Solution

In[10]:=

(*1*)ParametricPlot[{t * t + 10t + 1, 1/(t * t + 10)}, {t, -15, 7}]

[Graphics:../HTMLFiles/ex02_solutions_33.gif]

Out[10]=

⁃Graphics⁃

In[11]:=

(*2*)ParametricPlot[{Cos[2t], Sin[Pi t]}, {t, -Pi, Pi}]

[Graphics:../HTMLFiles/ex02_solutions_36.gif]

Out[11]=

⁃Graphics⁃

This is an example of a chaotic system. Try increasing the limits of t. You will see that the curve slowly fills the entire unit square.

In[12]:=

(*3*)ParametricPlot[{Re[Exp[I t]], Im[Exp[I t]]}, {t, -Pi, Pi}]

[Graphics:../HTMLFiles/ex02_solutions_39.gif]

Out[12]=

⁃Graphics⁃

A complex number can be represented as z=x+yi,and graphically in the complex plane,where the real part of z is its x-coordinate and the imaginary part is the y-coordinate.Furthermore, the exponent function for a complex argument is ^z=cos x+i sin x, so the above parametric graph represents the unit circle in xy-plane.


Created by Mathematica  (April 10, 2007) Valid XHTML 1.1!