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Practice Work 3

The introduction might look quite long and maybe difficult, but excercises are
quite straight forward.

Introduction

Part 1

Hydrogen atom consist of proton and electron. They have opposite electric char-
ge and thus attractive force between them. In classical physics the dynamics of
the system could be derived from Hamiltonian function

H =
p2
1

2m1
+

p2
2

2m2
− e2

4πε0|r1 − r2|
(1)

where pi, ri and mi are momentum, location and mass of proton and electron.
Terms p2

i /2m describe the kinetic energies and

V =
e2

4πε0|r1 − r2|
(2)

is Coulomb’s potential energy (ε0 is vacuum permittivity). In general the 0-
level of the potential energy could be chosen arbitrarily. Here it is chosen to
be V (∞) = 0. Also, electron must be bounded to the proton i.e. values of the
energy are negative.

In quantum mechanics location and momentum are replaced with operators.
Let’s define Hamiltonian operator, whose eigenfunctions describes the proba-
bility distribution of proton and electron (the point-like particles are replaced
with wave-like ones).

Eigenvalue equation of the Hamiltonian operator (Schrödinger’s eq.) is

− h̄2

2m
∇2

1Ψ(r1, r2)− h̄2

2m
∇2

2Ψ(r1, r2)− e2

4πε0|r1 − r2|
Ψ(r1, r2) = EtΨ(r1, r2) (3)

where ∇i is a gradient with respect to ri. The motion of the center of mass and
the relative motion of electron and proton could be separated. The center of
mass is moving with constant velocity and the relative motion is

− h̄2

2m
∇2ψ(r)− e2

4πε0
ψ(r) = Eψ(r) (4)
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where r = r1− r2 and E = Et−Ec, where Ec is the kinetic energy of the center
of mass.

Let’s solve (4). First, change to the natural unit system:

r → a0r (5)

E → h̄2

2ma2
0

E (6)

and we choose

a0 =
4πε0h̄2

me2
(7)

which is the radius of the ground state of the hydrogen atom predicted by
Bohr model. Above-mentioned formula could be derived from equation of the
circular motion with assumption that the radius of the electron must be whole
wavelength of matter wave of electron. Unit of energy is Rydberg (= 13.606eV)

m

2h̄2

e4

(4πε0)2
≡ 1 Ryd (8)

and the Schrödinger’s eq. becomes

∇2ψ(r) +
(

2
r

+ E

)
ψ(r) = 0 (9)

Next, separation of variables: Let’s denote ψ(r) = u(r)w(φ, θ), where r, φ and θ
are variables in spherical coordinate system. When former is substituted in eq.
(9), we get two independent equations for u and w. u is the radial- and w is
the angular part of the wave function. If denoted u(r) = y(r)/r, we get quite
simple differential equation for y

y′′(r) +
(
E +

2
r
− l(l + 1)

r2

)
y(r) = 0, (10)

where l is quantum number related to angular momentum.

Part 2

Let’s derive the boundary conditions for y:
If r is large, 2/r and l(l + 1)/r2 are small. Therefore we get

y′′(r) + Ey(r) = 0 (11)

and solution of the form

y(r) ∼ e−
√
−Er, r →∞ (12)

If r is small, the l(l + 1)/r2 dominates and we get

y′′(r)− l(l + 1)
r2

y(r) = 0 (13)
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and solution is of the form

y(r) ∼ rl+1, r → 0 (14)

Here we restrict only to eigenfunctions where l = 0 (spherically symmetric).
Therefore w(φ, θ) = 1, i.e wave function becomes ψ(r) = u(r) = y(r)/r.

Differential equation to be solved is thus

y′′(r) +
(
E +

2
r

)
y(r) = 0 (15)

with boundary conditions (12) ja (14) mentioned above and taking into account
that l = 0.

The boundary conditions determine the asymptotic behaviour of y at origin and
at infinity. Note that there is two unknown: wave function y and eigenvalue E.
This could be solved analytically: eigenvalues are form of

En = − 1
n2
, n = 1, 2, . . . (16)

and the functions could be presented with help of Laguerre polynomial.

Introduction to assingment

In this practice work you task is solve equation (15) numerically. You have to
find the eigenvalues E and corresponding eigenfunctions y. In practical, you
must first guess E and then test if there is corresponding eigenfunction y for
that E.
Note: y must satisfy eq. (15) with all values of r, so it must be continuous and
differentiable.

The procedure is similar to excercise 11 (standing wave). First you define the
boundaries r0 and r∞numerically. Divide the range in two parts I0 = [r0, ri] and
I∞ = [ri, r∞] and solve the eq. separately in both areas. Apply the boundary
condition (14) in I0 and boundary condition (12) in I∞ (i.e the value of function
and its derivative at r0 and r∞ follows from the boundary conditions).

Fit solutions together at ri. Function and its derivative must be continuous i.e.

y′0(ri)
y0(ri)

=
y′∞(ri)
y∞(ri)

If y satisfy that condition, it is good enough for solution and E is corresponding
eigenvalue.

When you have found the eigenvalue, calculate the wave function u(r) = y(r)/r
and normalize it to the unity.
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Task

1. Solve four lowest energy states of the hydrogen atom. Derive values of
energy (eigenvalues) and corresponding wave functions. Normalize wave-
functions and plot them. Don’t use (16) when solving eigenvalues. Write
your own eigenvalue-finding-algorithm. Note: Your algorithm could find
point of discontinuity! You can use Mathematica’s NDSolve to find the
solution of differential eqs.

2. When hydrogen atom moves from the excited state to some lower state it
emits a photon. The wavelength of the photon is

λ =
hc

∆E
(17)

where ∆E is the difference of energy states, c is speed of light and h Planck’
s constant. Calculate the wavelengths of the photons when hydrogen atom
moves from higher state to the ground state i.e. calculate the wavelengths
corresponding transitions 2→ 1, 3→ 1 and 4→ 1

Some hints

• When finding the values of energy, do not start very far from zero. For
example energy −3Ryd corresponds classical radius 0.1 ·10−11 m, which is
already quite small!)

• When the energy of the state becomes larger, the electron wave function
extends farther from the proton. Hence you must increase the parameter
r∞, when finding higher states.
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