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1. The trajectory of the center of mass
A grenade that’s falling vertically blows up in two pieces of equal size at the altitude
of 2000 meters. Its velocity is 60 m/s at that time. After the explosion the other part
moves at the velocity of 80 m/s downwards. Where is the center of mass of the system
10 seconds after the explosion?

2. Angular momentum using the center of mass
We consider a group of particles with locations ri and masses mi. The total mass is
M , the location of the center of mass R and the locations of particles relative to the
center of mass r′i.

a) Express ri using R and r′i.

b) Express the velocity vi = ṙi of a particle i using the velocity of the center of
mass V = Ṙ and the velocity of the particle with respect to the center of mass
v′i = ṙ′i. Here the time derivative is denoted by a dot.

c) Show that
∑
imir

′
i = 0 and

∑
imiv

′
i = 0.

d) Show that the total angular momentum L =
∑
i ri × pi can be written using

the center of mass as

L = R×MV +
∑
i

r′i × p′i ,

where p′i = miv
′
i is the momentum of particle i with respect to the center of

mass.

3. Kinetic energy using the center of mass
Show that the kinetic energy of a many body system can be written as

T =
1

2
MV 2 +

1

2

∑
i

miv
′
i
2
,

where M is the total mass of the system, V is the velocity of the center of mass and
v′i is the velocity of the ith particle relative to the center of mass of the system. Notice
that V 2 = V · V and v′i

2 = v′i · v′i. Hint: use the results of the previous problem.

4. Force field

a) Is the following force field F conservative? Find the potential associated with
the F .

F = (6abz3y − 20bx3y2)i+ (6abxz3 − 10bx4y)j + (18abxz2y)k



b) A particle of mass m lies at the origin of the coordinate system. It’s potential
of the gravitational field is given by

V (r) = −γm
r
, r2 = x2 + y2 + z2.

Form the components of the force field vector F and show that F is conservative.

c) Let a particle be in a force field

F = 24t2i+ (36t− 16)j − 12tk

and its velocity is

v = 4t3i+ (9t2 − 8t)j − 3t2k.

What is the work done by the force field when moving the particle from the point
t = 1 to the point where t = 2?
Hint: Rewrite the equation of work using time t as integration variable.

5. Plane polar coordinates
Let (r, θ) represent the polar coordinates describing the position of a particle. If r̂ is a
unit vector in the direction of the position vector r and θ̂ is a unit vector perpendicular
to r and in the direction of increasing angle θ, show that

r̂ = i cos θ + j sin θ

θ̂ = −i sin θ + j cos θ

i = r̂ cos θ − θ̂ sin θ

j = r̂ sin θ + θ̂ cos θ.

In addition, prove relations

˙̂r = θ̂θ̇
˙̂
θ = −r̂θ̇

and show that (in polar coordinates) the velocity and the acceleration are given by

v = r̂ṙ + θ̂rθ̇

a = r̂(r̈ − rθ̇2) + θ̂(rθ̈ + 2ṙθ̇).
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1. Snell’s law
A particle with total energy E lies in a potential

V (x, y, z) =
{
V ′, if z < 0
V, if z > 0

.

Show that the particle’s change of the direction of the motion at the boundary z = 0
obeys the Snell’s law

n sin θ = n′ sin θ′,

where
n′

n
=

√
E − V ′
E − V

.

Hint: Use the conservation of the momentum components px and py and the conserva-
tion of energy.

θ

θ'

z

2. Angular momentum in moving frame
Let’s examine a coordinate system moving (but not rotating) with point r0. Show that
the angular momentum L′ =

∑
i(ri − r0)× (pi −miṙ0) in this coordinate system can

be expressed as
L̇′ = N ′ +M(r0 −R)× r̈0,

where N ′ is the torque of the exterior forces relative to point r0, M is the total mass
and R is the center of gravity. Specify two special cases where L̇′ = N ′ is valid?

3. Perturbation calculation of a trajectory
Calculate through the intermediate steps in the example problem of perturbation calcu-
lation presented in Section 2.3 of the lecture notes. Hint: the time spent during the
throw is determined by the condition y0(t) + y1(t) = 0. This leads to second order
equation for t. It is possible to solve this by the standard formula. It is, however, much
simpler to apply the perturbation method also to this equation, i.e. you substitute
t = t0 + t1 and form the zeroth and first order equations in k.



4. Perturbation calculation of a nonlinear oscillator
Let’s investigate one dimensional motion of the particle (mass m) in a potential of the
form

U(x) =
1

2
kx2 − 1

4
mεx4.

In addition, the particle is affected by the harmonically oscillating force mA cosωt.
a) Write the particle’s Newton’s equation of the motion.

b) Let us assume that ω2
0 = k/m 6= ω2. Write the zeroth and the first order

equations of the motion with the help of perturbation theory (with respect to ε)
and solve them with the following ansatz

x0 = B cosωt, x1 = C cosωt+D cos 3ωt.

Sketch the amplitudes B, C and D of the vibration as a function of frequency
(in the case ε > 0). For which values of ω the first order perturbation theory
isn’t sufficient?
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1. Plane polar coordinates
Calculate through the intermediate steps in the example 2 of section 3.2: One particle
in polar coordinates.

2. Trajectory in Lagrangian mechanics

a) Use Lagrange’s equations to describe the motion of a projectile launched with
speed v0 at angle α with the horizontal.

b) Try to find some term which would produce the effect of the air resistance if
added to the Lagrange’s function.

3. Pendulum
Set up the Lagrangian for a simple pendulum and obtain an equation describing it’s
motion. Solve the equation of the motion in the case of small vibrations. (Amplitude
of the vibration � length of the wire)

4. Spring
a) Show that the potential energy of a spring with spring constant k is 1

2
ks2, where

s is the change of length of the spring form its equilibrium length. For that
calculate the work done by an external force when the spring is stretched by s,
and verify that the same calculation work for compression as well.

b) Write Lagrange’s function for a weight suspended to a spring so that only vertical
motion has to be considered. Solve Lagrange’s equations.
Hint: A differential equation of the form Ly = f , where L is a linear operator
and f is an y-independent “inhomogeneity”, can be solved by first finding the
general solution of the homogeneous equation Ly = 0 and then one solution for
the full equation Ly = f . The general solution is the sum of the two solutions.

5. Spherical coordinates

a) Show that the kinetic energy of a particle in a spherical coordinate system
(r = r cosϕ sin θ x̂+ r sinϕ sin θ ŷ + r cos θ ẑ) is

T =
1

2
m(ṙ2 + r2θ̇2 + r2 sin2 θϕ̇2).

b) Write a Lagrange’s function for a particle which is in homogeneous gravity field
and is connected to a fixed point by a massless spring (like the one in Problem
4).
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1. Gliding pendulum
Consider a system that consists of a simple pendulum (mass m2, length l) and the
point particle (mass m1) to which the pendulum is attached. This latter particle can
move horizontally in the plane of pendulum motion (figure).

x

g

m1

m2

φ

l

Show that the corresponding Lagrangian is:

L =
1

2
(m1 +m2)ẋ2 +

1

2
m2l

2φ̇2 +m2lẋφ̇ cosφ+ gm2l cosφ.

2. Rotating pendulum
Consider a plane pendulum (mass m, length l), whose suspension point moves with
constant angular speed ω along a circle (radius a) in the plane of pendulum.

a
φ

l

ωt

g

m

Show that the Lagrangian is:

L =
1

2
ml2φ̇2 +malωφ̇ sin(φ− ωt) +mgl cosφ−mga sinωt+

1

2
ma2ω2.

Why don’t the two last terms have any effect on the Lagrange’s equations of motion?

TURN



3. Electromagnetic potentials

a) Show that the Maxwell equations

∇ ·B = 0 , ∇×E = − ∂

∂t
B

are automatically fulfilled, when the fields are written using a scalar potential φ
and a vector potential A as

E = −∇φ− ∂

∂t
A , B = ∇×A.

b) Show that A ja φ are not unambigiously defined, but that the fields E and B
do not change in a gauge transformation, where

A′ = A+ ∇χ , φ′ = φ− ∂χ

∂t
.

Here χ(r, t) is an arbitrary function.

4. Motion in magnetic field
Examine the motion of a charged particle in a homogenous magnetic field B = Bẑ.
Show that B can be expressed by the vector potential A = −Byx̂. Write the Lagran-
ge’s equations in cartesian coordinates. Show that the solution in the x-y plane is a
circular motion

x = x0 + r0 cos(ωt+ φ0) , y = y0 + r0 sin(ωt+ φ0)

at the angular speed

ω = −qB
m
,

which is independent of the radius r0 of the circular motion. What can you say about
the motion in z -direction? Verify that the general solution has the correct amount of
free parameters (6).
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1. Harmonic motion
Form the Lagrangian, calculate the equations of motion and express the general solu-
tion in the following cases

a) particle in a one-dimensional potential

V (x) = 6kx(x− 2),

where k is a constant.
b) three-dimensional harmonic potential

V (x, y, z) =
1

2
(k1x

2 + k2y
2 + k3z

2),

where k1, k2 and k3 are constants.

2. Motion on a cylinder
A particle of mass m moves on the outer (frictionless) surface of the cylinder (cylin-
der’s axis is in z-direction) x2 + y2 = R2 under the influence of a force F = −kr
which is directed towards the origin. Find the Lagrangian of the system. Furthermo-
re, obtain the equations of motion and solve them. Use cylindrical polar coordinates
r = x̂ρ cosϕ+ ŷρ sinϕ+ ẑz.

3. Minimal surface of revolution
Calculate through the intermediate steps of the variation calculation of example 3 in
Section 4.2 in the lecture notes. In showing the general solution of the differential
equation it is sufficient to show that the solution satisfies the differential equation and
contains two constants (whose effect is not the same). [This part has been translated
to English.]

4. Fermat’s law
Fermat’s law says that light travels between two points along a route, so that the time
used is extremal (minimum). Starting from Fermat’s law

a) prove, that in homogenous medium (light speed c) light travels along a straight
line. (Hint: reduce this problem to a known example that you need not solve
again.)

b) derive the law of reflection and Snell’s refraction law in a boundary surface of
two mediums (light’s speeds c1 ja c2).
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1. Second derivatives in Lagrangian
Let’s assume that the Lagrange’s function depends on accelerations i.e. L = L(q, q̇, q̈; t).
Derive the equation of motion for the function q starting from Hamilton’s principle.
What boundary conditions are reasonable in this case? Furthermore, what is the equa-
tion of motion in the case

L = −m
2
qq̈ − k

2
q2 ?

2. Pendulum using differential constraints
Examine the simple pendulum again so that the length of the pendulum is taken as
a differential constraint in Lagrange’s equations. Prove that the equation of motion
for the pendulum is the same as obtained before and calculate the generalized force
streching the string of the pendulum. [Answer: Q = mrθ̇2 +mg cos θ.]

3. Atwood’s machine using differential constraints
Let’s consider again Atwood’s machine investigated in lectures. In order to calculate
the tension Q in the string write the generalized coordinates for the locations of both
masses. Take into account the fixed length of the string with differential constraints.
[Answer: Q = 2m1m2g/(m1 +m2).]

x

y

m1

m2

4. Walking spider
A spider walks along a stem of grass. The stem can rotate around a horizontal axis
attached to its center of mass. The spider and the stem are in uniform gravity. What
has to be the spider’s distance r from the rotation axis so that the angular velocity φ̇
of the stem would be constant? (Hint: the walk of the spider along the stem defines
a function r(t), so the only free generalized coordinate is the stem’s angle φ. Solve
the corresponding Lagrange’s equation.) Prove also, that the stem’s kinetic energy
caused by the rotation Tstem = 1

2
Iφ̇2 doesn’t change the final result. [Answer: r =

r0 − (g/2ω2) sinφ.]



φ
r
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1. Monkey and the bananas
A massless inextensible string passes over a pulley which is a fixed distance above
the floor. A bunch of bananas of mass m is attached to one end B of the string. A
monkey of mass M is initially at the other end A. The monkey climbs the string, and
his displacement d(t) with respect to the end A is a given function of time.The system
is initially at rest, so that the initial conditions are d(0) = ḋ(0) = 0. Introduce suitable
generalized coordinates and calculate the lagrangian of the system in terms of these
coordinates. Show that the equation of motion governing the height Z of the monkey
above the floor is

(m+M)Z̈ −md̈ = (m−M)g.

Integrate the equation to find the subsequent motion. In the special case that m = M ,
show that the bananas and the monkey rise through equal distances so that the vertical
separation between them is constant.

B

d(t)

A
Z(t)  

m

M

2. Constants of motion
In exercise 4.1 we derived the Lagrangian

L =
1

2
(m1 +m2)ẋ2 +

1

2
m2l

2φ̇2 +m2lẋφ̇ cosφ+ gm2l cosφ.

What are the constants of motion?

3. Relativistic particle
We claim that a relativistic particle in a potential V = −k/r is described by Lagrangian

L(r, φ, ṙ, φ̇) = −mc2

√
1− ṙ2 + r2φ̇2

c2
+
k

r
, (1)



where r and φ are the polar coordinates, m the mass of the particle and c the velocity
of light. Find the constants of motion. Are these in agreement with what you learned
in Introduction to relativity I course? Note that for a relativistic particle, H has to be
calculated starting from the definition of H.

4. Hamiltonian for a time dependent consraint
We study a pearl (mass m) that can slide without friction on a vertical circle. The
radius of the circle is a and it rotates around the vertical axis (passing trough its
center) with angular velocity ω. Using the expression for kinetic energy in spherical
coordinates, show that the system is described by the Lagrangian

L =
1

2
ma2θ̇2 +

1

2
ma2ω2 sin2 θ −mga cos θ. (2)

Form expressions for the Hamiltonian and the total energy of the pearl. Show that
they are not the same. Which of them is constant?

θ

ω

a

g

m
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1. The ratio of the masses of the central bodies from satellite orbits
Calculate an approximation for the ratio of Earth’s and Sun’s masses by using only
the length of a year, month (27.3 days), Earth’s orbit’s approximate radius (149 · 106

km) and the radius of Moon’s orbit (380000 km).

2. Satellite orbit
From the surface of a planet with no atmosphere (mass M , radius R) a satellite with
mass m (m�M) is launched into orbit. Satellite is first risen to an altitude h = r−R
and its then given a starting velocity v which is perpendicular to radius vector. Show
that the eccentricity ε of the orbit as a function of starting velocity v is

ε =

∣∣∣∣∣1− rv2

GM

∣∣∣∣∣ .
At what values of v the orbit is an ellipse, a circle, a parabola or a hyperbola?

3. Closed vs. unclosed orbits studied by perturbation theory
Calculate through the intermediate steps of section “Closing of the orbits” in Section
5.3 of the lecture notes [translated to English].

4. Scattering from a hard sphere
Examine a situation where point-like particles scatter from a fixed ball, which radius is
R. The scattering is assumed elastic, which means that the incident and leaving angles
of a particle with respect to the surface normal are equal. Calculate differential and
total cross sections of the scattering. (Answer: dσ

dΩ
= R2

4
, σ = πR2.)

5. Effect of attraction on the collision cross section
Show that the cross section σcollision for the case, where a point-like particle (mass m,
relative velocity far away v∞) collides a big ball (radius R, mass M � m), is given by

σcollision = πR2 +
2πGMR

v2
∞

,

where G is the gravitational constant. Hint: the collision takes place if the distance
f − a of nearest point in the particle’s orbit to center of the big ball is smaller than
R.
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1. Constrained oscillator
Find the frequency in the case of small oscillations of a particle (mass m) which is free
to move along a line and is attached to a spring whose other end is fixed at a point
A at distance a from the line. A force F is required to extend the spring to length a
(a > l0).

l0
a

A

xm

2. Coupled pendula
Two identical pendula (length l, mass m) are coupled using a horizontal spring (spring
constant k). In equilibrium the pendula are vertical. Write Lagrangian, both exactly
and in the approximation of small oscillations. Lagrangian for small oscillations is:

L =
1

2
m(η̇1

2 + η̇2
2)− 1

2
(
mg

l
+ k)(η2

1 + η2
2) + kη1η2

θ1

η1 η2

θ2

mm

d

l l

3. Frequencies of coupled pendula
Show that the frequencies of small oscillations in the previous problem are ω1 =

√
g
l

and ω2 =
√

g
l

+ 2k
m

. What are the eigenvectors?
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1. Gravitation in a rotating frame
Let’s examine what kind of apparent forces arise because of Earth’s rotation (angular
velocity ω). We define mg as the force acting on a body that is stationary in the frame
rotating with the earth.

a) Show that g = g0 + rω2 sin θρ̂, where both spherical (r, θ, φ) and cylindrical
(ρ, ϕ, z) coordinates have been used, and g0 is the bare gravitational acceleration.

b) Let us form a coordinate system where ẑ is in the direction of −g, x̂ to the south
and ŷ to the east. In this coordinate system ω = ω(ẑ cos θ − x̂ sin θ) + O(ω3).
By means of perturbation calculus, show that the trajectory of a free fall from
height h is

r(t) = (h− 1

2
gt2)ẑ +

1

3
ωgt3 sin θŷ.

2. Moment of inertia of a rectangular cuboid
A rectangular cuboid is described by the density

ρ(r) =

{
M/abc if |x| < a

2
and |y| < b

2
and |z| < c

2
,

0 elsewhere,
(3)

where M is the total mass. Calculate the tensor of the moment of inertia for this body
with respect to its center. As a special case (b → 0 ja c → 0) derive the tensor of the
moment of inertia for a thin rod.

3. Principal moment of inertia for an asymmetric body
Consider four point masses (each mass m) that are rigidly bound to each other at
locations (1, 0, 0), (1, 1, 0), (−1, 0, 0) and (−1,−1, 0) (in units of a). Calculate the
moment of inertia tensor. Show that the principal moments of inertia are

I1,2 = (3±
√

5)ma2, I3 = 6ma2. (4)

Show that the smallest moment of inertia corresponds to the principal axis with polar
angle φ = 31.7◦.



4. The dependence of the moment of inertia on the origin
In an earlier exercise (1.3) we verified that the kinetic energy of a group of particles
equals

T =
1

2
MṘ2 + T ′ (5)

where M is the total mass, Ṙ the velocity of the center of mass and T ′ the kinetic
energy measured with respect to the center of mass. By applying this result to a rigid
body, deduce the principal moments of inertia of a thin rod with respect to its end.

5. Rod pendulum
Set up the Lagrangian for a thin uniform rod (mass M , length l) whose one end is
fixed so that the rod can oscillate in a plane under in a constant gravitational field.
Calculate also the frequency of small oscillation.

gl
θ
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1. Cylinder on a cylindrical surface
Consider a homogeneous cylinder (radius a, mass M) rolling on the inner surface of
another cylinder (radius R). Show that its kinetic energy is

3

4
M(R− a)2θ̇2.

Show that the angular frequency of small oscillations is ω =
√

2g
3(R−a)

.

R

θ

a

M
g

As help you can use the result that the moment of inertia of a homogeneous cylinder
around its axis is Ma2/2.

2. Euler’s equation from Euler angles
Starting from Lagrange’s equation for Euler angle γ

d

dt

∂T

∂γ̇
− ∂T

∂γ
= N3,

derive the Euler equation

I3ω̇3 = ω1ω2(I1 − I2) +N3.

3. Symmetric top in gravitational field
Calculate through all the phases of the example from lectures (in section 7.4) concer-
ning a symmetric top in a gravitational field.

4. Pendulum in Hamiltonian formalism
Let’s examine a simple pendulum for which

L =
1

2
ml2θ̇2 +mgl cos θ.

Write the Hamiltonian as a function of correct coordinates. Show that the Hamilton’s
equation of motion for θ is the same as in lagrangian formalism.
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1. Poisson bracket of a product
Show that the Poisson bracket obeys the rule

[AB,C]PB = A [B,C]PB + [A,C]PBB.

2. Conservation laws using Poisson brackets
Show that it follows from the equation

dA

dt
= −[H,A]PB +

∂A

∂t

the conservation laws of (a) the Hamiltonian when ∂H
∂t

= 0 and (b) the canonical
momentum corresponding to cyclic coordinate, i.e. ∂H

∂qk
= 0.

3. Poisson brackets of angular momentum
The angular momentum of one particle is L = r× p. Show that the following Poisson
brackets are true for the components of angular momentum in cartesian coordinates.

[Li, Lj]PB =
∑
k

εijkLk,

[L2, Li]PB = 0.

Explain why these results are valid also for a set of particles.

4. Motion in phase space
Consider a particle moving freely (V = 0) in one dimension x. Write down its La-
grangian, Hamiltonian and Hamilton’s equations of motion. Draw curves H(x, px) =
constant in phase space. Suppose that the state of the system at the initial moment
t = 0 is described by a probability distribution that is non-zero (constant) only in the
rectangular area depicted below. Describe time-evolution of that region. Show that the
motion satisfies Liouville’s theorem. (Hint: solve equations of motion for the corners
of the distribution.)

x

p

p
0

x
0



5. Continuity equation in one dimension
In lectures, it was mentioned that the derivation of continuity equation doesn’t essen-
tially depend on number of dimensions. Derive the continuity equation in 1-dimensional
case

∂

∂t
ρ(x, t) +

d

dx
[ρ(x, t)v(x, t)] = 0.

Also express the alternative form of continuity equation.


