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Excercise 11

Go through following excercises with the solution file h11_sol.nb. Comment
every step/line in the solution.

1. Let’s look at the object that feels the gravity of the Earth (a bit larger
and scale than before). Equation of motion is
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and in two dimensions r(t) = z(t)X + y(t)y (%X and § are unit vectors)
, r(®)] = Vx(t)? + y(t)? is the distance between object and center of
the Earth and M is mass of the Earth, G is the gravitational constant.
Equation (1) corresponds system of two non-linear differential equations
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a) Construct functions r(0), which lies in somewhere on the surface of
the sphere, radius R (in xy-plane, on the circle, radius R ) and r'(0)
at r(0) (direction given in respect to surface of the Earth).

mr” () = —

a"(t) = — a!(t)? +y'(t)%2(t)

Solve equations of motion using NDSolve, when v = 0. Plot (x(¢), y(¢)).
Try different values for intial location and velocity. With which values
the object lands to the initial location?

b) Add the term of air resistance (i.e. v # 0) and again try to find initial
values so that object lands to the r(0)

¢) Solve the equation on motion using finite difference method. Now
equatios are so complicated that z;yi:t4 and y;4; can’t be solved
directly. The solution could be obtained using FindRoot-function, or
you can make little code that uses bisection or Newton’s method.
With FindRoot the procedure is

Do[{x[i +11, Y[ +11) = {X[i +11, y[i +11} /.
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