpus-based inferences and Natural Language Processing tools
Mode of delivery:
Face- to-face teaching and laboratory sessions
Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (16h), seminar (6h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
students with (moderate to advanced) programming skills in Python

Prerequisites and co-requisites:
Programming skills (preferably) in Python

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English

Leikkaavuudet (E):

| ay521260S | Programmable Web Project (OPEN UNI) | 5.0 cp |

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
- understand what a Web API is and learn different Web API architectures.
- understand the concept of hypermedia and how it is used to build Web APIs.
- are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
- are able to write unit and functional tests to inspect their APIs.
- are able to document their Web APIs using adequate software tools.
- are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

813621S: Research Methods, 5 cp

Form of study: Advanced Studies

Type: Course

Unit: Information Processing Science DP

Grading: 1 - 5, pass, fail

Teachers: Arto Lanamäki

Opintokohteen kielet (E): English

Leikkaavuudet (E):
521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student...
is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.

Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521479S: Software Project, 7 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Christian Wieser

Opintokohteen kielet (E): English

ECTS Credits:
7

Language of instruction:
Finnish/English, material available in English.

Timing:
Autumn, periods 1-2.

Learning outcomes:
After completing the course, students have demonstrated their capabilities to design, develop and test real-life software. Further, they have shown their proficiency in professionally documenting their work during the assignment.

Contents:
Phases of software engineering process: requirement gathering, analysis, design, implementation, testing, (maintenance). Project-work, starting a project, project management, working with external parties, project documentation. Project related implementation techniques and tools, software documentation.

Mode of delivery:
Face-to-face and independent studies.

Learning activities and teaching methods:
Working methods: The course is done in groups of 3-4 students. The clients are typically various companies and societies. Project progress is supervised in formal reviews, where the project teams present their work as it reaches the milestones: the software requirement specification, the project plan, the software design specification, an operational prototype demonstration, the test documentation, and finally the functional software
demonstration and release. In addition to formal reviews the project work is coordinated with steering group meetings. The work environment and development tools vary between projects. The number of students that can attend the course is limited. Lectures 10 h, design project in period 4-6 180 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work and documentation. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Christian Wieser

Working life cooperation:

Other information:

521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
Autumn, periods 1-2.

Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face

Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.

Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course uses numerical scale 1-5.

Person responsible:
Professor Timo Ojala

Working life cooperation:
None.

521281S: Application Specific Signal Processors, 5 cp

Validity: 01.08.2012 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Olli Silven

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Autumn, period 1.

Learning outcomes:
After completing the course, student
1. Can distinguish the main types of signal processors
2. Can design basic customized transport triggered architecture processors
3. Is capable of assembling a signal processor out of basic entities
4. Can match the processor performance and the application requirements
5. Applies the TTA codesign environment and Altera's FPGA tools to synthesize a system

Contents:
Examples of modern signal processing applications, main types of signal processors, parallel signal processing, transport triggered architectures, algorithm-architecture matching, TCE design environment and Altera FPGA tools.

Mode of delivery:
Lectures, independent work, group work.

Learning activities and teaching methods:
Lectures 12h (participation mandatory); Instructed labs 12h. Independent work 111h

Target group:
Computer Science and Engineering students + other Students of the University of Oulu. This is an advanced-level course intended for masters-level students and post-graduate students, especially to those who are specializing into signal processing.
Prerequisites and co-requisites:
521267A Computer Engineering or 521286A Computer Systems (8 ECTS cr) or 521287A Introduction to Computer Systems (5 ECTS cr) and 521337A digital filters, programming skills

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Handouts.

Assessment methods and criteria:
Participation in mandatory classes and approved project work.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Mehdi Safarpour

Working life cooperation:
No.

521155S: Computer Security, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Teemu Tokola, Juha Röning

Opintokohteen kielet (E): English

ECTS Credits: 5 ECTS credits

Language of instruction: English

Timing: Autumn semester, period I.

Learning outcomes:
Upon completion of this course, students are familiar with key areas of computer security and have practiced practical skills in these areas with assignments.

Contents:
The course covers the essential aspects of computer security and computer security research in theory and through practical examples.

Mode of delivery:
Lectures and practical assignments

Learning activities and teaching methods:
Lectures 14 h, laboratory exercise 28 h, the rest as independent work.

Target group:
The course is intended for computer engineering masters students and additionally to any student interested in computer security that has the sufficient technical background to complete the course exercises.

Prerequisites and co-requisites:
As prior knowledge students should have a basic understanding of how computers and operating systems work and basic skills in programming. Examples of suitable courses to cover these fundamentals are Operating Systems 521453A, Introduction to Programming 521141P and Computer Engineering 521267A.

Recommended optional programme components:
The course is an independent entity.

Recommended or required reading:

Assessment methods and criteria:
Grading of the course is made based on the course practical assignments.

Grading:
Numerical scale 1-5, with 0 denoting failure to pass.

Person responsible:
Juha Röning, Teemu Tokola

Working life cooperation:
Visiting lectures from computer security–related companies arranged during the course whenever possible.

Other information:

521423S: Embedded System Project, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Röning
Opintokohteen kielet (E): English

ECTS Credits: 5
Language of instruction: Lecturing in Finnish, material available in English
Timing: Spring, periods 3-4.
Learning outcomes:
1. After passing the course a student can explain the life cycle of the embedded system, the characteristic features related to embedded systems development, and the risks involved.
2. In addition, the student can explain the roles of the client and the system developer during the requirements specification, and the role of the iteration phase as a part of the requirements specification phase. The student can explain the factors affecting to SW/HW partitioning process, and the concept of SW/HW dualism. The student can fairly analyze the factors affecting to the selection of the processor and the operating system. The student can recognize the basic development tools used and their possible advantages and disadvantages.
3. The student can compare various testing approaches. The student can explain how a design error affects to the final cost of the system in different phases of the development. The student can do some basic I/O programming using C programming language.

Contents:
The embedded design life cycle, the selection process, the partitioning decision, the development environment, the special software techniques, a basic toolset, JTAG/ICE, testing, I/O programming.

Mode of delivery:
Face-to-face teaching.
Learning activities and teaching methods:
The course is run in a project work in groups of two and follow up the progress reporting meetings. Lectures 10 h, laboratory exercise in period 3-4 120 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
521412A Digital Techniques I
Also recommended 521275A Embedded Software Project, 521432A Electronics Design I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
521043S: Internet of Things, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): English

ECTS Credits: 5 ECTS / 135 hours of work
Language of instruction: English
Timing: Spring semester during period IV
Learning outcomes: Upon completion of the course, the student will be able to:
1. explain application areas of IoT and requirements from such application areas for IoT systems.
2. will be able to explain the state-of-the-art IoT solutions, and understand the basic technologies behind them.
3. learn the principles of the novel IoT technologies and know important directions IoT research towards.

Contents: The basic technologies and novel applications of the Internet of Things, including networking technologies as well as Web of Things. IoT sensor technologies and sensing solutions for smart buildings including smart home, city, office, or campus environments, and wearables and other personal devices such as fabrication. Exercises will include hands-on programming and sensing data analytics tasks.

Mode of delivery: face-to-face teaching and exercises (both individual and group work)
Learning activities and teaching methods: 20h lectures, 12h exercise sessions, independent studying 95 hours.
Target group: M.Sc. students of Computer Science and Engineering, M. Sc. students of Ubicomp International master program. The course fits also for Statistics and Math MSc student interested in applying their knowledge into sensing and IoT data.

Prerequisites and co-requisites: The Bachelor level knowledge of Computer science and engineering study programmes. Good programming skills in a chosen language.

Recommended optional programme components: The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading: Lecture hand-out, complementary reading list, and exercise material will be provided.
Assessment methods and criteria: Attending lectures and exercise sessions, and returning the weekly exercises online. Read more about assessment criteria at the University of Oulu webpage.
Grading: The course utilises a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible: Ella Peltonen
Working life cooperation: The course may include the invited guest lectures from industry and other top EU universities.
521288S: Multiprocessor Programming, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Miguel Bordallo Lopez
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521280S DSP Laboratory Work 5.0 cp

ECTS Credits:
5 ECTS cr / 135 hours of work
Language of instruction:
English
Timing:
Spring semester, periods 3-4
Learning outcomes:
Upon completion of the course, the student:
1. has basic understanding of multiprocessor architectures and heterogeneous computing,
2. has basic understanding on how to design and implement algorithms for heterogeneous platforms,
3. understands the possible challenges and shortcomings related to the current heterogeneous systems,
4. is able to use the OpenCL framework for designing, implementing and optimizing signal processing algorithms for heterogeneous platforms

Contents:
Algorithm design, general purpose computing on graphics processing units, heterogeneous computing, OpenCL programming and optimization
Mode of delivery:
Opening lecture and independent exercise project, which is divided into smaller sub-entities. The exercise project is performed using both desktop and mobile platforms. After each sub-entity, a short seminar is held where the students discuss their results and possible ways to optimize the performance of their implementation.
Learning activities and teaching methods:
Opening lecture (2h), seminars (8h) and independent exercise project (125h).
Target group:
Computer Science and Engineering students and other Students of the University of Oulu. This is an advanced-level course intended for masters-level students and post-graduate students, especially to those interested in signal processing, processor architectures and embedded systems programming.
Prerequisites and co-requisites:
Matrix Algebra 031078P, Elementary programming 521141P, Computer Systems 521286A, Digital Filters 521337A
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:

Assessment methods and criteria:
Students complete the course exercises after the attending to the opening lecture in groups of two students. Assessment is based on the quality of the completed exercises and exercise reports. More detailed information on assessment will be announced at the beginning of the course.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
Numerical grading scale 1-5; zero stands for a fail.
Person responsible:
Miguel Bordallo
Working life cooperation:
521279S: Signal Processing Systems, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Autumn, period 2
Learning outcomes:
1. Student can explain the challenges of signal processing hardware, software, and design methodologies.
2. Student is able to transform a digital filter designed with floating point arithmetic into a fixed point precision implementation, optimizing the word lengths to achieve the performance specifications.
3. Student is able to explain the most important algorithm implementation structures and can identify their usage contexts.
4. Student has rudimentary practical skills in modeling, designing, and judging finite word length signal processing algorithms with Matlab and Simulink software tools.

Contents:
Binary and floating point arithmetic, DSP programming models and co-design, digital signal processors, algorithms and implementations, including CORDIC, transforms (FFT and DCT), multi-rate signal processing, polyphase filters, filter banks, adaptive algorithms and applications. The software environments of the course are Matlab with the Fixed Point Toolbox extension and Simulink with the DSP Blockset extension.

Mode of delivery:
Lectures, independent work, group work.
Learning activities and teaching methods:
The course consists of lectures (30 h) and design exercises (6-12 h). the rest as independent work (33h).
Target group:
Computer Science and Engineering students: This is an advanced-level course intended for masters-level students, especially to those that are specializing into signal processing. + Other Students of the University of Oulu.
Prerequisites and co-requisites:
521337A Digital Filters, 521267A Computer Engineering or 521286A Computer Systems, 8 ECTS cr or 521287A Introduction to Computer Systems, 5 ECTS cr
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
Lecture notes and exercise materials. Material is in English.
Assessment methods and criteria:
Grading is based on the evaluation of the design exercises, which are done during the course, and exams, which are arranged during the lectures.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Olli Silven
521479S: Software Project, 7 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Christian Wieser
Opintokohteen kielet (E): English

ECTS Credits:
7
Language of instruction:
Finnish/English, material available in English.
Timing:
Autumn, periods 1-2.
Learning outcomes:
After completing the course, students have demonstrated their capabilities to design, develop and test real-life software. Further, they have shown their proficiency in professionally documenting their work during the assignment.
Contents:
Phases of software engineering process: requirement gathering, analysis, design, implementation, testing, (maintenance). Project-work, starting a project, project management, working with external parties, project documentation. Project related implementation techniques and tools, software documentation.
Mode of delivery:
Face-to-face and independent studies.
Learning activities and teaching methods:
Working methods: The course is done in groups of 3-4 students. The clients are typically various companies and societies. Project progress is supervised in formal reviews, where the project teams present their work as it reaches the milestones: the software requirement specification, the project plan, the software design specification, an operational prototype demonstration, the test documentation, and finally the functional software demonstration and release. In addition to formal reviews the project work is coordinated with steering group meetings. The work environment and development tools vary between projects. The number of students that can attend the course is limited. Lectures 10 h, design project in period 4-6 180 h.
Target group:
Computer Science and Engineering students and other Students of the University of Oulu.
Prerequisites and co-requisites:
Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
Assessment methods and criteria:
Project work and documentation.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.
Person responsible:
Christian Wieser
Working life cooperation:
-
Other information:
A452295: Advanced Module / Artificial Intelligence, 25 - 60 cp

Validity: 01.08.2018 -
Form of study: Advanced Module
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

Optional Studies: Artificial Intelligence, Choose f.g. from the following courses total 30 ECTS cr

521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
English
Timing:
Period 3.
Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.
Contents:

Mode of delivery:
Face-to-face teaching.
Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html

Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

521348S: Statistical Signal Processing, 5 cp

- **Validity:** 01.08.2016 -
- **Form of study:** Advanced Studies
- **Type:** Course
- **Unit:** Electrical Engineering DP
- **Grading:** 1 - 5, pass, fail
- **Teachers:** Janne Lehtomäki, Juntti, Markku Johannes
- **Opintokohteen kielet (E):** Finnish
- **Leikkaavuudet (E):**
 - 521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will
 1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-to-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course: 031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments (programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.

Person responsible:
Markku Juntti
Janne Lehtomäki

Working life cooperation:
-

Other information:
-

521045S: Mobile Computing, 5 cp

Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Denzil Teixeira Ferreira
Opintokohteen kielet (E): English
Leikkaavuudet (E):
- 521046A Mobile Computing 5.0 cp
- 521147S Mobile and Social Computing 5.0 cp

ECTS Credits:
5ECTS / 138 hours of work

Language of instruction:
English

Timing:
Spring, periods 3 and 4

Learning outcomes:
This course focuses on one of the core demands of industry today: deep understanding of mobile interaction, mobile computing constrains and mobile development. After this class, students will possess the:
- ability to design and prototype a mobile user interface taking into account usability aspects of interaction on smaller displays
- ability to explain and leverage the fundamental concepts of context awareness using smartphone hardware, software and human sensors
- ability to understand and implement from scratch a mobile application that leverages both usability and context to create engaging mobile experiences

Contents:
The basic concepts of mobile interface design, implementation, mobile sensor acquisition, context awareness.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
5 ECTS cr = 138h of course work. Lectures (14h), in-class exercises (14h) and practical work (107h) (project, assignments).

Target group:
Computer Science and Engineering students and other students.

Prerequisites and co-requisites:
Recommended to have experience with object-oriented programming (Java, C#).

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment depends on whether the student attends or not the class. For attending students, the assessment is based on 5 laboratory exercises (which the student needs a passing grade). For non-attending students, 5 individual assignments are assigned instead of the laboratory exercises (which the student needs a passing grade). For non-attending students, there is an intermediate exam at the end of period 3 and another at the end of period 4. All students, attending or not, are peer-assessed in a team project during period 4.
Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Denzil Socrates Teixeira Ferreira

Working life cooperation:
-

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay521467A Digital Image Processing (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.

Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.
Recommended or required reading:
Lecture notes and exercise

Assessment methods and criteria:
The course is completed by passing the exam and homework assignments.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work
Language of instruction:
English.
Timing:
Autum and spring, periods 1-4.
Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.

Mode of delivery:
Self-study.
Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.
Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
Autumn, periods 1-2.

Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face

Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.

Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course uses numerical scale 1-5.

Person responsible:
Professor Timo Ojala

Working life cooperation:
None.

521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English

Leikkaavuudet (E):
- ay521260S Programmable Web Project (OPEN UNI) 5.0 cp

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
- understand what a Web API is and learn different Web API architectures.
- understand the concept of hypermedia and how it is used to build Web APIs.
- are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
- are able to write unit and functional tests to inspect their APIs.
- are able to document their Web APIs using adequate software tools.
- are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

521155S: Computer Security, 5 cp

Validity: 01.08.2017 -

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Teemu Tokola, Juha Röning

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Autumn semester, period I.

Learning outcomes:
Upon completion of this course, students are familiar with key areas of computer security and have practiced practical skills in these areas with assignments.

Contents:
The course covers the essential aspects of computer security and computer security research in theory and through practical examples.

Mode of delivery:
Lectures and practical assignments

Learning activities and teaching methods:
Lectures 14 h, laboratory exercise 28 h, the rest as independent work.

Target group:
The course is intended for computer engineering masters students and additionally to any student interested in computer security that has the sufficient technical background to complete the course exercises.

Prerequisites and co-requisites:
As prior knowledge students should have a basic understanding of how computers and operating systems work and basic skills in programming. Examples of suitable courses to cover these fundamentals are Operating Systems 521453A, Introduction to Programming 521141P and Computer Engineering 521267A.

Recommended optional programme components:
The course is an independent entity.

Recommended or required reading:
-

Assessment methods and criteria:
Grading of the course is made based on the course practical assignments.

Grading:
Numerical scale 1-5, with 0 denoting failure to pass.

Person responsible:
Juha Röning, Teemu Tokola

Working life cooperation:
Visiting lectures from computer security–related companies arranged during the course whenever possible.

Other information:
-

521282S: Biosignal Processing II, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jukka Kortelainen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
Lectures and laboratory works are given in English. The examination can be taken in Finnish or English.

Timing:
Period 4

Learning outcomes:
After completing the course, student
1. knows the special characteristics of neural signals and the typical signal processing methods related to them
2. can solve advanced problems related to the neural signal analysis

Contents:
Introduction to neural signals, artifact removal, anesthesia and natural sleep, topographic analysis and source localization, epilepsy, evoked potentials.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures (8 h) and laboratory work (20 h), written exam.

Target group:
Engineering students, medical and wellness technology students, and other students interested in biomedical engineering. Students of the University of Oulu.

Prerequisites and co-requisites:
The basic engineering math courses, digital filtering, programming skills, Biosignal Processing I.

Recommended optional programme components:
-

Recommended or required reading:
The course is based on selected parts from books "EEG Signal Processing", S. Sanei and J. A. Chambers, "Bioelectrical Signal Processing in Cardiac and Neurological Applications", L. Sörnmo and P. Laguna, and "Neural Engineering", B. He (ed.) as well as lecture slides and task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by the assistants who will also check that the task assignments are completed properly. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading of the accepted exam is in the range 1-5.

Person responsible:
Jukka Kortelainen

Working life cooperation:
-

521157A: Introduction to Social Network Analysis, 5 cp

Validity: 01.08.2017 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mourad Oussalah
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 120 hours of works

Language of instruction:
English

Timing:
Period 4. It is recommended to complete the course at the end of period 4

Learning outcomes:
Upon completing the course, the student is expected to i) understand social aspects of the web; ii) learn to collect, clean and represent social media data; iii) quantify important properties of social media; iv) find and analyze (online) communities; v) understand the diffusion process in social network; vi) familiarize with simple modelling toolkits for social media analysis

Contents:
The course describes basics of social network analysis, allowing the students to understand structure and evolution of the network, while enabling them to use appropriate tools and techniques to draw inferences and discover hidden patterns from the network. The course is designed to accommodate computer science, mathematical and social science student background, which helps in emergence of multi-disciplinary research in the university

Mode of delivery:
Face- to-face teaching and laboratory sessions

Learning activities and teaching methods:
Lectures (24 h), tutorial/laboratory sessions (12h), seminar (6 h) and practical work. The course is passed with an approved practical work and class test. The implementation is fully in English.

Target group:
Students with moderate logical reasoning skills

Prerequisites and co-requisites:
None

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time

Recommended or required reading:

Assessment methods and criteria:
One class test (30%) in the middle of the term + Project work (70%)
Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Mourad Oussalah

Working life cooperation:
-

Other information:
We hope to attract students from humanities, economics and political in order to encourage multidisciplinary studies and enforce interesting student projects where each group contains at least one student from computer science and one from another faculty.
521145A: Human-Computer Interaction, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Autumn, period 2

Learning outcomes:
1. Knowledge of the Human Computer Interaction (HCI) fundamentals
2. Knowledge of evaluation techniques
3. Knowledge of prototyping techniques
4. Knowledge of how HCI can be incorporated in the software development process

Contents:
Human and computer fundamentals, design and prototyping, evaluation techniques, data collection and analysis.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (12 h), exercises (16 h), and practical work (105 h). The course is passed with an approved practical work (several assignments). The implementation is fully English.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. The course involves some basic programming.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment is project-based. Students have to complete several individual exercises throughout the semester: 1: Using questionnaires; 2: Fitts law; 3: Advanced, team-based design exercise and essay. Passing criteria: all exercises must be completed, each receiving more than 50% of the available points. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Simo Hosio (Dr. Tech.)
Working life cooperation:
If relevant, guest lectures may be organized (optional).

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Xiang Su

Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521266S-01 Distributed Systems, Exam 0.0 cp
 521266S-02 Distributed Systems, Exercise Work 0.0 cp
 521266S Distributed Systems 6.0 cp

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, period 3.

Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory project work.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.
The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits
Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
-

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.
030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Form of study: Intermediate Studies
Type: Course
Unit: Faculty of Information Technology and Electrical Engineering
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

No course descriptions.

A452300: Advanced Module / Applied Computing, 23 - 28 cp

Validity: 01.08.2018 -
Form of study: Advanced Module
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

Optional Studies: Applied Computing, Choose f.g. from the following courses total 23 ECTS cr.

521149S: Special Course in Information Technology, 5 - 8 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5-8
Language of instruction: English
Timing: Autumn and Spring, periods 1-4.
Learning outcomes:
The learning outcomes are defined based on the course topic.
Contents:
Varies yearly.
Mode of delivery:
Face-to-face teaching, also web-based teaching can be used.
Learning activities and teaching methods:
Lectures, exercises, design exercise, project work and seminars depending on the topic of the year. The implementation of the course will be informed separately. The course can be given several times with different contents during the academic year and it can be included into the degree several times.

Target group:
M.Sc. level students of Computer Science and Engineering; other students are accepted if there is space in the classes.

Prerequisites and co-requisites:
Will be defined based on the contents.

Recommended optional programme components:
No.

Recommended or required reading:
Will be announced at the first lecture

Assessment methods and criteria:
Depends on the working methods. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Professor of CSE

Working life cooperation:

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work

Language of instruction:
English.

Timing:
Autum and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.
Mode of delivery:
Self-study.

Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

521154S: UBISS - International UBI Summer School, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): English
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English.

Timing:
Summer semester (June).

Learning outcomes:
Summer school comprises of multiple parallel workshops that each have specific learning outcomes.

Contents:
Each workshop has specific contents.

Mode of delivery:
Face-to-face teaching in workshops.
Learning activities and teaching methods:
Lectures, a project completed as group work, self-study.

Target group:
MSc. and doctoral students.

Prerequisites and co-requisites:
Each workshop may have specific prerequisites.

Recommended optional programme components:
None.

Recommended or required reading:
Each workshop has a specific reading package.

Assessment methods and criteria:
Final exam (50%), project (50%).

Grading:
The summer school uses a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

815657S: Open Source Software Development, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Henrik Hedberg
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 2nd autumn semester.

Learning outcomes:
After passing the course, a student will be able to
- define the historical background and the ideology of Open Source Software (OSS),
- participate in an OSS development project,
- evaluate the impact of the usage of OSS and OSS licenses on software development and exploitation, and
- view the phenomenon through the essential scientific research.

Contents:
The course introduces OSS development paradigm and current topics in OSS research. OSS affects both the way to produce software and the decisions of user organizations. It can be understood, for example, from different social, legal, economical, software engineering and data security viewpoints. The aim is to study from different perspectives, for example, what OSS is and what it is not, the history and
organisation of OSS projects, methods of OSS development and usage, as well as licensing models and possible risks. The emphasis is on research work.

Mode of delivery:
Blended teaching.

Learning activities and teaching methods:
Independent personal and group work about 40 h, weekly meetings and seminars about 30 h, seminar article and presentation about 60 h.

Target group:
MSc students

Prerequisites and co-requisites:
Compulsory prerequisites are Bachelor degree or other equivalent degree and basic knowledge on software engineering and research work.

Recommended or required reading:

Assessment methods and criteria:
Active participation, seminar article and other assignments.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Henrik Hedberg

815305A: Real Time Distributed Software Development, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Pulli, Petri Johannes
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2.

Learning outcomes:
After completing the course, the student is able to analyse the characteristics of real-time distributed systems; is able to acquire an object-oriented, model-based approach to solve the design problems found in real-time systems; is able to detect and derive specific problems facing the real-time software designer, and to suggest design patterns to solve those problems.

Contents:
Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 40 h, design exercises 15 h, student project 80 h.

Target group:
MSc students

Prerequisites and co-requisites:
Computer architecture, object-oriented analysis and design (UML), programming language C and/or Java.

Recommended or required reading:

Assessment methods and criteria:
Exam and project evaluation.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Petri Pulli

Working life cooperation:
One or two industrial guest lecturers.

817603S: System Design Methods for Information Systems, 5 cp

Validity: 01.08.2011 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Pasi Karppinen

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
E-exam.

Learning outcomes:
After the course the student understands the complexity of business, organizational, technical, and human aspects that affect ISD and the selection of methods in information systems design (ISD). The student also understands the defects of traditional waterfall model and how other methods aim to answer to these defects and to other challenges. In particular, with socio-technical methods (e.g., SSM).
and their techniques the student is able to re-plan and develop the sub-systems (automated and non-automated) of organization into a coherent whole. The student is also able to assess and give arguments which method is suitable for an ISD project in an organization.

Contents:

Target group:
MSc students

Prerequisites and co-requisites:
Bachelor studies recommended.

Recommended optional programme components:

Assessment methods and criteria:
E-exam

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Pasi Karppinen

813625S: Information Systems Theory, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Netta Iivari
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English.

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course at the 2nd autumn semester.

Learning outcomes:
After completing the course, students will have a good knowledge and understanding of a broad array of research topics and themes within the field of information systems; will have good knowledge and understanding of information systems research and the process by which that research is produced; will have competence in critiquing research articles published in some of the leading academic journals and conference proceedings; will have competence in critical thinking, and analysis and synthesis of academic sources; will have competence in verbally presenting arguments in an academic fashion; will know how to write a literature review on an information systems research topic.

Contents:
Information Systems Research Overview, A contemporary selection of Information Systems research themes.
Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, seminars 10 h, individual and group assignments 100 h; or self-study: opening lecture 2 h, assignments 132 h.

Target group:
MSc students

Prerequisites and co-requisites:
Bachelor's degree or similar, Research Methods course. Recommended to take before Master’s Thesis.

Recommended optional programme components:

Recommended or required reading:
Lectures and Selection of scientific articles.

Assessment methods and criteria:
Accepted assignments.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Netta Iivari

521423S: Embedded System Project, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Röning

Opintokohteen kielet (E): English

ECTS Credits:
5

Language of instruction:
Lecturing in Finnish, material available in English

Timing:
Spring, periods 3-4.

Learning outcomes:
1. After passing the course a student can explain the life cycle of the embedded system, the characteristic features related to embedded systems development, and the risks involved.
2. In addition, the student can explain the roles of the client and the system developer during the requirements specification, and the role of the iteration phase as a part of the requirements specification phase. The student can explain the factors affecting to SW/HW partitioning process, and the concept of SW/HW dualism. The student can fairly analyze the factors affecting to the selection of the processor and the operating system. The student can recognize the basic development tools used and their possible advantages and disadvantages.
3. The student can compare various testing approaches. The student can explain how a design error affects to the final cost of the system in different phases of the development. The student can do some basic I/O programming using C programming language.
Contents:
The embedded design life cycle, the selection process, the partitioning decision, the development environment, the special software techniques, a basic toolset, JTAG/ICE, testing, I/O programming.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
The course is run in a project work in groups of two and follow up the progress reporting meetings. Lectures 10 h, laboratory exercise in period 3-4 120 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521412A Digital Techniques I
Also recommended 521275A Embedded Software Project, 521432A Electronics Design I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Project work.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Juha Röning

Working life cooperation:
None.

Other information:

521286A: Computer Systems, 8 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teemu Leppänen
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):

ECTS Credits:
8 ECTS cr

Language of instruction:
Lecturing in Finnish, course and exercise material available in English.
Timing:
Autumn, periods 1-2.

Learning outcomes:
After completing the course
Student understands the basic computer architecture and organization.
Student understands CPU operation and basic datapath operation.
Student knows different number systems and data representations in computers.
Student is familiar of I/O operation with peripheral devices in general.
Student is able to implement small programs with the C programming language for general-purpose computers for embedded systems.
Student is able to implement small assembly language programs.
Student recognizes how embedded systems programming is different from programming general-purpose computers.

Contents:
Overview of computer architecture and organization, CPU and datapath, memory hierarchies, data types, interrupts, registers and I/O, basics of the C programming language and basics of assembly language. Embedded systems programming.

Mode of delivery:
Web-based and face-to-face teaching.

Learning activities and teaching methods:
Lectures (32h), course exercises (10-30h), laboratory exercise (3h) and two course projects, one is completed in a group and the other alone.

Target group:
2nd year students of computer science and engineering and 3rd year students of electrical engineering.

Prerequisites and co-requisites:
Elementary programming 52141P.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture notes and exercise material are available in the course website. Literature:

Assessment methods and criteria:
The assessment criteria is based on the learning outcomes of the course. Students complete the course exercises, participate to the laboratory exercise and complete the course projects. Assessment is based on the exercises and the course projects. More detailed information on assessment is published in the lecture material.
Read more about [assessment criteria](https://www.oulu.fi) at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Teemu Leppänen

Working life cooperation:
Visiting lectures with experts from local industry are possible.

521275A: Embedded Software Project, 8 cp

Validity: 01.08.2007 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Teemu Tokola
Opintokohteen kielet (E): English

ECTS Credits: 8

Language of instruction:
Material in English, lectures and guidance of individual groups available in English.

Timing:
Spring, periods 3-4.

Learning outcomes:
1. Can work independently on a non-trivial problem
2. Knows how to write a thesis and has gained lot of experience on refining text
3. Can make a scientific background study on a topic
4. Has increased experience on implementing an embedded software
5. Has improved group work and project skills

Contents:
This course familiarizes the student with modern embedded system development with modern methods and tools. Topics: Development tools, practical application program for an embedded system. The students additionally work on the application topic through scientific papers and use their application program to produce a scientific work of their own.

Mode of delivery:
Face-to-face teaching, independent project work in groups.

Learning activities and teaching methods:
Pair project with monitoring meetings and a compulsory exercise. Lectures 30 h, design exercise in period 4-6 180 h.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Course website, hardware data sheets and manuals, scientific publications.

Assessment methods and criteria:
Project report and a demonstrated implementation.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Teemu Tokola

Working life cooperation:
The topics of the course are relevant research topics with applications in the industry, and visiting lecturers are occasionally arranged to shed light on how the course topics are applied in the industry.

Other information:
The 521275A course offers the possibility to complete your Bachelor thesis in a structured course environment. The course is suitable also for students who do not use the course for their Bachelor Thesis.

812671S: Usability Testing, 5 cp

Validity: 01.08.2011 -

Form of study: Advanced Studies

Type: Course

Unit: Information Processing Science DP

Grading: 1 - 5, pass, fail

Teachers: Mikko Rajanen

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English and Finnish

Timing:
The course is held in the spring semester, during periods 3 and 4.

Learning outcomes:
After completing the course, the student can:

- Design and follow through a usability testing process;
- Design usability test scenarios and tasks;
- Select test subjects;
- Plan and follow through usability tests as laboratory tests or field tests;
- Analyse and report the findings from usability tests.

Contents:
Basic terms and types of usability testing, usability tests process, usability test tasks and scenarios, test subjects, following through a usability test, analysing usability test material, reporting the findings from usability tests.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 24h, assignment tutoring 13h, assignment 90h, seminar 7h.

Target group:
Prerequisites and co-requisites:
Student is familiar with most common user interface design terms, design and evaluation methods as in “Introduction to Human-Computer Interactions” course.

Recommended optional programme components:

Recommended or required reading:

Assessment methods and criteria:
Assessment of the course is based on the learning outcomes of the course based on the written usability test plan, supervised usability tests, written usability test report and oral seminar presentation

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Mikko Rajanen

Working life cooperation:
No

Other information:

521041A: Applied Computing Project I, 8 cp

Validity: 01.08.2018 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): Finnish, English
Leikkaavuudet (E):
521151A Applied Computing Project I 10.0 cp

ECTS Credits:
8 ECTS credits / 216 hours of work
Language of instruction:
Finnish and English

Timing:
3rd semester (periods 1-4)

Learning outcomes:
Upon completion of the course, the student will be able to:
1. has basic understanding on how to collaboratively design a small-scale software project,
2. has basic understanding on how to implement and evaluate a small-scale software project,
3. is able to extensively document a small-scale software project,
4. is able to present and “pitch” a project work, i.e. give a good, concise presentation of the work

Contents:
The basics concepts and practices of implementing a software project in the domain of applied computing

Mode of delivery:
Fact-to-face teaching, project work in groups

Learning activities and teaching methods:
8 hours of introductory lectures. Majority of the course is guided project work

Target group:
3rd year Computer Science and Engineering B.Sc. students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Elementary Programing (521141P), Human-Computer Interaction (521145A) or corresponding skills

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that the project work is assessed in stages: design (20% of total grade), implementation (40%), evaluation (20%), and final report (20%). Passing criteria: all stages (design, implementation, evaluation, report) must be completed with an approved grade. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Simo Hosio

Working life cooperation:
The projects that the students will undertake are defined either by the research group or industry partners. In the projects defined by the industry, the students will carry out a development project to create a solution for the company's genuine and existing challenges. The project reports regularly to the project steering group consisting of a supervising teaching assistant as well as the company representative. In addition, the course can have guest lectures from industry regarding collaborative software development and evaluation practices.

Other information:
The 521275A course offers the possibility to complete your Bachelor thesis in a structured course environment. The course is suitable also for students who do not use the course for their Bachelor Thesis.

812331A: Interaction Design, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Minna Pakanen
Opintokohteen kielet (E): English
ECTS Credits:
5 ECTS credits / 133 hours of work.

Language of instruction:
English

Timing:
The course is held in the autumn semester, during period 1. It is recommended to complete the course at the 1st autumn semester.

Learning outcomes:
Objective: The course explains the role of human interaction with IT products, systems, and services, explains the factors and problems related to it to motivate interaction design, and teaches some user-centered methods for analysis, evaluation and design of interactions.

Learning Outcomes: After completing the course, the student can assess the role of human interaction with IT products, systems, and services and identify factors and problems related to it within a practical design case. The student is able to:
- use methods for analysis and evaluation of existing interfaces;
- understand the role of requirements, plan and conduct a simple requirements collection and analysis;
- use basic principles of usability and user experience for user interface design;
- use interaction design methods in designing for target user experiences.

Contents:
The course provides an overview of interaction design, introducing the terminology and fundamental concepts, the main activities, and the importance of user involvement in the design process. The course addresses establishing requirements for IT products, systems, and services. The focus is on usability and user experience from the viewpoint of the intended users, their tasks and the context of use. The course covers user-centered methods for designing for and evaluating usability and user experience of IT products, systems, and services. All the main activities of interaction design are carried out in a practical design case.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, exercises and seminar 25 h, individual and group assignments 90 h; or self-study: an opening lecture 2 h, one larger assignment 110 h and individual tasks 21 h.

Target group:
MSc students

Prerequisites and co-requisites:
Basic knowledge on human-computer interaction with usability and user-centered design.

Recommended or required reading:

Assessment methods and criteria:
Accepted assignments.

Grading:
Numerical scale 1-5 or fail.

Person responsible:
Minna Pakanen

Working life cooperation:
Invited lectures, assignments.
812650S: Advanced Topics in Human-Centred Design, 5 cp

Validity: 01.08.2011 -
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Dorina Rajanen, Mikko Rajanen
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction:
English
Timing:
The course is held in the spring semester, during period 3. Master's students can take this course either on the 1st or the 2nd year.

Learning outcomes:
After completing the course, students are familiar with some state-of-the-art research results related to current themes and contexts in human-centred design, they understand the strengths and limitations of various methods and frameworks used in human-centred design and they can acquire knowledge and critically read relevant research articles on human-centred design research topics.

Contents:
The content of the course will change with time. The initial set of current themes include: User experience as an object of analysis and design, Participatory design, end-user-design and living labs, Information ecologies and infrastructures, Design for all, Iterative and incremental design and development, The impact of human-centred design, Current development contexts such as: Open source software development, Game development, Development of ICT for children, Ubiquitous computing.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 20 h, assignments 107 h, seminars 6 h.

Target group:
MSc students
Prerequisites and co-requisites:
Course “812335A Interaction Design” or similar knowledge.

Recommended optional programme components:

Recommended or required reading:
Selected scientific articles.
Assessment methods and criteria:
Assignments
Grading:
Numerical scale 1-5 or fail

Person responsible:
Mikko Rajanen

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the ‘where’-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)
Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
- Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Form of study: Intermediate Studies

Type: Course

Unit: Faculty of Information Technology and Electrical Engineering

Grading: 1 - 5, pass, fail
A452297: Advanced Module / Computer Engineering, Hardware, 48 cp

Validity: 01.08.2018 -
Form of study: Advanced Module
Type: Study module
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

521404A: Digital Techniques 2, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jukka Lahti
Opintokohteen kielet (E): Finnish

ECTS Credits:
5
Language of instruction:
In Finnish. Exams can be arranged in English on demand.
Timing:
Autumn, period 2
Learning outcomes:
1. knows the common architectures of synchronous digital logic circuits, and the building blocks they consist of, and can design digital circuits that realize complex data and signal processing functions.
2. knows most common combinational and sequential logic based building blocks, and can use them to design and realize complex digital circuits.
3. knows digital logic design methods, such as use of hardware description languages, functional verification using simulation, realization of logic with a logic synthesis program, and functional and timing verification of gate-level models.
Contents:
Mode of delivery:
Classroom
Learning activities and teaching methods:
Lectures 24h/ exercises 30h (group work)/independent work 84h.
Target group:
Primarily electrical and computer science and engineering students. Also other student of University of Oulu can take the course.

Prerequisites and co-requisites:
Digital techniques 1

Recommended optional programme components:
No

Recommended or required reading:
Lecture textbook (in finnish) and literature announced during course.

Assessment methods and criteria:
Final exam and a design excercise, or weekly assignments consisting of theoretical and design exercises. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5, The grade is the average of the exam and the design exercise.

Person responsible:
Jukka Lahti

Working life cooperation:
No

Other information:

521303A: Circuit Theory 2, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1-5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521306A Circuit Theory 2 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Autumn, period 2

Learning outcomes:
After the course the student can:
1. use Laplace transform for solving time and frequency response of electric circuits;
2. derive continuous-time transfer functions;
3. solve their poles and zeros and understand the meaning of those;
4. draw the pole-zero map and Bode plots of any given transfer function;
5. construct 2-port parameter models of a given circuit
Contents:
Use of Laplace transform in network analysis. Properties of network functions, poles and zeros, Boden magnitude and phase plots. 2-port parameter models.

Mode of delivery:
Classroom

Learning activities and teaching methods:
30h lectures, 22 h exercises, and simulation exercises.

Target group:
Finnish BSc students

Prerequisites and co-requisites:
Basics of circuit theory, differential equations.

Recommended optional programme components:
Continuation for Circuit theory 1. Needed in most analog electronics courses.

Recommended or required reading:

Assessment methods and criteria:
Final exam. Also the simulation exercise must be passed.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical 1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

521406S: Digital Techniques 3, 7 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jukka Lahti
Opintokohteen kielet (E): Finnish

ECTS Credits:
7 ECTS

Language of instruction:
In Finnish. Exams can be arranged in English on demand.

Timing:
Spring, periods 3-4

Learning outcomes:
1. knows the phases of the design process of hardware parts of digital system implemented in FPGA or ASIC technologies, and understands their purpose, and the problems and aims associated with different design tasks

2. is able to use the tools needed in industrial design projects.
Contents:

Mode of delivery:
Classroom

Learning activities and teaching methods:
Lectures 20h/ exercises 20h (group work)/ independent work 120h.

Target group:
Primarily electrical and computer science and engineering students. Also other student of University of Oulu can take the course.

Prerequisites and co-requisites:
Digital techniques 1 and Digital techniques 2

Recommended optional programme components:
-

Recommended or required reading:
Lecture textbook (in finnish) and literature announced during course.

Assessment methods and criteria:
Final exam and a design excercise, or weekly assignments consisting of theoretical and design exercises. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5, The grade is the average of the exam and the design exercise.

Person responsible:
Jukka Lahti

Working life cooperation:
-

Other information:
-

521340S: Communications Networks I, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Mika Ylianttila
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
English
Timing:
Fall, period 2
Learning outcomes:
1. Upon completing the required coursework, the student is able to list and understand the functionalities of different layers of OSI and TCP/IP protocol models.
2. The course gives the skills for the student to explain the mobile network evolution through previous and existing generations of mobile networks (1G, 2G, 3G, and 4G) towards 5G.
3. The student is able to describe the basic system architecture of GSM, GPRS, EDGE, UMTS and LTE, understands the significance of emerging technologies such as Network Function Virtualization (NFV), Software Defined Networking (SDN), Multi-Access Edge Computing (MEC), Cloud Radio Access Networks (CRAN), and core network functionalities such as Evolved Packet Core (EPC).
4. The student knows the basic properties of routing protocols in fixed, wireless and ad hoc networks, and can use graph theory to solve network routing problems.
5. Students can describe the main principles of network programmability, mobility control, and network security, and can apply and solve related engineering problems.
6. The student is able to simulate different types of networks in simulation environments.

Contents:
Communications architecture and protocols, mobility management, network security, network management and ad hoc, wireless local area and mobile networks. Introduction to cloud computing, edge computing, network function virtualization and software defined networking. The goal is to present the fundamentals of the new communication architectures, trends and technologies accepted by academia and industry. Technical implementation and application of the common data and local networks are also discussed.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 30 h and the compulsory design work with a simulation program (15 h).

Target group:
1st year M.Sc. and WCE students

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on examination. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Mika Ylianttila

Working life cooperation:
No

Other information:
-

Optional Courses, Choose f.g. from the following courses total 26 ECTS cr.

813621S: Research Methods, 5 cp
Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 521146S Research Methods in Computer Science 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.

Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521405A: Electronic System Design, 5 cp
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Kari Määttä
Opintokohteen kielet (E): Finnish

ECTS Credits: 5
Language of instruction: English/Finnish.
Timing: Period 1
Learning outcomes:
1. is able to choose the optimum method of the choices presented in the course in the field of power supply, thermal design, grounding, and routing of the high speed signals.
2. is able to calculate problems, caused by electrical disturbances, crosstalk and non-idealities of electrical components.
3. can calculate reliability of an electrical device or system.
4. The main goal of the course is to introduce methods and techniques needed in designing larger electronic entities such as equipment and systems.
Contents:
Power supplies, thermal design, grounding, transmission of fast signals by using transmission lines, electrical disturbances, crosstalk, non-idealities of electrical components, reliability of electronics.
Mode of delivery:
Face-to-face teaching.
Learning activities and teaching methods:
The course includes 30 h of lectures and 20 h of exercises.

Target group:
Primarily in electrical engineering students. Other University of Oulu students can complete the course.
Prerequisites and co-requisites:
Both Principles of Electronics Design and Analogue Electronics I must have been accepted.
Recommended optional programme components:
The course is an independent entity and does not require other studies carried out at the same time.
Recommended or required reading:
Assessment methods and criteria:
The course is passed by means of a final exam.
Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 0 - 5. In the numerical scale 0 stands for a fail.
Person responsible:
Kari Määttä
Working life cooperation:
521323S: Wireless Communications I, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Jari Iinatti
Opintokohteen kielet (E): English
Leikkaavuudet (E):
- 521395S-01 Wireless Communications I, Exam 0.0 cp
- 521395S Wireless Communications I 5.0 cp
- 521320S Wireless Communications 2 8.0 cp
- 521320S-01 Intermediate exam or final exam, Wireless Communications 1 0.0 cp
- 521320S-02 Exercisework, Wireless Communications 2 0.0 cp

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Fall, period 2
Learning outcomes:
1. can analyze the performance of multilevel digital modulation methods in AWGN channel
2. can explain the effect of fading channel on the performance of the modulation method and can analyze the performance
3. recognizes the suitable diversity methods for fading channel and related combining methods
4. can define the basic carrier and symbol synchronization methods and is able to make the performance comparison of them
5. can explain design methods signals for band-limited channels
6. can classify different channel equalizers, and perform the performance analysis
Contents:
Digital modulation methods and their performance in AWGN-channel, radio channel models, performance of digital modulation in fading channel, diversity techniques, channel equalizers in wireless communication channel, carrier and symbol synchronization.
Mode of delivery:
Face-to-face teaching
Learning activities and teaching methods:
Lectures and exercise (total 44 hours) and the compulsory design work with a simulation program (20 h)
Target group:
1st year WCE students and M.Sc. students (i.e., 4th year in EE degree programme)
Prerequisites and co-requisites:
521330A Telecommunication Engineering 521316S Broadband Communications Systems
Recommended optional programme components:
-
Recommended or required reading:

Assessment methods and criteria:
The course is passed with minor exams (only during lecture period) or with final exam; and the accepted design work report. In the final grade of the course, the weight for the examination(s) is 0.6 and that for the design work report 0.4.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Jari Iinatti

Working life cooperation:
No

Other information:
-

521443S: Electronics Design II, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Häkkinen
Opintokohteen kielet (E): Finnish

No course descriptions.

521088S: Optoelectronics, 5 cp

Validity: 01.01.2014 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Juha Kostamovaara
Opintokohteen kielet (E): Finnish

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Autumn, period 1

Learning outcomes:
1. is able to explain the principles of operation of optical fibres and waveguides

2. is able to explain the principles of operation of semiconductor light sources and photo detectors, and knows the factors affecting their performance

3. is able to outline the circuit-level structures for optical transmitter circuits and photo detector preamplifiers

4. is able to compare their performance in terms of the main performance parameters

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h and exercises 20 h, may include a seminar.

Target group:
This course is targeted mainly for the students of electrical engineering degree program, but available for other students as well.

Prerequisites and co-requisites:
Principles of semiconductor devices.

Recommended optional programme components:
This course is independent, no other components are recommended simultaneously.

Recommended or required reading:

Assessment methods and criteria:
Final exam.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5.

Person responsible:
Juha Kostamovaara

Working life cooperation:
Does not apply.

Other information:

521489S: Research Work on Information Processing, 8 cp

Form of study: Advanced Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work

Language of instruction:
English.

Timing:
Autumn and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.

Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.

Mode of delivery:
Self-study.

Learning activities and teaching methods:
Independent project work 213 h.

Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:
Literature is selected for each research work separately.

Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Professor Timo Ojala.

Working life cooperation:
None

521348S: Statistical Signal Processing, 5 cp

Validity: 01.08.2016 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Janne Lehtomäki, Juntti, Markku Johannes
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will
1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course:
031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:
-

Recommended or required reading:

Assessment methods and criteria:
The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments (programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.
Person responsible:
Markku Juntti
Janne Lehtomäki

Working life cooperation:
-

Other information:
-

521385S: Mobile Telecommunication Systems, 5 cp

Validity: 01.08.2011 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Katz, Marcos Daniel
Opintokohteen kielet (E): English

ECTS Credits:
5

Language of instruction:
English

Timing:
Spring, period 3

Learning outcomes:
1. Upon completing the required coursework, the student will be able to determine and fit the values of the main parameters for modern mobile telecommunication systems network planning. The course gives skills to describe mobility management, adaptive resource control and dynamic resource allocation in mobile networks.

The goal of this course is to provide the basic understanding of dimensioning and performance of mobile communications systems. In addition, the current mobile communications system standards as well as the ones being developed are also studied, preparing students to understand the structure, functionality and dimensioning of these systems.

Contents:

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 30 h, exercises 16 h and the compulsory laboratory work (16 h)

Target group:
2nd year M.Sc. and WCE students

Prerequisites and co-requisites:
Telecommunication Engineering, Broadband Communications Systems and Wireless Communications I.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.
Recommended or required reading:
The course material will be defined at the beginning of the course.

Assessment methods and criteria:
The course is passed with a final examination and the accepted laboratory work report. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Marcos Katz

Working life cooperation:
-

Other information:
Objective: The goal of this course is to provide the basic understanding of dimensioning and performance of mobile communications systems. In addition, the current mobile communications system standards as well as the ones being developed are also studied, preparing students to understand the structure, functionality and dimensioning of these systems.

521304A: Filters, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Rahkonen, Timo Erkki
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521331A Filters 4.0 cp

ECTS Credits:
5

Language of instruction:
Finnish. Exams can be arranged in English on demand.

Timing:
Spring, period 3

Learning outcomes:
After the course the student can:
1. draw a pole-zero map for a given transfer function;
2. perform impedance and frequency scaling for component values;
3. choose an appropriate prototype filter and filter degree;
4. synthesize passive RLC filters;
5. synthesize active opamp based filters;
6. can compare various filter technologies;
7. understands the basics of scaling the dynamic range of active filters

Contents:
Filter types and prototypes, component scaling. Synthesis of active and passive filters. Sensitivity analysis and scaling of the dynamic range.

Mode of delivery:
Lectures, excercise and design excercise
Learning activities and teaching methods:
30 h lectures, 16 h exercises. A design exercise.

Target group:
Finnish electrical engineering students

Prerequisites and co-requisites:
Basics of circuit theory, Bode plots and analog design.

Recommended optional programme components:
Course Digital filters expands the topic into digital domain.

Recommended or required reading:

Assessment methods and criteria:
Circuit is examined by a final exam. Also the obligatory design exercise must be passed. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5

Person responsible:
Prof. Timo Rahkonen

Working life cooperation:
-

Other information:
-

521328A: Simulations and Tools for Telecommunications, 5 cp

Validity: 01.08.2015 -
Form of study: Intermediate Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Saarnisaari, Harri Tapani
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
521369A Simulations and Tools for Telecommunications 3.0 cp
521369A-01 Simulations and Tools for Telecommunications, exam 0.0 cp
521369A-02 Simulations and Tools for Telecomm. exercise 0.0 cp

ECTS Credits:
5

Language of instruction:
Finnish

Timing:
Fall, period 2

Learning outcomes:
1. A student recognizes problems and limitations related to simulations.

2. She/he can select a suitable simulation method and knows how to validate the model.
3. Student knows how to generate signals, random numbers and noise.

4. She/he knows how to model fading channels.

5. A student knows how to make Monte-Carlo simulations at the baseband level and can estimate confidence level of simulation results.

6. She/he can explain principles of network level simulations.

7. A student knows basics of one or two fundamental simulation programs

Contents:
Simulation methods, modelling communication systems with simulations, confidence limits of simulation, noise generation and modelling of fading channel. A simple baseband simulation example. Basics of MATLAB and OPNET simulation software (these could vary depending on needs/availability).

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 24 h (including program introductions), and the compulsory assignment with a simulation program (40 h).

Target group:
3rd year bachelor's degree students

Prerequisites and co-requisites:
Telecommunication Engineering

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Harri Saarnisaari

Working life cooperation:
No

Other information:

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

900013Y: Beginners' Finnish Course 1, 3 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:
-

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions,
describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:
-

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.

Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Form of study: Intermediate Studies

Type: Course

Unit: Faculty of Information Technology and Electrical Engineering

Grading: 1 - 5, pass, fail

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

No course descriptions.

A452298: Advanced Module / Computer Engineering, Software, 48 cp

Validity: 01.08.2018 -

Form of study: Advanced Module

Type: Study module

Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

No course descriptions.

Compulsory studies, 20 ECTS cr

521348S: Statistical Signal Processing, 5 cp

Validity: 01.08.2016 -
Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Janne Lehtomäki, Juntti, Markku Johannes
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
521484A Statistical Signal Processing 5.0 cp

ECTS Credits:
5 ECTS

Language of instruction:
English

Timing:
Fall, during period 1

Learning outcomes:
Upon completion the student will
1. understand the key concepts in estimation theory such as the classical and Bayesian framework.
2. masters the most important estimation principles such as minimum variance, maximum likelihood, least squares and minimum mean square error estimators.
3. can derive an estimator for a given criterion and basic data models.
4. can use the methodology of estimation theory to analyze the performance of estimators
5. can choose a proper estimator for a given purpose
6. understands the basics of detection and classification theory: hypothesis testing, receiver operating characteristics (ROC), matched filtering

Contents:
Estimation theory, minimum variance unbiased estimator, Cramer-Rao lower bound, linear models, general minimum variance unbiased estimation, best linear unbiased estimators, maximum likelihood estimation, least squares estimation, Bayesian estimation, linear Bayesian estimation, Kalman filters, statistical decision theory, receiver operating characteristics, hypothesis testing, matched filter.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-face-teaching, lectures and exercises 50 h and compulsory Matlab assignments 30 h, independent work 50 h. Some lectures may be replaced with video lectures.

Target group:
Electrical, communications, computer and system engineering as well as mathematics, physics and computer science students with knowledge of statistics in master or senior undergraduate level.

Prerequisites and co-requisites:
The required prerequisite is the completion of the following courses prior to enrolling for the course: 031080A Signal analysis, 031021P Statistics, 031078P Matrix algebra

Recommended optional programme components:

-

Recommended or required reading:

Assessment methods and criteria:

The course is passed with two midterms exams (there will also be arranged a University Exam covering whole course around 5-6 weeks after the course) and accepted MATLAB assignments (programs + reports). In the final grade of the course, the weight for the examination is 0.7 and that for the MATLAB assignments is 0.3.

Read more about assessment criteria at the University of Oulu webpage.

Grading:

The course utilizes a numerical grading scale 1-5. In the numerical scale zero (0) stands for a fail.

Person responsible:

Markku Juntti
Janne Lehtomäki

Working life cooperation:

-

Other information:

-

521340S: Communications Networks I, 5 cp

Form of study: Advanced Studies

Type: Course

Unit: Electrical Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Mika Ylianttila

Opintokohteen kielet (E): English

ECTS Credits:

5 ECTS cr

Language of instruction:

English

Timing:

Fall, period 2

Learning outcomes:

1. Upon completing the required coursework, the student is able to list and understand the functionalities of different layers of OSI and TCP/IP protocol models
2. The course gives the skills for the student to explain the mobile network evolution through previous and existing generations of mobile networks (1G, 2G, 3G, and 4G) towards 5G.
3. The student is able to describe the basic system architecture of GSM, GPRS, EDGE, UMTS and LTE, understands the significance of emerging technologies such as Network Function Virtualization (NFV), Software Defined Networking (SDN), Multi-Access Edge Computing (MEC), Cloud Radio Access Networks (CRAN), and core network functionalities such as Evolved Packet Core (EPC).
4. The student knows the basic properties of routing protocols in fixed, wireless and ad hoc networks, and can use graph theory to solve network routing problems.
5. Students can describe the main principles of network programmability, mobility control, and network security, and can apply and solve related engineering problems.
6. The student is able to simulate different types of networks in simulation environments.

Contents:
Communications architecture and protocols, mobility management, network security, network management and ad hoc, wireless local area and mobile networks. Introduction to cloud computing, edge computing, network function virtualization and software defined networking. The goal is to present the fundamentals of the new communication architectures, trends and technologies accepted by academia and industry. Technical implementation and application of the common data and local networks are also discussed.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 30 h and the compulsory design work with a simulation program (15 h).

Target group:
1st year M.Sc. and WCE students

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with a final examination and the accepted simulation work report. The final grade is based on examination. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5.

Person responsible:
Mika Ylianttila

Working life cooperation:
No

Other information:
-

521290S: Distributed Systems, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Xiang Su
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, period 3.

Learning outcomes:
After completing the course, the student
1. is able to explain the key principles of distributed systems
2. apply the principles in evaluating major design paradigms used in implementing distributed systems
3. solve distributed systems related problems
4. design and implement a small distributed system

Contents:
Introduction, architectures, processes, communication, naming, synchronization, consistency and replication, fault tolerance, security, case studies.

Mode of delivery:
Face-to-face.

Learning activities and teaching methods:
Lectures 22 h, exercises 16 h, project work 50 h, self-study 47 h.

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that there are 2 intermediate exams. Alternatively, the course can also be passed with a final exam. The course includes a mandatory project work.

Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical scale 1-5; zero stands for a fail.

Person responsible:
Xiang Su

Working life cooperation:
None.

521321S: Elements of Information Theory and Coding, 5 cp

Validity: 14.11.2005 -

Form of study: Advanced Studies
Type: Course
Unit: Electrical Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Timo Kokkonen, Rajatheva Rajatheva
Opintokohteen kielet (E): English
Leikkaavuudet (E):
521323S
Wireless Communications 2
5.0 cp

ECTS Credits:
5

Language of instruction:
English.

Timing:
Fall, period 2

Learning outcomes:
1. can use basic methodology of information theory to calculate the capacity bounds of communication and data compression systems.
2. can estimate the feasibility of given design tasks before the execution of the detailed design.
3. understands the operating principles of block codes, cyclic codes and convolutional codes.
4. can form an encoder and decoder for common binary block codes, and is capable of using tables of the codes and shift register when solving problems.
5. can represent the operating idea of a convolutional encoder as a state machine.
6. is able to apply the Viterbi algorithm to decoding of convolutional codes.
7. is capable of specifying principles of Turbo, LDPC and Polar coding and coded modulation.
8. can evaluate error probability of codes and knows practical solutions of codes by name.

Contents:
Entropy, mutual information, data compression, basics of source coding, discrete channels and their capacity, the Gaussian channel and its capacity, block codes, cyclic codes, burst error correcting codes, error correcting capability of block codes, convolutional codes, Viterbi algorithm, concatenated codes, and introduction to Turbo, LDPC and Polar coding and to coded modulation.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Face-to-face teaching (lectures and exercises) 64 h and group working.

Target group:
1st year WCE-RAN students and M.Sc. students (i.e., 4th year in EE degree programme)

Prerequisites and co-requisites:
Signal Analysis, Telecommunication Engineering

Recommended optional programme components:
Wireless Communications I and the course support each other. Their simultaneous studying is recommended.

Recommended or required reading:
Assessment methods and criteria:
The course is passed with continuous evaluation (only during lecture period) or with final exam and possible additional course tasks defined in the beginning of the course.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. Read more about assessment criteria at the University of Oulu webpage.

Person responsible:
Timo Kokkonen (Coding) / Nandana Rajatheva (Information theory)

Working life cooperation:
No

Other information:
-

Optional Courses, Choose f.g. from the following courses total 28 ECTS cr

521495A: Artificial Intelligence, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Abdenour Hadid
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 ay521495A Artificial Intellig (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS cr
Language of instruction:
English
Timing:
Period 3.
Learning outcomes:
1. is able to identify the types of problems that can be solved using methods of artificial intelligence.
2. knows the basic concepts of intelligent agents, the common search methods used in artificial intelligence, logic based reasoning and applying planning techniques to problems of artificial intelligence.
3. can also apply simple methods to reasoning under uncertainty and machine learning from observation.
4. In addition the student will be able to implement the most common search methods.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
28 hours of lectures and a programming exercise (approximately 25 hours) during period 3, the rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course material is based on the Artificial Intelligence course of Berkely University and the book "Artificial Intelligence, A Modern Approach" by Russell & Norvig.
1) http://ai.berkeley.edu/home.html

Assessment methods and criteria:
The course is passed with a final exam and a passed programming exercise. Read more about assessment criteria at the University of Oulu webpage.

Grading:
1-5 / fail.

Person responsible:
Abdenour Hadid (Lecturer)
Mohammad Tavakolian (Assistant)

Working life cooperation:
-

Other information:
-

521337A: Digital Filters, 5 cp

Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Olli Silven
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
Finnish, English study material available
Timing:
Spring, period 3.
Learning outcomes:
1. Student is able to specify and design respective frequency selective FIR and IIR filters using the most common methods.

2. Student is able to solve for the impulse and frequency responses of FIR and IIR filters given as difference equations, transfer functions, or realization diagrams, and can present analyses of the aliasing and imaging effects based on the responses of the filters.

3. Student is able to explain the impacts of finite word length in filter design.

4. Student has the necessary basic skills to use signal processing tools available in Matlab environment and to judge the results.

Contents:

Mode of delivery:
Face-to-face teaching (Lectures), independent work, group work

Learning activities and teaching methods:
Lectures and exercises 50 h. The design exercises familiarize the students with the methods of digital signal processing using the Matlab software package. The rest as independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
031077P Complex Analysis, 031080A Signal Analysis

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course can be passed either with week exams or a final exam. In addition, the exercises need to be returned and accepted.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Olli Silven

Working life cooperation:
None.

521467A: Digital Image Processing, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):
ay521467A Digital Image Processing (OPEN UNI) 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
Lectures in Finnish and exercises in English. Course can be passed in Finnish and English.

Timing:
Spring, period 4.

Learning outcomes:
Upon completion of the course the student:
- understands the basic theory of digital image processing and knows its main applications,
- is able to apply spatial and frequency domain and wavelet based methods in image enhancement, restoration, compression and segmentation.

Contents:

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures 24 h, exercises 14 h and homework assignments 30 h. The rest is independent work.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
In order to obtain deep understanding of the content, it is a benefit if the student has completed the mathematics courses in the computer science and engineering BSc program or otherwise has equivalent knowledge.

Recommended or required reading:
Lecture notes and exercise

Assessment methods and criteria:
The course is completed by passing the exam and homework assignments.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
None.

521489S: Research Work on Information Processing, 8 cp
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo
Opintokohteen kielet (E): Finnish

ECTS Credits:
8 ECTS credits / 213 hours of work
Language of instruction:
English.
Timing:
Autumn and spring, periods 1-4.

Learning outcomes:
Upon completing the course, the student is able to:
1. conduct independent research as a responsible member of a research group;
2. conduct a literature survey;
3. apply theoretical knowledge in solving a practical problem;
4. design, implement and evaluate a prototype;
5. collect and analyze research data;
6. report research results in form of a scientific publication and an oral presentation.
Contents:
The student conducts independently a small-scale research work under the supervision of a senior researcher. Topics for research works can be requested from research group leaders and senior researchers.
Mode of delivery:
Self-study.
Learning activities and teaching methods:
Independent project work 213 h.
Target group:
Computer Science and Engineering students, other students of the University of Oulu.

Prerequisites and co-requisites:
None.
Recommended optional programme components:
None.
Recommended or required reading:
Literature is selected for each research work separately.
Assessment methods and criteria:
Assessment is based on the scientific publication and the oral presentation reporting the research work. Read more about assessment criteria at the University of Oulu webpage.
Grading:
The course unit utilizes a numerical grading scale 1-5.
Person responsible:
Professor Timo Ojala.
Working life cooperation:
None
521148S: Ubiquitous Computing Fundamentals, 5 cp

Validity: 01.08.2012 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ojala, Timo Kullervo

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 133 hours of work

Language of instruction:
English

Timing:
Autumn, periods 1-2.

Learning outcomes:
Upon completing the course the student:
1. understands the history and current state of ubiquitous computing.
2. is able to design, implement, and evaluate a ubiquitous computing system.
3. is able to carry out a research project from initial research problem statement to prototype implementation, empirical evaluation in-the-wild, and reporting in form of a research paper.

Contents:
Ubiquitous computing systems, privacy, field studies, ethnography, interfaces, location, context-aware computing, processing sequential sensor data.

Mode of delivery:
Face-to-face

Learning activities and teaching methods:
Lectures 20 h / exercises 20 h / project work 50 h / self-study 43 h. Exercises and project work are completed as a group work.

Target group:
M.Sc. students (computer science and engineering) and other students of the University of Oulu.

Prerequisites and co-requisites:
None.

Recommended optional programme components:
None.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with approved exercise reports and an approved project work. Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
The course uses numerical scale 1-5.

Person responsible:
Professor Timo Ojala

Working life cooperation:
None.
521283S: Big Data Processing and Applications, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ekaterina Gilman, Susanna Pirttikangas
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits

Language of instruction:
English

Timing:
Period IV. It is recommended that the course is taken on the fourth year Spring.

Learning outcomes:
Upon completion of the course, the student:
1. is able to explain the big data phenomenon, its challenges and opportunities.
2. is able to explain the requirements and common principles for data intensive systems design and implementation, and evaluate the benefits, risks and restrictions of available solutions.
3. can explain the principles of big data management and processing technologies and utilize them on a basic level.

Contents:
General introduction into big data, namely: big data fundamentals, data storage, batch and stream data processing, data analysis, privacy and security, big data use cases.

Mode of delivery:
Face-to-face teaching, independent and group work

Learning activities and teaching methods:
Lectures, exercises, seminars, independent and group work

Target group:
M.Sc. students (computer science and engineering) and other Students of the University of Oulu

Prerequisites and co-requisites:
The Bachelor level studies of Computer science and engineering study programmes or respective knowledge.

Recommended optional programme components:

Recommended or required reading:
Lecture slides and exercise material will be provided. Each lecture will include the reference list for recommended reading. Instructions to necessary installations will be given.

Assessment methods and criteria:
This course assesses students continuously by the completion of exercises, seminar presentations and short reports on a selected topic (group work), and answering two quizzes during the course. To pass the course, it is enough to get 50% of available points. No exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ekaterina Gilman

Working life cooperation:
The course includes also invited lectures from industry.

813621S: Research Methods, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Information Processing Science DP
Grading: 1 - 5, pass, fail
Teachers: Arto Lanamäki

Opintokohteen kielet (E): English
Leikkaavuudet (E):

- 521146S
 Research Methods in Computer Science
 5.0 cp

ECTS Credits:
5 ECTS credits / 133 hours of work
Language of instruction: English
Timing:
The course is held in the autumn semester, during periods 1 and 2. It is recommended to complete the course in the 1st autumn semester.

Learning outcomes:
Having completed the course, the student is able to explain the general principles of scientific research and the practices of scientific methodology. The student is also able to generate research problems in information processing sciences. The student is able to identify and describe the main research approaches and methods in information processing sciences, and choose the appropriate approach and method for a research problem. The student is also able to evaluate the methodological quality of a research publication. After the course the student is able to choose and apply the proper approach and method for his or her Master's thesis and find more information on the method from scientific literature.

Contents:
Introduction to general scientific principles, scientific research practices and quality of scientific publications, qualitative research approaches and selected research methods, quantitative research approaches and selected research methods, design science research and selected methods, requirements and examples of Master's theses, evaluation of research.

Mode of delivery:
Face-to-face teaching, lecture videos.

Learning activities and teaching methods:
Lectures 40 h, exercises 30 h and individual work 65 h. Learning diary is written about the lectures and exercises. Exercises include group work.

Target group:
MSc students

Prerequisites and co-requisites:
Completion of Bachelor's studies.

Recommended or required reading:
Lecture slides and specified literature.
Assessment methods and criteria:
Accepted learning diary.

Grading:
Pass or fail.

Person responsible:
Arto Lanamäki

521145A: Human-Computer Interaction, 5 cp

Validity: 01.08.2012 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Simo Hosio
Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Autumn, period 2

Learning outcomes:
1. Knowledge of the Human Computer Interaction (HCI) fundamentals
2. Knowledge of evaluation techniques
3. Knowledge of prototyping techniques
4. Knowledge of how HCI can be incorporated in the software development process

Contents:
Human and computer fundamentals, design and prototyping, evaluation techniques, data collection and analysis.

Mode of delivery:
Face-to-face teaching.

Learning activities and teaching methods:
Lectures (12 h), exercises (16 h), and practical work (105 h). The course is passed with an approved practical work (several assignments). The implementation is fully English.

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time. The course involves some basic programming.

Recommended or required reading:
All necessary material will be provided by the instructor.

Assessment methods and criteria:
The assessment is project-based. Students have to complete several individual exercises throughout the semester: 1: Using questionnaires; 2: Fitts law; 3: Advanced, team-based design exercise and essay. Passing criteria: all exercises must be completed, each receiving more than 50% of the available points. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Simo Hosio (Dr. Tech.)

Working life cooperation:
If relevant, guest lectures may be organized (optional).

521260S: Programmable Web Project, 5 cp

Validity: 01.08.2006 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Ivan Sanchez Milara

Opintokohteen kielet (E): English
Leikkaavuudet (E):
- ay521260S Programmable Web Project (OPEN UNI) 5.0 cp

Status:
The course is mandatory for International Master's Programme in Computer Science and Engineering and Master's Programme in Computer Science and Engineering. It is optional for other degree and master programmes.

ECTS Credits:
5 ECTS cr

Language of instruction:
In English.

Timing:
Spring, periods 3-4.

Learning outcomes:
Upon completion of this course, students:
- understand what a Web API is and learn different Web API architectures.
- understand the concept of hypermedia and how it is used to build Web APIs.
- are able to design and implement a Web API following REST architectural style principles using existing web frameworks.
- are able to write unit and functional tests to inspect their APIs.
- are able to document their Web APIs using adequate software tools.
- are able to implement simple software applications that make use of the APIs.

Contents:
RESTful Web APIs, hypermedia, transactional/non-transactional databases, RESTful clients (HTML5 and Javascript).

Mode of delivery:
Web-based teaching and face-to-face teaching.

Learning activities and teaching methods:
Lectures 4 h, guided laboratory work 15 h, the rest as self-study and group work. Each group implements programs and writes a report.

Target group:
M.Sc. level students of Computer Science and Engineering; other students of the university of Oulu are accepted if there is enough space in the classes.

Prerequisites and co-requisites:
Elementary programming (521141P) or equivalent Python programming skills. Applied computing project I is recommended.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
This course unit utilizes continuous assessment. The project work is divided in different deadlines that students must meet to pass the course. Each deadline will be assessed after completion. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Ivan Sanchez Milara

Working life cooperation:
None.

Other information:
This course replaces the course “521260S Representing structured information”.

031025A: Introduction to Optimization, 5 cp

Form of study: Intermediate Studies

Type: Course

Unit: Applied Mathematics and Computational Mathematics

Grading: 1 - 5, pass, fail

Teachers: Ruotsalainen Keijo

Opintokohteen kielet (E): English

ECTS Credits:
5 ECTS credits / 135 hours of work

Language of instruction:
English

Timing:
The course is held in the autumn, during period 1.

Learning outcomes:
After completing the course the student is able to solve optimization convex optimization problems with the basic optimization algorithms. The student is also able to form the necessary and sufficient conditions for the optimality.

Contents:
Linear optimization, Simplex-algorithm, nonlinear optimization, KKT-conditions, duality, conjugate gradient method, penalty and barrier function methods.

Mode of delivery:
Face-to-face teaching

Learning activities and teaching methods:
Lectures 28 h / Group work 14 h / Self-study 93 h.

Target group:
Students in Wireless Communication Engineering

Prerequisites and co-requisites:
The recommended prerequisite is the completion of the courses Calculus I and II, Matrix algebra

Recommended optional programme components:

Recommended or required reading:
P. Ciarlet; Introduction to numerical linear algebra and optimization, M. Bazaraa, H. Sherali, C.M. Shetty; Nonlinear programming

Assessment methods and criteria:
The course can be completed by a final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course utilizes a numerical grading scale 0-5. In the numerical scale zero stands for a fail

Person responsible:
Keijo Ruotsalainen

Working life cooperation:
-

Other information:
-

521466S: Machine Vision, 5 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS cr

Language of instruction:
English

Timing:
Spring, period 3.

Learning outcomes:
Upon completion of the course the student
1. understands the fundamentals of image acquisition, representation and modeling
2. can utilize elementary methods of machine vision for image recognition problems
3. can use 2D transformations in model fitting and image registration
4. can explain the basics of 3D imaging and reconstruction

Contents:
1. Introduction, 2. Imaging and image representation, 3. Color and shading, 4. Image features, 5. Recognition, 6. Texture, 7. Motion from 2D image sequences, 8. 2D models and transformations, 9. Perceiving 3D from 2D images, 10. 3D transformations and reconstruction.

Mode of delivery:
Face-to-face teaching, homework assignments.

Learning activities and teaching methods:
Lectures (20 h), exercises (16 h) and Matlab homework assignments (30 h), self-studying (67 h).

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
521467A Digital Image Processing or an equivalent course

Recommended optional programme components:
521289S Machine Learning. This course provides complementary knowledge on machine learning methods needed in machine vision.

Recommended or required reading:

Assessment methods and criteria:
The course is passed with final exam and accepted homework assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5. Zero stands for a fail.

Person responsible:
Janne Heikkilä

Working life cooperation:
No.

521289S: Machine Learning, 5 cp

Validity: 01.08.2015 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteet kiellet (E): Finnish
Leikkaavuudet (E):

521497S-01 Pattern Recognition and Neural Networks, Exam 0.0 cp
521497S-02 Pattern Recognition and Neural Networks; Exercise Work 0.0 cp
521497S Pattern Recognition and Neural Networks 5.0 cp
ECTS Credits:
5 ECTS cr

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the spring semester, during period III. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. can design simple optimal classifiers from the basic theory and assess their performance.
2. can explain the Bayesian decision theory and apply it to derive minimum error classifiers and minimum cost classifiers.
3. can apply the basics of gradient search method to design a linear discriminant function.
4. can apply regression techniques to practical machine learning problems.

Contents:

Mode of delivery:
Face-to-face teaching, guided laboratory work and independent assignment.

Learning activities and teaching methods:
Lectures 2h, Laboratory work 16h, Exercise 16h and Self-study the rest (Independent task assignment, written examination).

Target group:
Students who are interested in data analysis technology. Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematic studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. The independent task assignment is graded. The course ends with a written exam. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail. The final grade is established by weighing the written exam by 2/3 and the task assignment by 1/3.

Person responsible:
Tapio Seppänen

Working life cooperation:
No

521140S: Computer Graphics, 5 cp
Validity: 01.08.2018 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Guoying Zhao
Opintokohteen kielet (E): English
Leikkaavuudet (E):
 521493S Computer Graphics 7.0 cp

ECTS Credits:
5 ECTS credits

Language of instruction:
In English

Timing:
Spring, period 4.

Learning outcomes:
1. is able to specify and design 2D graphics algorithms including: line and circle drawing, polygon filling and clipping
2. is able to specify and design 3D computer graphics algorithms including transformations, viewing, hidden surface removal, shading, texture mapping and hierarchical modeling
3. is able to explain the relationship between the 2D and 3D versions of such algorithms
4. possesses the necessary basic skills to use these basic algorithms available in OpenGL

Contents:
The history and evolution of computer graphics; 2D graphics including: line and circle drawing, polygon filling, clipping, and 3D computer graphics algorithms including viewing transformations, shading, texture mapping and hierarchical modeling; graphics API (OpenGL) for implementation.

Mode of delivery:
Face to face teaching.

Learning activities and teaching methods:
Lectures 28 h / Self-study and programming assignments 105h

Target group:
Computer Science and Engineering students and other Students of the University of Oulu.

Prerequisites and co-requisites:
Programming skills using C++; basic data structures; simple linear algebra.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
4) Lecture notes (in English)

Assessment methods and criteria:
The assessment of the course is based on the exam (100%) with mandatory returned programming assignments. Read more about assessment criteria at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5, zero stands for fail.

Person responsible:
Guoying Zhao, Xiaopeng Hong, Yingyue Xu

Working life cooperation:
No

521156S: Towards Data Mining, 5 cp

Validity: 01.08.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Satu Tamminen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish or English
Timing:
Autumn, period I.
Learning outcomes:
Student can recognize the type of the data before further analysis and the required preprocessing. The concrete learning outcomes are:
1. Student can design and implement the data gathering
2. Student can combine data from different sources
3. Student can normalize and transform data, and handle missing or incorrect data.
4. Student can ensure the generalizability of the results.

Contents:
Course provides good ability to start Master's Thesis or graduate studies. Topics at the course include data mining process in general level, data gathering and different data types, quality and reliability of the data, data preparation including the processing of missing values, outliers, and privacy issues, combination of signals from several sources, utilization of data bases in data mining process, and normalization and transformation of data and interdependence of the observations and their distributions. Additionally, topics concerning the generality of the results are covered, as well as, the principles of data division, for example, train-test-validate, cross-validation and leave-one-out methods.

Mode of delivery:
Lectures, independent work, group work
Learning activities and teaching methods:
16h lectures, 16h exercises, independent studying.
Target group:
The course is suitable for Master level students in Computer science and engineering study programmes, for minor subject studies or for doctoral students.
Prerequisites and co-requisites:
031021P Probability and Mathematical Statistics or similar

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
Lecture hand-out and exercise material will be provided. The course book will be announced in the beginning of the course. The material is mostly in English.

Assessment methods and criteria:
Participation in mandatory classes and final exam.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Tamminen Satu

Working life cooperation:
-

Other information:
-

521273S: Biosignal Processing I, 5 cp

Validity: 01.08.2005 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Tapio Seppänen
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits / 50 hours of work

Language of instruction:
English. Examination can be taken in English or Finnish.

Timing:
The course unit is held in the autumn semester, during period 2. It is recommended to complete the course at the end of studies.

Learning outcomes:
After completing the course, student
1. knows special characteristics of the biosignals and typical signal processing methods
2. can solve small-scale problems related to biosignal analysis
3. implement small-scale software for signal processing algorithms

Contents:

Mode of delivery:
Face-to-face teaching and guided laboratory work.

Learning activities and teaching methods:
Lectures 10h, Laboratory work 20h, Self-study 20h, written examination.

Target group:
Students interested in biomedical engineering, at their master's level studies.
Students of the University of Oulu.

Prerequisites and co-requisites:
The mathematical studies of the candidate degree program of computer science and engineering, or equivalent. Programming skills, especially basics of the Matlab. Basic knowledge of digital signal processing.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
The course is based on selected chapters of the book "Biomedical Signal Analysis", R.M Rangayyan, 2nd edition (2015). + Lecture slides + Task assignment specific material.

Assessment methods and criteria:
Laboratory work is supervised by assistants who also check that the task assignments are completed properly. All task assignments are compulsory. The course ends with a written exam. Read more about **assessment criteria** at the University of Oulu webpage.

Grading:
The course unit utilizes a numerical grading scale 1-5. In the numerical scale zero stands for a fail.

Person responsible:
Tapio Seppänen

Working life cooperation:
No.

900017Y: Survival Finnish, 2 cp

Validity: 01.08.1995 -
Form of study: Language and Communication Studies
Type: Course
Unit: Languages and Communication
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
- ay900017Y Survival Finnish Course (OPEN UNI) 2.0 cp

Proficiency level:
A1.1

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
No previous Finnish studies.

ECTS Credits:
2 ECTS credits

Language of instruction:
Finnish and English

Timing:
-
Learning outcomes:
By the end of the course the student can understand and use some very common everyday expressions and phrases, and s/he can locate informational content in simple texts and messages. The student also knows the basic characteristics of Finnish language and Finnish communication styles.

Contents:
This is an introductory course which aims to help students to cope with the most common everyday situations in Finnish. During the course, students learn some useful everyday phrases, some general features of the vocabulary and grammar, and the main principles of pronunciation.

The topics and communicative situations covered in the course are: general information about the Finnish language, some politeness phrases (how to greet people, thank and apologize), introducing oneself, giving and asking for basic personal information, numbers, some time expressions (how to tell and ask the time, days of the week, time of day), food, drink and asking about prices.

The structures studied are: personal pronouns and their possessive forms, forming affirmative, negative and interrogative sentences, the conjugation of some verbs, the basics of the partitive singular and some local cases for answering the 'where'-question.

Mode of delivery:
Multi-modal teaching (Contact teaching, on-line teaching and independent work)

Learning activities and teaching methods:
Lessons 1–2 times a week (14 h, including the final exam) and guided self study (40 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
-

Recommended optional programme components:
-

Recommended or required reading:
Will be provided during the course.

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 0-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi.

900013Y: Beginners’ Finnish Course 1, 3 cp

Validity: 01.08.1995 -

Form of study: Language and Communication Studies

Type: Course

Unit: Languages and Communication

Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 ay900013Y Beginners' Finnish Course 1 (OPEN UNI) 2.0 cp

Proficiency level:
A1.2

Status:
The course is intended for the international students in every faculty of Oulu University.

Required proficiency level:
A1.1, Completion of the Survival Finnish course (900017Y) or the equivalent language skills.

ECTS Credits:
3 ECTS credits

Language of instruction:
As much Finnish as possible; English will be used as a help language.

Timing:

Learning outcomes:
By the end of the course the student can understand and use some familiar and common everyday expressions relating to her/himself and everyday situations. S/he can interact in a simple way provided the other person talks slowly and clearly and is willing to help. The student is able to read short simple texts and messages dealing with familiar topics. S/he also deepens her/his understanding of the Finnish language and communication styles.

Contents:
This is lower elementary course which aims to help students to learn communication skills in ordinary everyday situations. During the course, students broaden their vocabulary and knowledge of grammar and principles of pronunciation. They also practise to understand easy Finnish talk about everyday subjects, and reading and writing short and simple texts/messages.

The topics and communicative situations covered in the course are: talking about oneself, one's family, studies and daily routines, as well as asking about these things from other person, expressing opinions, describing people and things, talking about weather and seasons, the names of the months and colours.

The structures studied are: verb types, basics of the change of the consonants k, p and t in verbs and nouns, the genitive and partitive cases, possessive structure, some declension types for nouns (word types) and the basics of the local cases.

Mode of delivery:
Contact teaching and guided self study

Learning activities and teaching methods:
Lessons 2 times a week (26 h, including the final exam) and guided self study (55 h)

Target group:
International degree and post-graduate degree students and exchange students of the University

Prerequisites and co-requisites:
Completion of the Survival Finnish Course

Recommended optional programme components:

Recommended or required reading:
Gehring, S. & Heinzmann, S. Suomen mestari 1 (chapters 3 - 5)

Assessment methods and criteria:
Regular and active participation in the weekly lessons (twice a week), homework assignments and written exam at the end of the course will be observed in assessment. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Grading scale is 1-5.

Person responsible:
Anne Koskela

Working life cooperation:
-

Other information:
Sign-up in WebOodi. The course will start right after the Survival Finnish course.

030009M: Studies in Other Universities/Institutes, 0 - 60 cp

Form of study: Intermediate Studies
Type: Course
Unit: Faculty of Information Technology and Electrical Engineering
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

No course descriptions.

521027S: Advanced practical training, 5 cp

Validity: 01.01.2017 -
Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Riku Hietaniemi
Opintokohteen kielet (E): Finnish

ECTS Credits:
5 ECTS credits
Language of instruction:
Finnish or English
Timing:
This course can be taken in periods I-IV. The recommended time to take this course is during summer of the fourth year.
Learning outcomes:
Student can apply knowledge and skills learned during university studies to complete work assignments in his/her own field.
Student can evaluate and develop himself/herself as a learner and worker.
Student can plan and evaluate his/her time management and working methods.
Student is capable of working in systematic and goal-oriented manner in group as well as independently.
Student can name important factors that direct the actions of work community and the employer.
Student can name duties where he/she can work after graduating from university.
Contents:
Planning and preparation, carrying out work assignments in the students field of studies, documentation of own accomplishments, writing report and reflection.
Mode of delivery:
Independent work.

Learning activities and teaching methods:
Student independently finds a place to work to complete the course. To pass the course minimum of two months of full time work is required. Work can also be carried out in multiple periods. The course works includes a) Making a practice plan for the working period 4 h, b) Documentation of progress during working 20 h, c) Learning while working 108 h, d) Final report and reflection 8 h.

Target group:
Master level students.

Prerequisites and co-requisites:
-

Recommended optional programme components:
The course does not require additional studies carried out at the same time. While carrying out the course working assignments are compared to already completed studies.

Recommended or required reading:
No required material

Assessment methods and criteria:
Course is carried out by working minimum of two months in a work accepted by study program responsible person. Before starting the actual work the student needs to make a plan for the working period and return it to the responsible person. A weekly report is required from every working week. These reports have to turned in before the working period ends. After the working period is over the student writes a final report and returns it to the responsible person. Signed testimonial from the employer is also required with the final report.

Grading:
The course is graded as “pass/fail”

Person responsible:
Riku Hietaniemi

Working life cooperation:
The course is carried out as practical training.

Other information:
This course is alternative to 521013A Advanced Practical Training, 3 ECTS.

521009S: Computer Science and Engineering, The Maturity Test for Master`s Degree, 0 cp

Form of study: Advanced Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
0; The maturity test is integrated in the MSc Thesis credits (30 ECTS).

Language of instruction:
Finnish/Swedish/other

Timing:
Periods 1-4

Learning outcomes:
After the maturity test, the student has demonstrated that his/her language skills meet the requirements of the work life.

Contents:
The aim of the maturity test is to confirm the student's familiarity of the thesis area as well as his/her command of the domestic language of his/her school education.

Mode of delivery:
The maturity test is written in a controlled event, on a topic provided by the thesis supervisor.

Learning activities and teaching methods:
Written essay, approximately 3 pages hand written text or 380 words / 3040 characters.

Target group:
Prerequisites and co-requisites:
The maturity test can be written when the thesis is complete or being finished.

Recommended optional programme components:

Recommended or required reading:
MSc Thesis.

Assessment methods and criteria:
The maturity test is evaluated and approved by the thesis supervisor.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass/fail.

Person responsible:
Thesis supervisor.

Working life cooperation:

521993S: Master's Thesis in Computer Engineering, 30 cp

Form of study: Advanced Studies
Type: Diploma thesis
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Opintokohteen kielet (E): Finnish

ECTS Credits:
30

Language of instruction:
Finnish/English

Timing:
Second year of MSc studies

Learning outcomes:
The student is able to set goals for a given task. He can structure the topic coherently, with emphasis on the key issues. Depending on the nature of the work, the student is able to present the existing results or technological implementations so that the methods used in the work are justified in relation to the state of the art in the field of engineering or science in question. He is able to apply the knowledge and state of the art methods of the subject area in his work. He can present clearly his plan and solution implemented, justify the choices made, and assess the functionality of the solution with relevant testing and evaluation methods. In addition, he is able to compare the results against goals and to consider their general significance to modern engineering or science, and assess the broader significance of the results to the company, organization or project. The student is able to produce smooth, clear and finalized text based on technical and scientific writing practices of the field.

Contents:
The thesis work is carried out independently. The student defines the content of the thesis under the guidance of the supervisor. The degree program committee approves the thesis topic and content.

The thesis is recorded in accordance with the orientation using the following codes:
- 521980S Master's Thesis in Artificial Intelligence, 30 ECTS cr
- 521981S Master's Thesis in Information Processing Engineering, 30 ECTS cr
- 522985S Master's Thesis in Applied Computing, 30 ECTS cr
- 521984S Master's Thesis in Embedded Systems, 30 ECTS cr
- 521979S Master's Thesis in Computer Engineering, 30 ECTS cr
- 522988S Master's Thesis / Master's Degree Programme in Computer Science and Engineering (CSVP ja Ubi), 30 ECTS cr
- 522987S Master's Thesis in Biomedical Engineering, 30 ECTS cr

Mode of delivery:
Face-to-face meetings with the supervisor and independent studying.

Learning activities and teaching methods:
Independent work under the guidance of the supervisor.
Target group:
Second year MSc students.

Prerequisites and co-requisites:
Compulsory advanced studies preceding the thesis (90 ECTS cr).

Recommended optional programme components:
-

Recommended or required reading:
-

Assessment methods and criteria:
The thesis is assessed by two reviewers (supervisor and second reviewer) and approved by the degree program committee. Assessment Criteria at the University of Oulu can be found here.

Grading:
1-5 (1=sufficient, 2=satisfactory, 3=good, 4=very good, 5=excellent)

Person responsible:
Supervising professor or researcher

Working life cooperation:
Yes.

Other information:

Descriptions of courses and study modules not included in the degree structures

521151A: Applied Computing Project I, 10 cp

Validity: 01.08.2013 -
Form of study: Intermediate Studies
Type: Course
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Matti Pouke, Denzil Teixeira Ferreira
Opintokohteen kielet (E): English
Leikkaavuudet (E):
521041A Applied Computing Project I 8.0 cp

ECTS Credits:
10 ECTS cr
Language of instruction:
In English.
Timing:
Autumn and spring, periods 1-4.
Learning outcomes:
1. has basic understanding on how to collaboratively design a small-scale software project,
2. has basic understanding on how to implement and evaluate a small-scale software project,
3. is able to extensively document a small-scale software project,
4. is able to present and “pitch” a project work, i.e. give a good, concise presentation of the work
Contents:
Project work that is typically executed in groups of 3-5 students. Note: the project work cannot be done alone.
Mode of delivery:
3-4 lectures to introduce and conclude the course and project works, collaborative project work for a "client" (teaching assistants and/or industry representatives)

Learning activities and teaching methods:
Practical work in project teams. The course is passed with an approved project work. The implementation is fully in English.

Target group:
3rd year Computer Science and Engineering B.Sc. students and other Students of the University of Oulu.

Prerequisites and co-requisites:
While no specific courses are not required, elementary programming and design skills are desired.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:

Assessment methods and criteria:
The course uses continuous assessment so that the project work is assessed in stages: design (20% of total grade), implementation (40%), evaluation (20%), and final report (20%). Passing criteria: all stages (design, implementation, evaluation, report) must be completed with an approved grade. Read more about assessment criteria at the University of Oulu webpage.

Grading:
Numerical grading scale 1-5; zero stands for a fail.

Person responsible:
Matti Pouke, Denzil Ferreira

Working life cooperation:
No

Other information:

521014S: Expert Training, 0 - 5 cp

Form of study: Advanced Studies

Type: Practical training

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Heikkilä, Janne Tapani

Opintokohteen kielet (E): Finnish

Voidaan suorittaa useasti (E): Yes

ECTS Credits:
1-5.

Language of instruction:
Finnish/English.

Timing:
Periods 1-4.

Learning outcomes:
Upon completion of the course the student knows in details the duties of her or his field of expertise, and is able to apply the knowledge and the skills learned in challenging practical tasks.

Contents:
Familiarizing with the duties of the field of expertise, tasks in the work community requiring responsibility and deep know-how, reporting.

Mode of delivery:
Independent work.

Learning activities and teaching methods:
Students find their training jobs themselves.
Target group:
Computer Science and Engineering students

Prerequisites and co-requisites:
None.

Recommended optional programme components:
-

Recommended or required reading:
None.

Assessment methods and criteria:
The student must make a report which describes the duties as well as the knowledge and the skills obtained during the training. The report should be delivered to the study affairs office together with testimonials (witnessed copies) that indicate the duration of the work, part-time or full-time status, and duties. Training is granted 1.5 ECTS cr / working year with the minimum of 1 ECTS cr and maximum of 5 ECTS cr.
Read more about assessment criteria at the University of Oulu webpage.

Grading:
Pass/Fail.

Person responsible:
Programme Director Janne Heikkilä.

Working life cooperation:
Yes.

521012A: Practical Training, 3 cp

Form of study: Intermediate Studies
Type: Practical training
Unit: Computer Science and Engineering DP
Grading: 1 - 5, pass, fail
Teachers: Riku Hietaniemi
Opintokohteen kielet (E): Finnish
Leikkaavuudet (E):
 521019A Practical training 5.0 cp
Voidaan suorittaa useasti (E): Yes

ECTS Credits:
3

Language of instruction:
Finnish.
Timing:
Periods 1-4.

Learning outcomes:
After the practical training the student can describe the job in question and its working environment from the point of view of his or her studies. The student can identify problems in the work and suggest improvements. The student can find connections between work and studies.

Contents:
The training offers students general insight into working life and to support and to support theoretical studying. Likewise the training has to acquaint the trainee with the social points and work safety in the work place.

Mode of delivery:
Independent work.

Learning activities and teaching methods:
The students find their training jobs themselves.

Target group:
Computer Science and Engineering BSc students.
Prerequisites and co-requisites:
None.

Recommended optional programme components:
The course is an independent entity and does not require additional studies carried out at the same time.

Recommended or required reading:
None.

Assessment methods and criteria:
For BSc stage practical training lasting at least two months a training report is required for which an acceptable grade must be obtained. Detailed instructions for training report are available on the WWW pages of the degree program.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Grading:
Pass/fail.

Person responsible:
Riku Hietaniemi

Working life cooperation:
Yes.

Other information:
Practical training is compulsory in the BSc. Tech degree for students who started in 2010 or earlier. For students starting 2011 or later, practical training (521012A) is optional.

521019A: Practical training, 5 cp

Validity: 01.01.2017 -

Form of study: Intermediate Studies

Type: Course

Unit: Computer Science and Engineering DP

Grading: 1 - 5, pass, fail

Teachers: Riku Hietaniemi

Opintokohteen kielet (E): Finnish

Leikkaavuudet (E):

- 521012A Practical Training 3.0 cp

ECTS Credits:
5 ECTS credits

Language of instruction:
Finnish or English

Timing:
This course can be taken in periods I-IV. The recommended time to take this course is during summer of the second year.

Learning outcomes:
Student can apply knowledge and skills learned during university studies to complete work assignments in his/her own field.
Student can evaluate and develop himself/herself as a learner and worker.
Student can plan and evaluate his/her time management and working methods.
Student is capable of working in systematic and goal-oriented manner in group as well as independently.
Student can name important factors that direct the actions of work community and the employer.
Student can name duties where he/she can work after graduating from university.

Contents:
Planning and preparation, introduction to work assignments related to students field of study, carrying out work assignments, documentation of own accomplishments, writing report and reflection.

Mode of delivery:
Independent work.

Learning activities and teaching methods:
Student independently finds a place to work to complete the course. To pass the course, minimum of two months of full time work is required. Work can also be carried out in multiple periods. The required elements are a) Making a practice plan for the working period 4 h, b) Documentation of progress during working 20 h, c) Learning while working 108 h, d) Final report and reflection 8 h.

Target group:
Bachelor level students in computer science and engineering

Prerequisites and co-requisites:

Recommended optional programme components:
The course does not require additional studies carried out at the same time. While carrying out the course working assignments are compared to already completed studies.

Recommended or required reading:
No required material.

Assessment methods and criteria:
Course is carried out by working minimum of two months in a work accepted by study program responsible person. Before starting the actual work the student needs to make a plan for the working period and return it to the responsible person. A weekly report is required from every working week. These reports have to turned in before the working period ends. After the working period is over the student writes a final report and returns it to the responsible person. Signed testimonial from the employer is also required with the final report.

Grading:
The course is graded as “pass/fail”.
Read more about [assessment criteria](#) at the University of Oulu webpage.

Person responsible:
Riku Hietaniemi

Working life cooperation:
Opintojakso suoritetaan työharjotteluna.

Other information:
The BSc in Computer science and engineering degree can include optional practical training. This course is alternative to 521012A Practical Training, 3 ECTS.