Solutions

In[1]:=

(*1*)D[x^2 + 4x, x]

Out[1]=

4 + 2 x

In[2]:=

(*2*)D[x^4 + 3x - Sin[x], {x, 2}]

Out[2]=

12 x^2 + Sin[x]

In[29]:=

(*3*)x[t_] = 40 - 5t - 5t^2 ; v[t_] = D[x[t], t] ; a[t_] = D[x[t], {t, 2}] ; x[2] v[2] a[2]

Out[32]=

10

Out[33]=

-25

Out[34]=

-10

In[35]:=

(*4*)Plot[{v[t], a[t]}, {t, 0, 4}, PlotStyle {Dashing[{0.01}], Dashing[{}]}]

[Graphics:../HTMLFiles/ex04_solutions_22.gif]

Out[35]=

⁃Graphics⁃

The function Together pulls the terms of a sum over a common denominator.

In[36]:=

(*5*)Clear[f, g] D[f[g[x]], x] D[f[x] g[x], x] D[f[x]/g[x], x]//Together

Out[37]=

f^′[g[x]] g^′[x]

Out[38]=

g[x] f^′[x] + f[x] g^′[x]

Out[39]=

(g[x] f^′[x] - f[x] g^′[x])/g[x]^2

Note the syntax for D: When writing D[f[x,y],x,y], the last variable in the list (here y), is the one with respect to which the derivative is calculated first.

In[40]:=

(*6*)f[x_, y_] = x^3 y^4D[f[x, y], x] D[f[x, y], y] D[f[x, y], {x, 2}] D[f[x, y], {y, 2}] D[f[x, y], x, y] D[f[x, y], y, x, y]

Out[40]=

x^3 y^4

Out[41]=

3 x^2 y^4

Out[42]=

4 x^3 y^3

Out[43]=

6 x y^4

Out[44]=

12 x^3 y^2

Out[45]=

12 x^2 y^3

Out[46]=

36 x^2 y^2

In[47]:=

Clear[x, v, a]


Created by Mathematica  (April 10, 2007) Valid XHTML 1.1!