Solutions
In the first excercise, NIntegrate complains about something. This is just due to the fact that the exact value of the integral is zero.
In[63]:=
Out[63]=
Out[64]=
In[65]:=
Out[65]=
Out[66]=
The next excercise gives a complicated looking answer. You can simplify the integral with the Assumptions option. Normally, you might assume that the limits of integration are real numbers. Here however the expression Integrate[1/(x y),{y,a,b},{x,c,d},Assumptions→{Element[a,Reals],Element[b,Reals],Element[c,Reals],Element[d,Reals]}] leads to a long computation and eventually to the result If[a∈Reals&&c∈Reals&&d∈Reals&&b==0||a∈Reals&&c∈Reals&&d∈Reals&&a==0&&b>0&&a≥0||a∈Reals&&c∈Reals&&d∈Reals&&a==0&&b<0&&a≤0||a∈Reals&&c∈Reals&&d∈Reals&&b>0&&a≥0&&Im[b]≠0||a∈Reals&&c∈Reals&&d∈Reals&&b<0&&a≤0&&Im[b]≠0||a∈Reals&&c∈Reals&&d∈Reals&&a>0&&b>0&&Re[b]>0&&a≥0||a∈Reals&&c∈Reals&&d∈Reals&&a>0&&Re[b]>0&&b<0&&a≤0||a∈Reals&&c∈Reals&&d∈Reals&&b>0&&a≥0&&a<0&&Re[b]<0||a∈Reals&&c∈Reals&&d∈Reals&&a<0&&b<0&&Re[b]<0&&a≤0,(Log[a]-Log[b]) (Log[c]-Log[d]),Integrate[-
+
,{y,a,b},Assumptions→a∈Reals&&b∈Reals&&c∈Reals&&d∈Reals&&!(a∈Reals&&c∈Reals&&d∈Reals&&b==0||a∈Reals&&c∈Reals&&d∈Reals&&a==0&&b>0&&a≥0||a∈Reals&&c∈Reals&&d∈Reals&&a==0&&b<0&&a≤0||a∈Reals&&c∈Reals&&d∈Reals&&b>0&&a≥0&&Im[b]≠0||a∈Reals&&c∈Reals&&d∈Reals&&b<0&&a≤0&&Im[b]≠0||a∈Reals&&c∈Reals&&d∈Reals&&a>0&&b>0&&Re[b]>0&&a≥0||a∈Reals&&c∈Reals&&d∈Reals&&a>0&&Re[b]>0&&b<0&&a≤0||a∈Reals&&c∈Reals&&d∈Reals&&b>0&&a≥0&&a<0&&Re[b]<0||a∈Reals&&c∈Reals&&d∈Reals&&a<0&&b<0&&Re[b]<0&&a≤0)]]
That just means that the conditions yield a simpler form in the domain of the complex numbers. A better (though of less generality) assumption is employed below. By the way, the assumption Element[a,Reals] can be written in a shorter form a∈Reals by a-Esc-el-Esc-Reals. Note also that in multiple integrals, the first variable is integrated over last as with the D command.
In[67]:=
Out[68]=
Out[69]=
Note the notation in the next excercise. This is reminiscent of hand-written notation, where
x(t)=x(0)+
(v(0)+
a(t'')dt'')dt'
could be written for the position at time t. Here we assume that x=0is the stakeout place of the police car. The formula
[t_]=Integrate[Integrate[
[t],t],t]
gives the same result, but violates the formalism!!!
In[70]:=
Out[71]=
Out[72]=
Out[73]=
The average velocity of a particle is
![]()
where Δx is the displacement in the time interval Δt. The basic syntax of Integrate automatically assumes x[0]=0. Fractions are typed Ctrl-/.
In[74]:=
| Created by Mathematica (April 10, 2007) |