Bioabsorbable osteofixation devices were developed to avoid problems associated with metals. Bioabsorbable devices are mostly made of the polymers polylactide (PLA), polyglycolide (PGA) and their copolymers (PLGA and P(L/DL)LA). Using the technique of self-reinforcement of bioabsorbable materials, it is possible to manufacture osteofixation devices with ultra high strength. Self-reinforced (SR) polyglycolide-co-polylactide (SR-PLGA) 80/20 was selected to make devices (Biosorb™ PDX) for this study because of its favorable degradation characteristics. The aim of this study was to evaluate the efficacy of using SR-PLGA (Biosorb™) plates and screws in the fixation of osteotomies in craniomaxillofacial (CMF) surgery. In a prospective study, 165 patients (161 children and 4 adults) were operated on in four EU centers (Paris, Innsbruck, London and Oulu) from May 1st, 1998 to January 31st, 2002. Indications included correction of dyssynostotic deformities (n=159), reconstruction of bone defects following trauma (n=2), tumor removal (n=2), and treatment of encephalocoele (n=2). Plates used were 0.8, 1 or 1.2 mm thick and screws had an outer (thread) diameter of 1.5 or 2 mm and a length of 4, 6 or 8 mm. Tacks had an outer diameter of 1.5 or 2 mm and a length of 4 or 6 mm. Intraoperatively the devices were easy to handle and apply and provided stable fixation apart from two cases. Postoperative complications occurred in 12 cases (7.3%), comprising infection (n=6), bone resorption (n=4), diabetes insipidus (n=1), delayed skin wound healing/skin slough (n=2), and liquorrrhea (n=1). Accordingly, SR-PLGA 80/20 (Biosorb) plates and screws can be used safely and with favorable outcome in corrective cranioplasties, especially in infants and young children.

Keywords
Bioabsorbable, biosorb, bone, fixation, polylactide, polyglycolide, self-reinforced

Acknowledgements
Research funds from The Technology Development Center in Finland (TEKES, 90220, Biowaffle Project 40274/03 and MFM Project 424/31/04), The European
Commission (Biomedicine and Health Programme, European Union
Demonstration Project BMH4-98-3892, R&D Project QLRT-2000-00487, EU
Spare Parts Project QLK6-CT-2000-00487) and The Academy of Finland
(Projects 37726 and 73948) and the Ministry of Education (Graduate School of
Biomaterials and Tissue Engineering) are greatly appreciated.