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Summary 

T 
he objective of tissue engineering is to induce tissue regeneration at damaged tissues or organs for 

medical therapy by making use of the self-healing potential of the living body. This tissue 

regeneration can be achieved with cells and the local environment which promotes their natural 

process of proliferation and differentiation. To build up the local environment of cell-induced tissue 

regeneration, it is important to develop drug delivery system (DDS) which allows bio-signal 

molecules (growth factors and genes) to deliver to the target cells for a certain period of time at a 

desired concentration. DDS technologies enhance and prolong the in vivo biological functions of 

bio-signal molecules for tissue regeneration. When applied to the site to be regenerated in surgically 

(surgical tissue engineering), DDS technology has achieved the regeneration of various tissues. The 

current chapter introduces a new concept of DDS-based tissue engineering for therapy of chronic 

fibrotic diseases. For this physical tissue engineering, fibrotic tissue is loosened or digested by the 

physical drug therapy to convert into an in vivo environment which can be naturally repaired by the 

regeneration potential of the surrounding healthy tissue. The DDS of bio-signal molecules facilitates 

the regeneration and repairing processes of disease fibrosis. 

 

KEYWORDS: Chronic fibrosis, Physical tissue engineering, Drug delivery system, Controlled 

release, Bio-signal molecules. 

Tissue Engineering of Internal 

Medicine for Regeneration Therapy 

of Chronic Fibrotic Diseases 

C H A P T E R  2  

Topics in Tissue Engineering, Vol. 4.  Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. 

� *Correspondence to: Yasuhiko TABATA, Ph.D., D.Med.Sci., D.Pharm., Professor, Institute for Frontier Medical Sciences, Kyoto 

            University, 53 Kawara-cho Shogoin, Sakyo-ku, Kyoto, 606-8507 JAPAN. Tel: +81-75-751-4121, Fax: +81-75-751-4646,  

            E-mail:  yasuhiko@frontier.kyoto-u.ac.jp 

 



Yamamoto and Tabata                                                              Regeneration Therapy for Fibrotic Diseases 

 2 Topics in Tissue Engineering, Vol. 4.  Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. 

INTRODUCTION 

The basic idea of tissue engineering is to induce tissue regeneration at defective tissues or organs 

with cells and their environment prepared by biomaterials. To successfully achieve cell-induced 

tissue regeneration, it is necessary to create a local environment that enables cells to enhance the 

natural proliferation and differentiation (1). It has been recognized that in the living body, an 

environment is formed by a well-organized combination of bio-signal molecules, extracellular 

matrix (ECM) molecules, mechanical stress, and cell-cell interactions (2). Tissue engineering is 

one of the biomedical forms to build up the environment to induce cell-based tissue regeneration 

by an appropriate combination of the biological cues. Many tissue engineering approaches have 

been investigated to induce regeneration of various tissues and organs (3-9). Cell scaffolds and 

drug delivery systems (DDS) of bio-signal molecules have been explored with biomaterials, and 

surgically applied to a defective or lost tissue for the regeneration on the basis of cell-mediated 

natural healing potential. This idea of regeneration therapy can be applied to treat chronic 

fibrotic diseases. If the fibrotic tissue is loosened or digested by the physical drug therapy, it is 

possible that the natural healing of fibrosis is induced by the regeneration potential of the 

surrounding tissue. This is defined as the physical tissue engineering of internal medicine which 

is different from the surgical tissue engineering. To enhance the therapeutic efficacy of drug-

based therapy in chronic fibrotic diseases, it is important to develop DDS technology and 

methodology that allows a drug to specifically be delivered to target cells in an appropriate time 

and concentration sequences. If regenerative medical therapy based on tissue engineering is 

realized in surgical or the physical fashion, it does not only provide us with new therapeutic 

methods, but it also increases the therapeutic choices for clinicians and patients. 

This chapter describes physical tissue engineering to carry out regenerative therapy for 

the treatment of chronic fibrotic diseases on the basis of the natural healing potential of the living 

body. We, briefly, explain the molecular mechanisms on the tissue fibrosis and introduce some 

experimental data to emphasize the importance of DDS technologies in the new therapeutic trial. 

 

CHRONIC FIBROTIC DISEASES 

Recently, chronic diseases, such as heart disease, cancer, and diabetes, are among the most 

prevalent, costly, and preventable of all the health problems and the leading causes of death and 

disability. Prolonged course of illness and disability from these chronic diseases results in 
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extended pain and suffering and decreases the quality of life of patients. Tissue fibrosis is a 

characteristic of most types of chronic diseases in different organs, such as liver, kidney, lung, 

pancreas, and heart (Table 1), which is the natural result of wound-healing responses of organs to 

a repeated injury in conjunction with the accumulation of ECM proteins. The accumulation of 

ECM proteins distorts organ microarchitecture by forming a fibrous scar, leading to organ 

failure. The accumulation of ECM proteins results mainly from both their increased synthesis 

and decreased degradation. 

 

Table 1. Chronic fibrotic diseases in different organs. 

 

 

The molecular mechanisms of the accumulation of ECM proteins have been extensively 

investigated in different tissues and organs, including kidney (10, 11), liver (12-16), and lung 

(17-20). Briefly, fibroblasts are the key players for the generation, deposition, and remodeling of 

ECM proteins during the development, response to injury and tissue fibrosis. Fibroblasts undergo 

a change in phenotype from their normal relatively quiescent state in which they are involved in 

slow turnover of ECM proteins, to a proliferative and contractile phenotype of myofibroblasts. 

Myofibroblasts show some of the phenotypic characteristics of smooth muscle cells and have 

been shown to contract in vitro. Myofibroblasts are present during tissue repairing process or in 

the response to injury in various tissues, including the liver, kidney, and lung. During normal 

repair process, myofibroblastic cells are lost by apoptosis. In pathological fibrosis, transforming 



Yamamoto and Tabata                                                              Regeneration Therapy for Fibrotic Diseases 

 4 Topics in Tissue Engineering, Vol. 4.  Eds. N Ashammakhi, R Reis, & F Chiellini © 2008. 

growth factor-β (TG-β) stimulates fibroblast differentiation into a myofibroblast phenotype and 

suppresses myofibroblast apoptosis in the site of developing fibrosis (20-24). As a result, 

myofibroblasts persist in the tissue and are responsible for fibrosis via increased ECM synthesis 

and for the contraction of the tissue. 

On the other hand, matrix degradation is generally maintained ultimately through the 

balance of matrix metalloproteinases (MMP) and tissue inhibitors of metalloproteinases (TIMP) 

(25, 26). In chronic fibrotic tissues, decreased activity of ECM-removing MMP is mainly due to 

overexpression of TIMP. 

 

 

 
Fig. 1. The concept of physical tissue engineering of internal medicine. 

 

FUNDAMENTAL STRATEGY FOR PHYSICAL TISSUE ENGINEERING 

OF INTERNAL MEDICINE 

Physical tissue engineering of internal medicine is defined as the therapeutic approach to treat 

chronic fibrotic diseases based on the natural healing potential of healthy tissue around a fibrotic 

tissue, following loosening and digestion of the fibrotic tissue by drug treatment (Figure 1). In 

other words, the natural healing capability at a disease site is induced by removing the 

pathogenic cause to therapeutically cure the fibrosis and delay or suppress the deterioration of 
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chronic disease. In general, chronically injured tissue is gradually repaired by the excessive 

formation of fibrotic tissues (scar formation), which eventually suppresses the natural process of 

  

Table 2. Anti-fibrotic therapeutic trials for pulmonary, liver and renal fibrosis 
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tissue regeneration. If such a fibrosis can be suppressed or excluded by the drug treatment of 

internal medicine, it is physiologically expected that the fibrotic tissue is naturally repaired by 

the regeneration potential of the surrounding tissues. 

Many pre-clinical and clinical researches have been conducted by using a variety of drugs 

with different biological functions (27-97) (Table 2). Among them, TGF-β is a potential target 

molecule to ameliorate tissue fibrosis, since TGF-β functions as one of the primary mediators to 

accelerate ECM accumulation (78, 98-105). TGF-β is a multifunctional cytokine acting in many 

physiologic and pathologic processes, regulates the proliferation and differentiation of cells in 

several tissues, and plays a central role in fibrogenesis (102). TGF-β increases the production and 

deposition of ECM proteins, reduces matrix degradation accompanied with a decreased protease 

production and increased inhibitors production, and stimulates the synthesis of ECM protein 

receptors (98). Therefore, it is possible that blocking the TGF-β action on ECM may suppress 

tissue fibrosis (Table 3). 

 
Table 3. Suppression of TGF-β activity for anti-fibrotic therapy. 
 

 

 

It has been demonstrated that the biological inhibition of TGF-β protein by the use of 

angiotensin II type I receptor antagonists (AT1RA) (103, 104), angiotensin converting enzyme 

inhibitors (ACE-I) (105), neutralizing antibody (78), antisense oligonucleotide (76), decorin (79, 

80), TGF-β receptor-IgG Fc chimera (81), and TGF-β receptor small interfering RNA (siRNA) 
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(83) suppressed the accumulation of ECM in the animal models of fibrosis. For example, Terui 

et al. demonstrated that losartan, an angiotensin II type 1 (AT1) receptor antagonist decreases the 

plasma TGF-β concentration and the fibrosis score in patients with early stages of hepatic 

fibrosis of chronic hepatitis C (103, 104). Sharma et al. reported that an angiotensin-converting 

enzyme inhibitor, captopril decreased TGF-β1 levels in diabetic nephropathy and captopril-

induced reduction of serum levels of TGF-β1 correlates with long-term renoprotection in insulin-

dependent diabetic patients (105). These results suggest that drugs commercially available, such 

as ACE-I and AT1RA, are promising for anti-fibrosis therapy on the basis of the concept on the 

physical tissue engineering of internal medicine. 

 

PHYSICAL TISSUE ENGINEERING OF INTERNAL MEDICINE BY 

PROTEINS AND GENES 

At present, there is no effective therapy for chronic fibrosis diseases, although some drugs that 

area commercially available exhibit the capability to prevent progression of tissue fibrosis as 

described above. However, recent progress in basic biology and medicine has demonstrated the 

molecular mechanisms of tissue regeneration in chronic fibrotic diseases. Therefore, molecular-

based therapies using proteins and genes have attracted much attention as an alternative 

therapeutic approach with a high specificity for chronic fibrotic diseases. 

 As described above, TGF-β is one of the primary mediators to accelerate ECM 

accumulation and have been investigated as a molecular target to modulate its activity and signal 

transduction for suppressing the accumulation of ECM proteins and the progression of tissue 

fibrosis. For example, Border et al. reported that intravenous injection of antiserum against TGF-

β suppressed the progression of renal fibrosis in an experimental glomerulonephritis model (78). 

In vivo transfection of antisense oligonucleotides for TGF-β receptor (82) and TGF-β (77) by 

non-viral and adenovirus vectors showed significant decrease in the expression level of TGF-β 

receptor and TGF-β, resulting in suppressing progression of liver fibrosis. As another molecular 

target, Yokoi et al. have demonstrated that blocking the expression of connective tissue growth 

factor (CTGF) by an antisense oligonucleotide for CTGF results in prevention of the 

accumulation of collagen type I and reduction of the tissue area of fibrosis in an experimental 

glomerulonephritis model (106). 
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 On the other hand, MMP-1 digestion allows a fibrotic tissue to convert to a physiological 

state where the natural process of tissue regeneration can function to heal fibrosis. Iimuro et al. 

demonstrated that transfection of pro-MMP-1 gene using an adenovirus vector, histologically 

improved tissue fibrosis in the liver in a rat cirrhosis model (97). It is suggested that the possible 

healing mechanism is associated with the suppression of hepatic stellate cells and proliferation of 

hepatocytes. Indeed, several approaches to reduce collagenous ECM proteins in tissue fibrosis 

using proteins and genes could successfully prevent the progression of tissue fibrosis in different 

organs. However, it is highly expected to use a biological molecule that can achieve both the 

reduction of accumulated ECM proteins and the induction of tissue regeneration. Hepatocyte 

growth factor (HGF) has emerged as a potent, endogenous antifibrotic factor that shows an 

impressive efficacy in ameliorating tissue fibrosis in a wide variety of animal models by both the 

inhibition of TGF-β-mediated ECM accumulation and the stimulation of tissue regeneration (91). 

 HGF was first identified, purified, and cloned as a potent mitogen for fully differentiated 

hepatocytes about two decades ago. HGF has multiple biological activities for a wide variety of 

cells, including mitogenic, motogenic (enhancement of cell movement), morphogenic, and anti-

apoptotic activities (107). Besides its well-described regenerative property, many researches 

have indicated that HGF is an endogenous, antifibrotic factor that is capable of improving 

fibrotic lesions and preserving organ functions in a wide variety of experimental animal models 

(91). Nakamura et al. have demonstrated that the supplementation of exogenous HGF could lead 

to a restoration of the balance between HGF and TGF-β in fibrotic tissues, thereby suppressing 

the fibrogenic actions of TGF-β (93). This HGF antagonistic activity against TGF-β  inhibits 

myofibroblast activation and subsequent tissue fibrosis, leading to suppression of chronic fibrosis 

in a variety of organs, including liver, lung, kidney, and heart. 

 

PHYSICAL TISSUE ENGINEERING OF INTERNAL MEDICINE BASED 

ON DRUG DELIVERY SYSTEM 

In the previous section, we claimed that biologically active proteins and genes have a great 

potential to improve chronic fibrotic diseases in different organs. However, multiple injections of 

proteins in solution or genes in viral vectors with a high transfection activity should be required 

to achieve their high biological activities for chronic fibrosis treatment because proteins and 
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genes rapidly diffuse from the injection site and enzymatically digested or deactivated. In 

addition, there are several drawbacks to be resolved for viral vectors, such as the limited size of 

DNA molecules that can be inserted into viral vectors, high immunogenicity and toxicity, or the 

possible mutagenesis of transfected cells. To enable proteins and genes to exert the biological 

functions efficiently in clinical applications, it is highly expected to develop DDS technologies to 

enhance their in vivo therapeutic efficacy. There are four objectives of DDS, the controlled 

release of drugs, the stabilization of drugs, the acceleration of drug absorption and permeation, 

and the targeting of drugs to the site of action. Among them, so far only the release technology 

has been applied to growth factors and genes for the induction of tissue regeneration (109, 110). 

For example, controlled release of growth factor and gene at the site of action over an extended 

period of time is achieved by incorporating them into an appropriate carrier. It is also possible 

that growth factors and genes are protected against enzymatic digestion when incorporated in the 

release carrier, for a prolonged retention of activity in vivo. To achieve these requirements for the 

release carrier, we have explored a biodegradable hydrogel carrier of gelatin derivatives for 

controlled release of proteins and genes in vivo (109, 110). 

Gelatin has been extensively used for industrial, pharmaceutical, and medical applications. 

The biosafety has been proved through its long clinical usage as surgical biomaterials and drug 

ingredients. Another unique advantage is the electrical nature of gelatin which can be readily 

changed by the processing method of collagen in the preparation (111). For example, an alkaline 

processing allows collagen to structurally denature and hydrolyze the side chain of glutamine 

and asparagine residue. This results in generation of “acidic” gelatin with an isoelectric point 

(IEP) of 5.0. On the other hand, the acidic processing of collagen produces “basic” gelatin with 

an IEP of 9.0. We have prepared hydrogels by crosslinking gelatin for controlled release of 

growth factors. Growth factors with IEPs higher than 7.0, such as basic fibroblast growth factor 

(bFGF) (112) and transforming growth factor beta1 (TGF-β1) (113), are immobilized into the 

biodegradable hydrogels of “acidic” gelatin mainly through the electrostatic interaction force 

between the growth factor and gelatin molecules. In this release system, the growth factor 

immobilized is not released from the gelatin hydrogel unless the hydrogel carrier is degraded to 

generate water-soluble gelatin fragments. Therefore, the time profile of growth factor release 

could be controlled only by changing that of hydrogel degradation which can be modified by the 

extent of hydrogel crosslinking (112). The key point is to chemically modify the property of 
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gelatin to permit the physicochemical interaction with the growth factor to be released. Chemical 

derivatization allows gelatin to change the electric and hydrophobic natures and consequently 

interact with different factors (92, 109, 110, 112-126). Hydrogels prepared from gelatin 

derivatives can be applied for controlled release of various bioactive substances including growth 

factors and genes, such as plasmid DNA, decoy DNA, and siRNA (83, 96, 127-139). 

Based on controlled release technology for various bioactive substances, we have 

investigated the feasibility of the hydrogel system for anti-fibrotic proteins and genes in 

enhancing their biological activities in vivo. For example, controlled release of HGF protein from 

gelatin hydrogels prevented the progression of fibrosis and induced significant regeneration and 

repair in animal models of liver cirrhosis (92) and dilated cardiomyopathy (114). Oe et al. have 

reported therapeutic efficacy of HGF release in the liver cirrhosis (92). Biodegradable gelatin 

microspheres incorporating HGF were intraperitoneally injected into a rat model of liver 

cirrhosis which has been prepared by the intraperitoneal injection of thioacetamide every other 

day for 10 weeks. Histological observation of the rat liver revealed that the injection of gelatin 

microspheres incorporating HGF effectively allowed a histological decrease in the area of liver 

fibrosis and to induce liver regeneration (Figure 2).  

Sakaguchi et al. have investigated the feasibility of gelatin hydrogels incorporating HGF in 

preventing the progression of heart failure in stroke-prone spontaneously hypertensive rats (114). 

When applied on the left ventricular free wall of stroke-prone spontaneously hypertensive rats of 

25 weeks old, a gelatin sheet incorporating HGF improves cardiac function, reversed left 

ventricular remodeling, and markedly improved survival in spontaneously hypertensive rats. 

These beneficial effects are associated with angiogenesis and reduced fibrosis in the left 

ventricular myocardium (Figure 3). 
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Fig. 2. Physical tissue engineering of internal medicine for liver cirrhosis by controlled release of HGF. 
Gelatin microspheres incorporating HGF (0.4 mg) and 0.4 mg of free HGF were intraperitoneally 
injected into the liver cirrhosis model rats after 13 weeks of thioacetoamide injection. Gelatin 
microspheres incorporating HGF (A, B, C) and free HGF (D, E, F). Macroscopic views of the liver (A, D) 
before and (B, E) 2 weeks after treatments. Histological sections of the liver were stained with Sircol 
collagen dye. 

 

 

 

Fig. 3. Myocardial sections of rats receiving injection of gelatin hydrogel sheets incorporating HGF or free 
HGF into cardiac muscle at four weeks after surgery were stained with Masson's trichrome. (A) Gelatin 
hydrogel sheets incorporating HGF (50 µg/site) and (B) free HGF. 

 

Renal interstitial fibrosis is the common pathway of chronic renal disease, while it causes 

end-stage renal failure. TGF-β is well recognized to be one of the primary mediators to induce 
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the ECM accumulation in the fibrotic area. We have demonstrated the enhanced anti-fibrotic 

activity of a plasmid DNA of TGF-β type II receptor siRNA expression vector for a mouse 

model of renal fibrosis by complexation with a cationized gelatin (83). The injection of plasmid 

DNA-cationized gelatin complex significantly decreased the level of TGF-β receptor and α-

smooth muscle actin over-expression, the collagen content of fibrotic kidney, and the fibrotic 

area of renal cortex, in remarked contrast to free plasmid DNA injection (Figure 4). In addition, 

Miyazaki et al. have demonstrated the enhanced anti-fibrotic activity of a siRNA of heat shock 

protein 47 (HSP47) by the controlled release from cationized gelatin microspheres for a mouse 

model of peritoneal fibrosis (127). The injection of cationized gelatin microspheres incorporating 

HSP47 siRNA significantly decreased the collagen content of fibrotic peritoneal membrane in a 

mouse model, in contrast to non-silencing siRNA injection. 

 

 

Fig. 4. Histological sections of renal cortex of unilateral ureteral obstruction (UUO) model mice after TGF-
β receptor typeII shRNA expression plasmid (pSUPER-TGF-βRII) application. The section was stained 
with Masson's trichrome seven days after injection of (A) pSUPER-TGF-βRII complexed with cationized 
gelatin, (B) free pSUPER-TGF-βRII, (C) empty pSUPER, (D) saline. Bar length is 200 µm. 
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On the other hand, MMP-1 digestion could convert a fibrotic tissue to a physiological state 

where the natural process of tissue regeneration can initiate to function for fibrosis healing. As 

described in the previous section, Iimuro et al. demonstrated that transfection of pro-MMP-1 

gene with an adenovirus vector, histologically improved tissue fibrosis in the liver in a rat 

cirrhosis model. However, as far as viral vectors are used for gene expression, the therapeutic 

trial cannot be clinically applied. This is because it is practically impossible to use viral vectors 

in the clinic. Therefore, a new method of non-viral gene transfection should be developed. As 

one trial, controlled release technology of plasmid DNA has been explored. Cationized gelatin 

microspheres incorporating a MMP-1 plasmid DNA were injected into the subcapsular space of 

mouse kidney in advance, and then the mice received streptozotocin (STZ) to induce the onset of 

diabetic renal disease. It was reported that advanced lesion of STZ-induced diabetic kidney 

mimics some findings of early-stage clinical diabetic nephropathy. Figure 5 shows the 

histological renal sections of mice pre-injected with microspheres incorporating MMP-1 plasmid 

DNA 28 days after STZ injection. Renal fibrosis was histologically suppressed by the application 

of cationized gelatin microspheres incorporating MMP-1 plasmid DNA, compared with that of 

free MMP-1 plasmid DNA. The injection of plasmid DNA-free cationized gelatin microspheres 

was not effective and the tissue appearance was similar to that of the saline-injected control 

group (96).  
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Fig. 5. Renal histological sections of mice receiving injection of gelatin microspheres incorporating MMP-
1 plasmid DNA or other agents into the renal subcapsule 28 days after STZ injection were stained with 
Masson's trichrome. (A) saline, (B) cationized gelatin microspheres, (C) free MMP-1 plasmid DNA (50 
µg/site), and (D) cationized gelatin microspheres incorporating MMP-1 plasmid DNA (50 µg/site) Each 

bar corresponds to 50 µm. 

 

CONCLUSIONS 

Tissue engineering technology can not only be used surgically to induce tissue regeneration in a 

body defect, but it can also be applied to therapeutically treat chronic fibrosis diseases of 

pulmonary fibrosis, liver fibrosis, dilated cardiomyopathy, and chronic nephritis in a physical 

manner by making use of anti-fibrotic drugs, such as proteins and genetic substances. The 

fibrotic tissue is loosened or digested by making use of the drugs combined with DDS 

technologies and convert to a physiological state susceptible to natural regeneration based on the 
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self-healing potential of the body. This is the basic concept of the physical tissue engineering of 

internal medicine. This therapeutic trial is an application of regenerative medical therapy to the 

filed of internal medicine. This is a just-started trial, but the in vivo therapeutic possibility has 

been experimentally confirmed by different animal models of diseases. If it can be applied 

clinically, it will be possible to treat the fibrotic diseases for which there has been so far no 

efficient therapy. To further develop this anti-fibrotic therapy, the research advance of biology 

and medicine on the molecular mechanisms of fibrosis is highly expected to identify and enable 

the use of new drug targets with anti-fibrotic nature. Active combination of drugs with DDS 

technologies needs specific cell and tissue targeting of anti-fibrosis and newly developed method 

of regeneration therapy based on the natural self-healing potential of patients themselves. DDS-

based suppression of tissue fibrotic progression will significantly improve the quality of life of 

patients. It is no doubt that increasing the therapeutic choice for clinicians brings about large 

medical benefits to patients. 
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