1

In[1]:=

A = {{1, 2}, {3, 4}} ; B = {{0, 1}, {1, 1}} ; X = {1, 2} ; Y = {3, 4} ;

In[2]:=

(*a*)Print["AB = ", A . B//MatrixForm] Print["BA = ", B  ... uot;AB-BA = ", A . B - B . A//MatrixForm, ". This is the commutator of A and B."]

AB =  ( {{2, 3}, {4, 7}} )

BA =  ( {{3, 4}, {4, 6}} )

AX =  ( {{5}, {11}} )

X·Y = 11

AB-BA =  ( {{-1, -1}, {0, 1}} ) . This is the commutator of A and B.

In[7]:=

(*b*)Det[A]

Out[7]=

-2

In[8]:=

(*c*)Z = LinearSolve[A, X] ; Print["Z = ", Z//MatrixForm] Print["AZ = ", A . Z//MatrixForm, ", X = ", X//MatrixForm]

Z =  ( {{0}, {1/2}} )

AZ =  ( {{1}, {2}} ) , X =  ( {{1}, {2}} )

In[11]:=

                    -1                                            -1                         ... Form] Print[A   A = , Inverse[A] . A//MatrixForm,,  AA   = , A . Inverse[A]//MatrixForm]

 -1 A   =  ( {{-2, 1}, {3/2, -1/2}} )

 -1                                                                -1 A   A =  ( {{1, 0}, {0, 1}} ) ,  AA   =  ( {{1, 0}, {0, 1}} )

In[13]:=

                    T (*e*)Print[A  = , Transpose[A]//MatrixForm]

 T A  =  ( {{1, 3}, {2, 4}} )

In[14]:=

(*f*)Print["The eigenvalues of A are ", Eigenvalues[A][[1]], " and &q ... vectors[A][[1]]//MatrixForm, " and ", Eigenvectors[A][[2]]//MatrixForm, "."]

The eigenvalues of A are 1/2 (5 + 33^(1/2))  and 1/2 (5 - 33^(1/2))  .

The corresponding eigenvectors are  ( {{-4/3 + 1/6 (5 + 33^(1/2))}, {1}} )  and  ( {{-4/3 + 1/6 (5 - 33^(1/2))}, {1}} )  .

In (g), we'll assume that the third component of X and Y is zero (in order to get the familiar cross product).

In[16]:=

(*g*)X = Append[X, 0] ; Y = Append[Y, 0] ; Print["XY = ", Cross[X, Y]//MatrixForm]

XY =  ( {{0}, {0}, {-2}} )


Created by Mathematica  (April 10, 2007) Valid XHTML 1.1!