Utilizing sawdust waste in water treatment

Anni Keränen, Tiina Leiviskä, Osmo Hormi and Juha Tanskanen

• Pine sawdust as a bio-based raw material for the production of ion exchange resins
 • abundant, low-cost, renewable
• Reactive groups enable chemical modification
 → quaternary ammonium groups
• Removal of toxic anions from water (e.g. NO$_3^-$, SO$_4^{2-}$, PO$_4^{3-}$, arsenic, chromium, vanadium)
• Applications in the treatment of industrial wastewaters (e.g. mining, groundwater, etc.)

Benefits:
• short contact time (10 min)
• wide pH range (3–10)
• wide temperature range (5–70 °C)
• efficient regeneration with NaCl or NaOH solution

Sorption capacities:
• nitrate 32.8 mg N/g (synthetic solution)
• vanadium 130 mg V/g (synthetic solution)
• vanadium 103 mg V/g (wastewater from a chemical plant)

Fig. 1. FESEM micrographs of untreated pine sawdust (left) and modified pine sawdust (right) at 1000x magnification.

Fig. 2. Schematic illustration of the structure of sawdust (LC, lignocellulosic) and the reactive groups.

Fig. 3. Modified pine sawdust in water treatment.

Chemical Process Engineering
Faculty of Technology

Contact information
M.Sc. (Tech.) Anni Keränen, +358 294 48 2341, anni.keranen@oulu.fi
Dr. Tiina Leiviskä, +358 294 48 2386, tiina.leiviska@oulu.fi
Prof. Osmo Hormi, +358 50 428 8251, osmo.hormi@oulu.fi
Prof. Juha Tanskanen, +358 294 48 2340, juha.tanskanen@oulu.fi

The research is funded by Maa-ja vesitekniikan tuki ry and the Maj and Tor Nessling Foundation.

Literature