Adipose Tissue Induction in a Well-Defined In Vivo Microenvironment

F. Stillaert*, P. Blondeel, M. Hamdi, K. Abberton, R. Thompson and W. Morrison

Summary

urpose:

To demonstrate that vascularized adipose tissue can be induced in vivo without the need of transplantation of an ex vivo expanded preadipocyte population.

Methodology:

With appropriate informed consent and human ethics committee's approval fat and muscle biopsies were taken during surgery. These were implanted in an appropriate well-defined microenvironment in SCID mice (Severe Compromised Immune Deficient Mice) which has been sealed off from adjacent host connective tissue. Growth Factor Reduced (GFR) Matrigel® enriched with bFGF (1 μ g/ml) was used as a suitable extracellular matrix and the epigastric inferior pedicle was included in this closed in vivo environment. The time course of the study was 6 weeks and after that time generated tissue specimens were harvested and analyzed by standard histology.

Results:

Based on previous findings we hypothesized that xenografts, either fat or muscle, can be a source of precursor cells of the adipogenic lineage. We observed adipogenesis and myogenesis in vivo et de novo in those animals that had xenograft implants. In the control

group, where no xenografts were implanted in the Matrigel® matrix, no adipogenic nor myogenic induction was observed. Both groups however showed the vascular pedicle to produce a three-dimensional vascular framework. In the xenograft groups the generation of this angiogenic framework would support ongoing tissue development with a close relationship between developing adipocytes and neocapillaries. The main determinator for tissue induction was the presence of the xenograft which apparently functioned as a "trigger" factor to induce adipogenesis or myogenesis and hypothetically not as a source of outgrowing multipotential precursor cells.

Conclusion:

By combining the three major key factors in the histiogenesis process, which are 1/ a potential cell source, 2/ angiogenesis and 3/ a suitable extracellular matrix, we were able to generate a well-balanced adipose tissue construct. Further research and identification of the major regulatory mechanisms in adipogenesis as well as the origin of the generated adipocytes in this model will enhance the development of a human extracellular matrix suitable for future clinical applications.

*Correspondence to: F. Stillaert, Department of Plastic Surgery, University Hospital Gent, Gent, Belgium. E-mail: filip.stillaert@Ugent.be, filip.stillaert@skynet.be

Topics in Tissue Engineering, Volume 2, 2005.

Introduction

III Fat TE

Adipose tissue is a dynamic, easily manipulated tissue which makes it practical for tissue augmentation or contour repair for soft tissue defects of any etiology. Treatment of soft tissue defects is not just a matter of "filling the gap" but of generating a longterm, stable tissue which interacts with adjacent tissue. Problems associated with fat flap transfer, such as resorption at the recipient site and donor site morbidity are an issue but no ideal surgical alternative or substitutive tissue currently exists.

Identification of the intrinsic cellular and molecular characteristics of adipose tissue could identify new pathways in tissue engineering research for enhancing fat survival or inducing de novo adipogenesis at the recipient site, using conductive or inductive strategies. Both types of strategies require several key components for a successful construct: progenitor cells, growth factors and cytokines to induce differentiation, an extracellular matrix, a vascular supply and space for the new tissue to develop.

Several theories on adipose tissue generation using free fat grafts have been proposed, such as the host replacement theory and the cell survival theory. In the host replacement theory, host derived histiocytes would invade the graft taking on lipid material and replacing all adipose tissue of the graft (1). In the cell survival theory, histiocytes would act as scavengers of lipid but would not replace the graft adipose tissue. Only part of the graft tissue would survive and be present in the tissue construct after the host reaction subsides.

The extracellular microenvironment plays a number of essential roles in tissue engineering by providing a scaffold for cells to attach and migrate to, as a microenviroment of differentiation, and a preserver of space.

Histioconductive approaches use *ex vivo* scaffolds for replacement of missing tissue. Cultured or isolated cells can be seeded onto those scaffolds and implanted *in vivo* (2-4). The substrate dependence of specific cells for proliferation and differentiation will be an essential factor to take into account in this method. On the other hand, the disadvantage here is that pre-cultured tissue constructs, which must become vascularized once implanted within the recipient, may not be as successful in the long-term as methods which foster a primary neovascularisation of an biological matrix scaffold. This is followed by secondary recruitment and migration of native cells with stem cell characteristics for the production of the wanted tissue in an inductive manner. The central cell population of these pre-cultured constructs will be at risk of ischemia before any appropriate vascularisation of the graft occurs. Growth of any tissue requires a fortiori the formation of a functional and mature vasculature.

Histioinductive approaches will facilitate self-repair or tissue generation de novo at the recipient site. Kawaguchi et al. (5) obtained vascularized plugs of newly formed adipose tissue by injecting Matrigel® supplemented with bFGF into the subcutaneous fat pads of mice. Matrigel® is an extracellular matrix hydrogel derived from the murine EHS sarcoma, and contains basement membrane proteins such as laminin, collagen IV and heparan sulfate proteoglycans as well as several growth factors, such as bFGF, TGF- β , IGF-1, PDGF, NGF and EGF (6). They further demonstrated that subcutaneous injection of Matrigel® enriched with bFGF (dose 1 μ g/ml), induced neo-adipogenesis in mice (5). Neovascularisation at the site of injection, together with the basement membrane-rich Matrigel®-matrix, apparently creates a suitable micro-environment for endogenous progenitor cells to migrate, proliferate and differentiate into mature, vascularized adipocyte clusters (7). In this *in vivo* model, access to fat is constitutive and adipogenesis is de facto host-derived. They suggest that the endogenous progenitor cells penetrated the Matrigel® matrix, in addition to the migration of endothelial cells, from the surrounding host tissue.

In our studies (Cronin *et al.* (2005), Kelly *et al.*, submitted, Stillaert *et al.*, in preparation) we used a sealed tissue engineering chamber based on a vascular pedicle (Fig. 1) and supplied with an instructive matrix (BD Matrigel®) and access to adipose tissue. The rationale of transplanting a tissue graft in a suitable ECM was that early studies using a closed chamber showed that access to preexisting adipose tissue was essential (Kelly, Findlay *et al.*, submitted). The cell-cell or cell-matrix interactions could be temporarily better preserved and cells in whole tissue biopsies could resist hypoxic conditions longer when placed in Matrigel®. We initially hypothesized that the vascularized fat tissue generated in the chamber (Fig. 2) originated from the adipose tissue graft, more specifically from its SVF located precursor cell population, however careful immunohistochemical analysis of human xenografted fat biopsies revealed the generated fat tissue was predominantly host-derived. An alternative hypothesis was that those isolated fat sources may be providing stimuli for the recruitment of MSCs directly from perivascular cell populations within the chamber or from the systemic circulation via the newly developed vascular network.

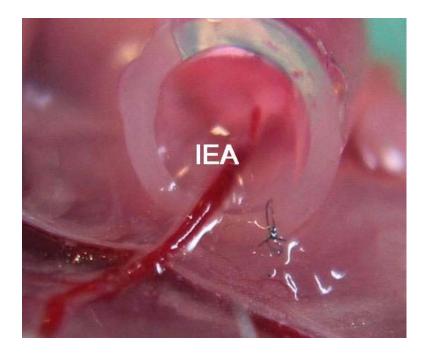


Fig. 1: Silicon tissue engineering chamber positioned around the inferior epigastric artery (IEA) in the mouse groin.

Topics in Tissue Engineering 2005, Volume 2. Eds. N. Ashammakhi & R.L. Reis © 2005

2a

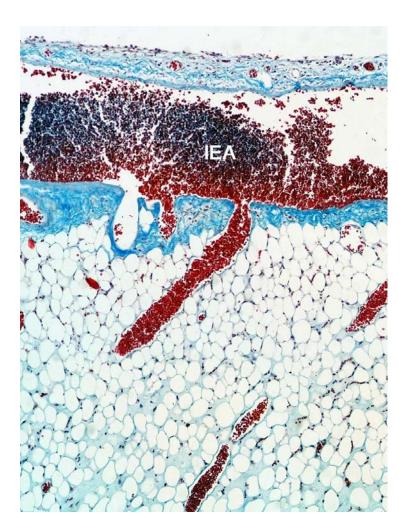
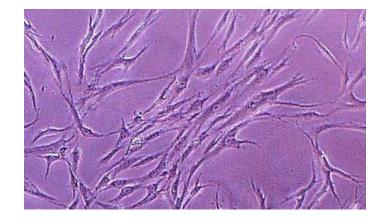
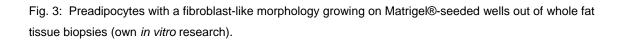


Fig. 2: Generated fat construct in the sealed tissue engineering chamber ("Figure 2a"). Histological section through one of the harvested tissue constructs showing clusters of adipocytes generated in the ECM with angiogenesis sprouting from the host vascular pedicle (IEA) ("Figure 2b"/ magn. 60*).


These studies have considerable bearing on the growing number of approaches to adipose tissue engineering, such as use of inductive fat with autografted "preadipocytes" or preadipocyte conferring components such as processed-lipoaspirate (PLA). It may also shed further light on the question of whether it is graft survival ("cell survival theory") or de novo adipogenesis ("host replacement theory") or a combination of both which occurs during autologous fat transplantation, with significance for trying to understand why such variable results are obtained with this widely utilized technique.


Potential progenitor cells for adipose tissue engineering

Within the connective tissue matrices of most adult organs there are lineage-committed and lineage-uncommitted progenitor cells able to differentiate towards different cell lineages under appropriate differentiation conditions (8).

Adipose tissue is derived from the embryonic mesoderm, and contains a heterogeneous stromal-vascular fraction (SVF) which includes such progenitor cells. Isolated lineageuncommitted stromal cells from subcutaneous fat have been shown to be capable of differentiating *in vitro* into adipocytes and other cell types when cultured in the presence of established differentiation factors (8). Others have used exogenous SV fraction/preadipocytes to induce fat, usually subcutaneously (9). This population in the SVF is phenotypically similar to mesenchymal stem cells (MSCs), they express some of the CD antigens observed on bone marrow MSCs but they also exhibit an unique CD marker profile and gene expression, distinct from those seen in MSCs (10).

Adipose precursor cells in developing fat pads arise from multipotential MSCs, whose origins are unknown. These stem cells develop into unipotential adipoblasts, which become committed to the adipocyte lineage under the influence of various factors such as hormones, and growth factors, cell-cell and cell-matrix interactions which have not yet been fully elucidated, and develop into preadipocytes with a fibroblast-like morphology (Fig. 3).

Although adipoblasts are assumed to appear primarily during embryonic development, it is not clear whether some remain postnatally or whether only preadipocytes are present in the latter stages of development.

Preadipocytes express early differentiation markers such as Pref-1 and PPARγ (Sul *et al.*, 1989) but have not accumulated intracellular triglyceride droplets. Preadipocytes have been estimated to represent 0.02% of the total cell population in the SVF of subcutaneous fat pads (11) and considerable expansion of this population would be desirable for use in tissue engineering applications. The precursor population within the SVF is also heterogeneous and is composed of preadipocytes at various stages of differentiation (early, late and very late), and adipoblasts (12).

Adult skeletal muscle also contains progenitor cells, known as satellite cells with a selfrenewal capacity, that have been shown to be pluripotent with the potential to differentiate into osteoblasts, adipocytes and chondrocytes (Asukara et al. 2001, Shefer et al. 2004).

First described by Mauro in 1961, satellite cells reside beneath the basal lamina of adult skeletal muscles and account for 2-5 % of sublaminal nuclei in adult muscle. Satellite cells are activated to mediate postnatal growth and regeneration of muscle. Their regenerative capacity decreases with age, which may be partially explained by a decrease in numbers (13).

A second population of potential progenitor cells in muscle is the muscle derived stem cells (MDSC). MDSC are distinct from satellite cells and can be divided into two major groups based on their ability to differentiate into myogenic lineages i.e. MDSC with myogenic potential are CD45- and those with less myogenic potential are CD45+. MDSC appear to be closely related to endothelial cells or pericytes of the capillaries surrounding the myofibres, with a hallmark property of being able to undergo hematopoietic differentiation (14). They exhibit the capacity to reconstitute the entire hematopoietic repertoire after intravenous injection into lethally irradiated mice (Jackson et al. 1999). Observations suggested that MDSC located as vascular-associated cells in skeletal muscle are a progenitor for satellite cells or muscle precursor cells. The prevailing hypothesis is that MDSC and satellite cell populations co-exist as distinct stem cell tiers in a state of equilibrium within adult muscle, with both cell types having the potential to be used as progenitor cells for adipocytes and adipose tissue engineering. The signaling interaction between myogenic cells and adipocytes has been implicated as playing a significant role in the rate and extent of adipogenesis, myogenesis, and lipogenesis/lipolysis. Key factors in these processes include leptin, insulin-growth factors, and adiponectin (15).

In our in vivo experiment we have included some tissue engineering chambers in which muscle xenografts were implanted. Those chambers did generate a vascularized adipose tissue construct after 6 weeks. In some harvested tissue constructs we observed additional myogenesis de novo and this phenomenon was dependant on the presence of a healthy fraction of interstitial tissue within the implanted muscle xenograft (Fig. 4).

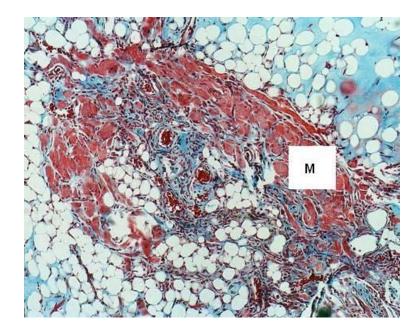


Fig. 4: Adipogenesis, angiogenesis and myogenesis observed after 6 weeks within a tissue engineering chamber containing a muscle xenograft implant (M) (magn. 40*).

There is also potential for the recruitment of bone marrow-derived mesenchymal stem cells (BMSC) to the engineered construct. Although these cells are a small constituent of the bone marrow stroma (0.001 - 0.01%) of the total population of nucleated cells in marrow (Pittenger et al., 1999), it is becoming increasingly evident that certain stem cell populations may be recruited from the bone marrow by chemokines in response to

signals released from hypoxic cells and tissues (16), such as those created in a fat flap situation. However, the MSC population in the peripheral blood is very small and little evidence exists so far to support a functional role for circulating cells in mesenchymal tissue repair (17). However long-term culture of MSC (Rombouts and Ploemacher, 2003) reduces their efficiency in homing into an injury site. The idea is that undifferentiated MSC, following delivery and migration to the engineered environment, will differentiate into adipocytes under the influence of local signals. The local factors directing this multistep process are not yet fully determined although several candidates exist, such as leptin (Aprath-Husmann et al., 2001), adiponectin (Farmer, 2005), plasminogen activation inhibitor-1 (PAI-1) (27, 28), CCAAT/enhancer binding protein- β (C/EBP β) (Loftus et al., 1997), PPARy (Cowherd et al., 1999, Farmer, 2005), hypoxia and insulin.

Preadipocytes are capable of synthesizing PAI-1, a key factor in angiogenesis, cell migration differentiation and proteolysis (27, 28). PAI-1 synthesis is increased during preadipocyte migration towards adipose tissue development, and the levels decrease in *vitro* when a confluent preadipocyte layer is attained and active migration ceases.

Other key regulatory events in fat cell differentiation include the induction of CCAAT/enhancer binding proteins $-\beta$ (C/EBP β) and $-\delta$ (C/EBP δ) followed by induction of PPAR_Y and C/EBP α , which upregulate adipose functional genes. PPAR_Y appears to be crucial for adipocyte differentiation, with studies showing that blocking the PPARy pathway in preadipocytes not only inhibits their differentiation into mature adipocytes, but can also inhibits angiogenesis *in vivo* (18). Preadipocytes have the unique ability to enhance in vivo angiogenesis and cause the remodeling of vessels into an efficient network with a mature, stable architecture (19).

Hypoxia is known to be one of the strongest stimuli that boosts capillary angiogenesis and exerts its effect through an upregulation of Vascular Endothelial Growth Factor (VEGF). As the PPAR γ gene expression is inhibited by hypoxia, angiogenic vessel remodeling may accelerate adipogenesis by increasing hypoxia inducible factor 1 (HIF-

1) degradation, thus potentiating PPARy activation. VEGF is an endothelial mitogen and chemokine, and is highly expressed in adipose tissue, increasing during adipocyte differentiation (20, 29, 30). Adipose stromal cells (ASCs or SVF), isolated from human subcutaneous fat tissue, were found to secrete 5-fold more VEGF when cultured in hypoxic conditions. Conditioned media derived from hypoxic ASCs significantly increased endothelial cell growth with reduced endothelial cell apoptosis. Established preadipocytes in the stromal compartment of white adipose tissue (WAT) are less vulnerable to hypoxemia. Hypoxia is known to occur in our tissue engineering chambers, transiently (Lokmic et al., in preparation), and this could help drive the adipogenic result.

Matrices and scaffolds

The extracellular matrix (ECM) is a non cellular substance, made up of protein and longchain sugars (polysaccharides) in which cells are embedded (ref - review from Kelinman, Ann Rev Biochem?). This "biological glue", in which growth factors (FGF2, TGF- β , & IGF-1 to name a few) can be released from matrix storage, functions as a framework for physical cell support, coordinates cell development via cell-cell and cellmatrix interactions, and in turn stimulates cells to produce the ECM components (21, 22). ECM substrates not only provide mechanical support for cells, but also orientate and constrain cells during regeneration. They provide for the co-ordination of growth factor and cell derived signals between the ECM and cells, effect intercellular communication, and mediate cellular growth, differentiation and ultrastructural stability (23). This suggests that binding and storage of growth factors by the matrix are important determinants in regulating cellular metabolism. ECM proteins coordinate cell migration, proliferation and tissue homeostasis by binding to specific integrin cell surface receptors. Binding to those receptors activates intracellular signaling pathways, cytoskeletal reorganization and alteration of cell morphology (23). Cell migration and tissue

remodeling events are regulated by different proteolytic systems. For example, degradation of the basement membranes surrounding the capillary is necessary for sprouting angiogenesis to proceed. Cellular differentiation of new tissues is induced by cues in the microenvironment immediately surrounding cells. Salasznyk et al. (2004) indicates that ECM stimuli also play an important role in inducing osteogenesis of human MSC.

The differentiation of fat precursor cells will depend on spatially and temporally controlled expression of multifunctional adhesive glycoproteins and their cellular receptors, and on a tight regulation of different proteolytic enzyme families. Human preadipocytes accumulate lipid droplets in their cytoplasm and express positive immunoreactivity for collagen type IV and laminin from the 6th week of gestation onward (22). Culture dishes coated with Matrigel® promote attachment and spreading of preadipocytes whereas spreading of nonpreadipocytes was antagonized. Components, such as laminin which also enhance selective proliferation of preadipocytes (21), play active roles which extend to developmental as well as regenerative processes. This selective spreading of preadipocytes on Matrigel® coated wells has been observed in our *in vitro* experiment with ongoing proliferation of fibroblast-like cells from adult fat biopsies (Fig. 5).

Fig. 5: Ongoing proliferation and spreading of fibroblast-like cells in Matrigel® coated wells. Eighty percent of this population fibroblast-like cells differentiated into lipid-filled adipocytes after addition of a differentiation medium.

Multifunctional glycoproteins are present in the ECM which regulate adhesive processes, coordinating proteolytic degradation and influencing cell migration, proliferation and differentiation. One of those glycoproteins is vitronectin which has been discovered only recently in the SVF of white adipose tissue. It is well-known to play a leading role in cell migration with subsequent differentiation (24), and may well be important in adipogenic tissue engineering.

Vasculature

There is convincing evidence of autocrine/paracrine or developmental relationship between capillaries/endothelial cells and preadipocytes, with blood vessel cells expressing receptors for most adipocyte-derived factors (25, 26). Adipose tissue and

vasculature reside in a steady-state balance with each other and the complex relationship between adipose tissue formation, angiogenesis, and vessel remodeling may explain why isolated fat graft transplantation results in poor and unpredictable results. Preadipocytes produce PAI-1 which would ensure coordination of adipogenesis and angiogenesis at the local level (27). Studies have shown that human preadipocytes and endothelial cells express $\alpha V\beta 3$ integrin and express and secrete PAI-1, which regulates preadipocyte and endothelial cell migration *in vivo* (27). Microvascular endothelial cells secrete factors and ECM components which induce proliferation with subsequent differentiation of preadipocytes and neovascularisation will not be triggered without adipocyte differentiation. The established adipose tissue mass in adult life can be regulated through its vasculature (19), as a wide range of vasoactive signals are secreted by adipose tissue, specifically from the SVF. The expression of factors such as angiopoietins and PAI-1 have been reported, depending on the state of cell differentiation, site of growth, and external stimuli (18, 28). The molecular mechanisms underlying blood vessel maturation during de novo adipose formation are yet to be determined.

The relationship between developing adipocytes and capillaries could be observed in our specimens harvested from the sealed tissue engineering after 6 weeks (Fig. 6).

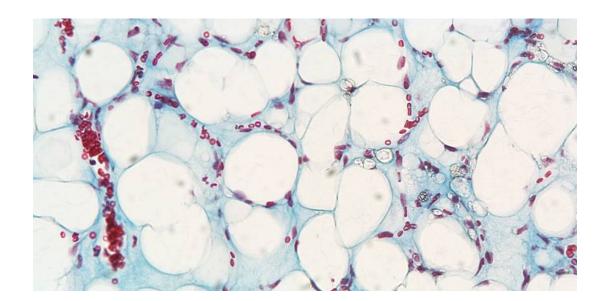


Fig. 6: Histological section through a tissue construct generated at 6 weeks. The close relationship between developing adipocytes and neo-capillaries, which sprouted from the host pedicle, could clearly be identified.

Conclusion

Engineering fat tissue *in vivo* is a challenging research area as several key factors need to be considered. Not only potential precursor cells but the ECM will play a crucial role as this extracellular compartment will coordinate and regulate ongoing cellular processes. Histioconductive methods with the use biodegradable rigids scaffolds will be difficult to extrapolate in a clinical setting as the induction of angiogenesis de novo will be necessary for further (precursor) cell support and the differentiation into mature adipocytes. Adipose tissue is a densely vascularized tissue and the relationship between those two compartments is fundamental for further stabilization of the generated adipose tissue construct within adjacent anatomical structures. In this respect,

histioinductive methods are preferable as they could foster a complementary and harmonious development of angiogenesis and adipogenesis. The interaction between those two cellular events will depend on the availability of an appropriate supporting ECM. Nowadays, a human derived supporting ECM is not yet available but our work with the murine derived Matrigel®, a basement membrane substrate, could direct future work in the field of adipose tissue engineering. We observed that xenografts where a considerable fraction of SVF was included generated considerable adipogenesis de novo et *in vivo* in our tissue engineering chamber. In addition the resultant adipogenic induction seemed to be host-derived. The host-derived nature of the adipose tissue construct was rather surprisingly as we observed ongoing proliferation of fibroblast-like cells out of fat biopsies seeded on Matrigel® coated wells *in vitro*. The hypothesis is that signals or cytokines present in the SVF of the implanted xenografts could direct the adipogenic processes in the tissue engineering chamber and this particular fraction will be the subject of future research in order to identify those cytokines responsible for inducing adipogenesis at the recipient site. Subsequently, this could enhance the development of a human ECM suitable for supporting adipogenesis in vivo in a clinical setting.

References

- Billings E Jr, May JW Jr. Historical review and present status on free fat graft autotransplantation in plastic and reconstructive surgery. Plast Reconstr Surg 1989; 83:368-381.
- Knight MA, Evans GR. Tissue engineering: progress and challenges. Plast Reconstr Surg 2004; 114:26E-37E.
- Patrick CW Jr, Chauvin PB, Hobley J, Reece GP. Preadipocytes seeded PLGA scaffolds for adipose tissue engineering. Tissue Eng 1999; 5:139-151.

- von Heimburg D, Zachariah S, Heschel I, Kühling H, Schoof H, Hafemann B, Pallua N. Human preadipocytes seeded on freeze-dried collagen scaffolds. Biomaterials 2001; 22:429-438.
- Nobuko Kawaguchi, Toriyama K, Nicodemou-Lena E, Inou K, Torii S, Kitagawa Y. De novo adipogenesis in mice at the site of injection of basement membrane and basic fibroblast growth factor. Proc Natl Acad Sci U S A 1998; 95:1062-1066.
- Extracellular Matrices, BD MatrigelTM Basement Membrane Matrix. BD Biosciences Product Catalog Discovery Labware 2003;120-121.
- Toriyama K, Kawaguchi N, Kitoh J, Tajima R, Inou K, Kitagawa Y, Torii S. Endogenous adipocyte precursor cells for regenerative soft-tissue engineering. Tissue Eng 2002; 8:157-165.
- Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P, Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue: implications for cellbased therapies. Tissue Eng 2001; 7:211-228.
- 9. Green H, Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipocyte cell line. J Cell Physiol 1979; 101:169-171.
- Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H, Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13:4279-4295.
- 11. Pettersson P, Cigolini M, Sjoestroem L, Bjoerntorp P. Cells in human adipose tissue developing into adipocytes. Acta Med Scand 1984; 215:447-451.
- 12. Gregoire F, Todoroff G, Hauser N, Remacle C. The stromal-vascular fraction of rat inguinal and epididymal adipose tissue and the adipoconversion of fat cell precursors in primary culture. Biol Cell 1990; 69:215-222.
- 13. Schmalbruch H, Lewis DM. The number of nuclei in adult rat muscles with special reference to satellite cells. Anat Rec 1977; 189:169-175.
- Gibson MC, Schultz E. The distribution of satellite cells and their relationship to specific fiber types in soleus and extensor digitorum longus muscles. Anat Rec 1982; 202:329-337.

- Delaigle AM, Jonas JC, Bauche IB, Cornu O, Brichard SM. Induction of adiponectin in skeletal muscle by inflammatory cytokines: in vivo and in vitro studies. Endocrinology 2004; 145:5589-5597.
- 16. Green H, Kehinde O. Formation of normally differentiated subcutaneous fat pads by an established preadipocyte cell line. J Cell Physiol 1979; 101:169-171.
- Hauner H, Skurk T, Wabitsch M. Cultures of human adipose precursor cells. Methods Mol Biol 2001; 155:239-247.
- Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ, Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL. Secretion of angiogenic and antiapoptotic factors by human adipose stromal cells. Circulation 2004; 109:1292-1298. Epub 2004 Mar 1.
- Rupnick MA, Panigraphy D, Zhang CY, Dallabrida SM, Lowell BB, Langer R, Folkman J. Adipose tissue mass can be regulated through the vasculature. Proc Natl Acad Sci U S A 2002; 99:10730-10735.
- 20. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V, Chatterjee K, Garkavtsev I, Jain RK. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 2003; 93:e88-97. Epub 2003 Oct 2.
- Hausman GJ, Wright JT, Richardson RL. The influence of extracellular matrix substrata on preadipocyte development in serum-free cultures of stromal-vascular cells. J Animal Sci 1996; 74:2117-2128.
- Atanassova PK. Formation of basal lamina in human embryonal adipose cells immunohistochemical and ultrastructural evidence. Folia Med (Plovdiv) 2003; 45:31-35.
- 23. Boudreau NJ, Jones PL. Extracellular matrix and integrin signalling: the shape of things to come. Biochem J 1999; 339:481-488.
- Salasznyk RM, Williams WA, Boskey A, Batorsky A, Plopper GE. Adhesion to vitronectin and collagen I promotes osteogenic differentiation of human mesenchymal stem cells. Biomed Biotechnol 2004; 2004:24-34.

- 25. Fruhbeck G. The adipose tissue as a source of vasoactive factors. Curr Med Chem Cardiovasc Hematol Agents 2004; 2:197-208.
- Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna KC, Kral JG. Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. J Clin Endocrinol Metab 2000; 85:2609-2614.
- Crandall DL, Busler DE, McHendry-Rinde B, Groeling TM, Kral JG. Autocrine regulation of human preadipocyte migration by plasminogen activator inhibitor-1. J Clin Endocrinol Metab 2000; 85:2609-2614.
- Crandall DL, Quinet EM, Morgan GA, Busler DE, McHendry-Rinde B, Kral JG. Synthesis and secretion of plasminogen activator inhibitor-1 by human preadipocytes. J Clin Endocrinol Metab 1999; 84:3222-3227.
- Claffey KP, Wikison WO, Spiegelman BM. Vascular endothelial growth factor: regulation by cell differentiation and activated second messenger pathways. J Biol Chem 1992; 267:16317-16322.
- 30. Cucina A, Borrelli V, Randone B, Coluccia P, Sapienza P, Cavallero A. Vascular endothelial growth factor increases the migration and proliferation of smooth cells through the mediation of growth factors released by endothelial cells. J Surg Res 2003; 109:16-23.