Biomass in steel industry

CASR-tutkijaseminaari
24.11.2011
Hannu Suopajärvi
Content of the presentation

• Background
• Bioreducer-project
• Research objective
• Topics discussed in this presentation
 – Availability of biomass
 – Conversion routes of biomass to reducing agent
 – Evaluation of the effect of charcoal use in plant scale
 – Production cost of charcoal
 – The yearly need of biomass
• Conclusions
• References
Background

• CO₂ problem in steel industry
 – Contributes 5-7 % of world’s fossil CO₂ emissions
 – In Finland Ruukki produces around 4 to 5 Mt CO₂ yearly
 (around 6-7 % of CO₂ emissions in Finland)

• Political actions and Steel industry’s response
 – Energy efficiency plans with producers
 – Emission trade
 – Increasing material and energy efficiency
 – Adopting new technologies
 – By-product usage of other industries
 – Increasing recycling
 – Adopting new raw materials (biomass…)

Lab. of Process Metallurgy, Hannu Suopajärvi, 24.11.2011
Bioreducer-project

- Funding mainly from Tekes (2010-2012) and companies
- Biomass-based reducing agents for the use of metallurgical industry
- Objectives
 - To evaluate the availability of raw materials
 - To evaluate the technical potential of biomass-derived reducing agents in metallurgical processes
 - To determine the suitable conversion technologies to produce biomass-derived reducing agents
 - To estimate plant-wide effects (BF-BOF steel plant) of biomass introduction
 - To assess sustainability of biomass use in iron and steelmaking industry
- Methods
 - Availability assessments
 - Process modeling and simulation
 - Sustainability assessment
 - Laboratory experiments
- Project manager Mikko Angerman
 - mikko.angerman@oulu.fi

Lab. of Process Metallurgy, Hannu Suopajärvi, 24.11.2011
Thesis work

- Evaluation of sustainability of domestic biomass use in iron and steelmaking with embedded approach
 - Evaluation of process and plant site effects of charcoal use and production
 - Evaluation of needed amount of biomass with different and contribution to Finnish renewable energy targets
 - The availability of biomass
 - The cost of charcoal production
 - The environmental burden of charcoal production
Availability of biomass

- Large acquisition area was assumed
 - Seven forest centers
 - Production of charcoal could be done in decentralized manner
 - The main interest was in wood-based biomass because of the large volumes
 - Also other biomass and alternative feedstocks were evaluated
 - Peat
 - Waste wood
 - Plastic
 - Energy crops
Availability of biomass

- Evaluation is based on the 2009 figures
- The use of forest chips in heat and power 2.7 Mm3 (0.4 Mm3 households)
- Several forest chip potential studies have been conducted
 - The assumptions behind estimations differ
 - The use of forest chips can be increased significantly
- Techno-economic estimations up to almost 7 Mm3
- Techno-ecology potential (Kärhä et al. 2010) 13.3 Mm3
- The current use (2009) of forest chips enables substantial increase
 - The potential increase of forest chips use even 10 Mm3 year
- The whole energy wood potential is not earmarked to certain industry

Lab. of Process Metallurgy, Hannu Suopajärvi, 24.11.2011
Conversion routes

• Biomass derived reducing agent could be introduced to blast furnace in solid, gas or liquid form

• Conversion routes:
 – Slow pyrolysis (charcoal)
 – Fast pyrolysis (bio-oil)
 – Gasification (reducing gases (H₂, CO), synthetic natural gas)

• Charcoal case examined more closely
Evaluation of the effect of charcoal use in plant scale

• Prior research done by other researchers has shown that charcoal is suitable blast furnace injectant (reducing agent)
• The effect of charcoal production and use in integrated steelworks was examined
 – The evaluation is based on the process modeling approach with mass and energy balances
 – The most important unit process to be modeled was blast furnace
• Different simulations were performed and compared to base case with traditional blast furnace reducing agents
 – In Base case coke and specific heavy oil are used as reducing agents
 – In CC case 1 the specific heavy oil is replaced by charcoal produced outside the integrated steelworks
 – In CC case 2 the amount of charcoal is further increased and the production of charcoal is integrated to steelworks structure
Blast furnace model

- Based on mass and heat balances
 - Calculation of reduction and heating energy requirements, slag formation, etc.
 - Basically based on RIST diagram
- Chemical and thermal reserve zone between upper and lower active zones
 - In chemical reserve zone CO/CO$_2$ and H$_2$/H$_2$O ratios are fixed with thermodynamic equilibrium at certain temperature of TRZ (1200 K)
- Developed for evaluating the performance of different input materials
 - Special emphasis on tuyère injected fuels
- Calculates e.g. the needed coke and blast amount, slag amount and the composition of top-gas
- All the process specific simulations are performed against one ton of hot metal
Plant site model

- The major integrated steelwork unit processes (with Factory Simulation tool)
- Mass and heat balances
- The material and energy flows between unit processes form a complex entity
- Plant site model includes also pyrolysis plant that produces charcoal and by-products that are used in energy production
- All the plant site simulations were performed against functional unit (FU) of one ton of hot rolled plate

Lab. of Process Metallurgy, Hannu Suopajärvi, 24.11.2011
Results: BF simulation

• Blast furnace operation
 – Changes in blast volume
 – Slag volume decreases
 – Top-gas composition and amount change

• How charcoal can substitute coke:
 – Coke replacement ratio RR is 1.12 for oil
 – RR for charcoal is 0.97
 – To replace 1 kg oil, 1.15 kg charcoal is needed

• The temperature of the blast must be increased to maintain adiabatic flame temperature (AFT) when charcoal amount is increased to 150/t HM

• Charcoal injection could be even higher if lower AFT is allowed
Results: Plant site simulation

- The environmental burden of plant system is smaller when charcoal is used
- The fossil CO₂ emissions decrease in plant scale
 - With 2.6 Mt (Ruukki capacity) hot metal production the reduction is:
 - From 4.63 Mt → 3.92 Mt (15.4 % decrease) (CC case 1)
 - From 4.63 Mt → 3.41 Mt (26.4 % decrease) (CC case 2)
- The use of coking coal decreases in CC case 2, which further decreases the environmental burden and cost of raw materials
Results: Plant site simulation

• Gas balance and use of energy changes when charcoal is introduced
• Minor changes when only specific heavy oil is replaced with charcoal
 – The BF top-gas energy decreases
 → The energy going to power plant decreases
• Significant changes when pyrolysis process is integrated to steelworks infrastructure
 – The production of gases per FU (without converter gases)
 • Base case: 7.8 GJ/FU, CC case 1: 7.3 GJ/FU, CC case 2: 10.5 GJ/FU
 – Almost all the electricity could be produced internally with energetic by-product off-gases
 – Would require major investments to power plant capacity
 – The acquisition area of feedstock would be reduced
Production cost of charcoal

- The price of the charcoal is critical factor for industry
- The price of charcoal from different feedstock derived from the literature
- Calculated:
 - Assumptions
 - 100 000 t charcoal
 - Yield 35 % (from 20 % moisture wood)
 - Investment cost 40 M€
 - Cost of energy wood 5 €/m³
 - Cost of timber 50 €/m³
 - Other cost taken from literature
 - Handling and transportation costs assumed to same with energy wood and timber
- The price of charcoal could range from 330 to 610 €/t
- The by-product benefit not taken into account!
- More in depth assessment is needed!
- Different feedstock
 - Waste wood

<table>
<thead>
<tr>
<th>Production cost</th>
<th>Biomass cost</th>
<th>Country</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>254.60 US$/ton</td>
<td>91.6 US$ (euc.)</td>
<td>Brazil</td>
<td>Noldin (2011)</td>
</tr>
<tr>
<td>162 €/ton</td>
<td>ND (euc.)</td>
<td>Brazil</td>
<td>Fallot et al. (2008)</td>
</tr>
<tr>
<td>272 US$/ton (calc)</td>
<td>83$/ton (corn stover)</td>
<td>US</td>
<td>Brown et al. (2011)</td>
</tr>
</tbody>
</table>

Calculations updated from: Suopajärvi H & Angerman M (2011)
Layered sustainability assessment framework. METEC InSteelCon. Proc. of 1st Int. Conference on Energy Efficiency and CO2 reduction in the Steel Industry, Düsseldorf, Germany
The amount of needed biomass: Case injection

- The needed biomass in charcoal in injection is high
- The injection of 200 kg/t hot metal should be possible
 - Charcoal yield 30 % (20 % moisture wood)
 - Density of green wood 750 kg/m3 (50 % moisture)
 - The yearly hot metal production 2.6 Mt

\rightarrow The amount of green biomass 3.7 Mm3

\rightarrow To replace the oil injection (100 kg/t hot metal) approximately 2.1 Mm3 of biomass is needed

\rightarrow Even though the figures are large, there are available biomass that hasn’t been yet earmarked to certain industry
Laboratory experiments in Lab. of Process Metallurgy

- **In progress:**
 - Reactivity tests (with TGA) on different biomasses (charcoal)
 - Mikko Iljana
 - Viscosity tests with specific heavy oil, coal tar, (effective viscosity with solid particles: coal-, coke and charcoal dust)
 - Antti Salo

- **Planned:**
 - Metallurgical coke production including different biomass raw materials to coal mix
 - Evaluation of coke quality
 - Basic coke quality tests CRI, CSR
 - TGA (reactivity)
 - Gleeble (hot strength)
 - Electrical conductivity
 - Wavelet-texture analysis
 - Microscope images evaluated with mathematical algorithms (pores, isotropic, mosaic, banded coke)
 - Biocoke in process conditions e.g.
 - Blast furnace simulator
 - Behavior of Biocoke in different gas atmospheres

Conclusions

- Biomass is available, the potential increase in biomass feedstock use is not earmarked yet
- Charcoal use can decrease the environmental burden of steelmaking and thus increase the sustainability
- Integration of charcoal production to integrated steelworks would change the gas balance and external energy need quite much
- Integration possibilities of charcoal production should be further evaluated
 - Centralized or decentralized production
 - Chemical production, heat and power production
- The evaluation of life cycle emissions of charcoal production have to be evaluated
- More in-depth economic calculations are needed with by-product utilization and CO$_2$ emission costs
- Production and use of reducing gases derived from biomass
 - Gasification route would make it possible to utilize variety of fuels (biomass, coal, etc.)
- Laboratory experiments with biomasses (charcoals) have been started and will be increased in the future
References

Thank You