763654S HYDRODYNAMICS Solutions 1  Autumn 2011

1. For plane or cylindrical polar coordinates © = 2 cosf + j sinf and 6 = —isind+ jcos@,
see appendix B of the lectures. Express i, j in terms of ¢, 6.
Solution:

We start from r = cos 6% + sin 0. From vector analysis, we know that (see the appendix
of the lecture notes)

r= ‘gifg; = cos i + sin 6],
and ot /06 in 61 0j
g r/00  —rsin6i+rcos J:—sinei—l—cosgj.

ENEI r
Multiplying the first equation by sin f, the second by cosf and adding both sides gives
sin OF + cos 00 = (sin® 0 + cos? 0)j = j.
On the other hand, multiplying the first equation by cos#, the second by —siné and
adding both sides gives cos 6 — sin 06 = (cos? 6 + sin? #)i = i, and thus we get finally

i=cosff —sin6 Jj = sin 0t + cos 00.
2. Generalise the one dimensional Taylor’s theorem for three dimensions ¢(x; + hy,zo +

ho,x3 4+ h3) by considering all the coordinates separately and ending at second degree
terms in h. Show that it may be put as

¢(x+h) = p(x) +h (Vo)x + O(h?) = ¢(x) + h;(0¢/0x;)x + O(hihy). (1)

Solution:
Using Taylor’s theorem one can approximate the function f(x) around point zq by

n
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Fa) = 3 T oy = ) 4 ao) o - o) + L @) - w0+ O,

We can use the theorem to approximate f(z+ h) near point z: f(x+h) = f(z)+ f'(x)h+
O(h?). This is now the Taylor’s theorem in 1D that we need.
In three dimensions, we apply the theorem to each coordinate separately and start from
coordinate x;.
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o+ k) = o)+ (52) et 002 @)

We then approximate this around point x + h;X; with respect to another coordinate x;,
i # J, by

0
ax] x+h;X;
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The above partial derivative is approximated as in Eq. (??) and can be written as

a¢ _ 8¢ . 82¢ ,
(a_xj)x+hi§<i - (8_%)x e (0xj8:pi)x + O,

and using again Eq. (??) for ¢(x + h;X;) we end up with

0 0

where h? includes h?, h and h;h;. The third coordinate is treated similarly, and we get

O(x+h) = 6(x) + (%) b+ O(h?) = 6(x) + h - (V) + O(R?).

3. For spherical polar coordinates calculate 0F/00, 89/80, 89/8)\, 85\/6>\; in each case
express your answer in terms of the unit vectors t, é, X and not in terms of i, j, k.
Solution: For notational beauty and shortness, we use now notation: 0, f = g—z.

The position vector in spherical polar coordinates is (see the appendix of the lecture
notes)

r =rsinfcos A\t + rsinfsin A2 + r cos 0k
The definition of the unit vectors

_ O,r sinflcos A\ + sin0sin ¢ + cos Ok
EXI 1
Oy r cos 6 cos A\t + r cos @ sin A\t — 7 sin Ok

= sinf cos A2 + sin 0 sin A2 + cos 0k

L3

0= = = cos 6 cos A\t + cos 0sin A\t — sin 0k
|89’l”| r

3 — o\r _ —rsin&sin)\i‘%—rsinecos)\j SN+ cosAj
|O\T| rsin 6

The partial derivatives 9pf, 990, 9,0 and O\ are calculated in the above representation
since the unit vectors , 7, k do not depend on the variables r, 8, \.

Dy = cos 0 cos \i + cosfsin \j — sin Ok =
0p0 = — sinf cos \i — sinfsin \j — cos Ok = —¢
OO = — cos fsin \i + cos 0 cos AJ = cos O

WA = — (cos A + sin \j) = —(sin F + cos 00)

M)

4. The following identities and notations are extensively used in this exercise, and remember



) . . 3
the Einstein summation rule ), ; a;b; = a;b;.

v =& Vo = 8,06
V-A= @AZ VX A= Ez‘jkéiajAk

3
=1

One should also recall that derivation is a linear operation: 0;(A+ B+ C) = 0;A+0,B+
0;C and the derivative of the product 0,(AB) = 0;A + 0,B.
Solutions:

(a) If vector field A = A(r,t) is well behaved in the sense of derivation then the order

2

of derivatives is interchangeable. Notation of 9;, = % is in addition applied.

V x (8tA) = e,-jkéi(‘?thk = at(ijéiajAk) = at(V X A)
(b) By applying the product rule of derivation:

V- (@VY) = (8,0,) - (#(810m1))) = (8,0) - (&m(#0n¥))
= O (POky)
——
product rule
= OkQOkt) + POkt
= (V¢) - (V) + oV
(¢) The vector field A = A(r,t) is assumed well behaved that the interchange of the
order of the partial derivation holds: 0;,A; = Ok; A;.
V- (VxA)=(8,0,) (€;1€:,0;Ar) = €;10; Ay
= 01943 + 0314y + O3 Ay — O13Ay — O30A1 — On A3
= (01243 — 001 A3) + (051 Az — O13A3) + (023A1 — 0324;) =0

- i - J

=0 =0 =0
At the second row, the permutation symbol €;;; is explicitly expressed (see the
appendix of the lecture notes).

(d)
V x (Vo) = (8,0,) X (&,.0m®) = €41€:0;10
=@ £323¢ — 332@1 +6&5 (0519 — 313¢)1 +€3 \(31%25 - 521@/ =0

=0 =0 =0

(d)
V x (VxA)=¢€;180;(V x Ay = €;18,0;€um0 Am
= &€ijkCrm0jiAm = —€i€ijk€min0jiAm
= —&;(0im0j1 — 0i10m) 01 Am = —€,0;;A; + €0}, A,
(8,0,)(0;A;) —V?PA=V(V-A) - VA



For €;€mik, it has been applied the identity derived in the appendix of the lectures.

5. An estimate for the mean free path A of gas particles can be based on the equation
A= ) (3)

where n = N/V is the number density of particles and o is the scattering cross section.
Estimate A in standard temperature and pressure (7' = 273 K and p = 10° Pa) using
this formula and o ~ ma?, where a = 150 pm is the bond length of Ny molecule. Use
the equation of state of an ideal gas pV = NkgT, where the Boltzmann’s constant
kg =1.381-107% J KL

(Note that equation (??) can be derived as follows: when a particle of cross section o
travels distance A, it sweeps volume V' = g \. For one collision to occur in this distance,
we must have approximately one particle in this volume, nV = 1.)

Solution: The number density n of an ideal gas is

N P

V  kgT

and the estimate for the scattering cross section for Ny molecule o = ma?. Plugging these
formulas and given values for P, T" and a in the formula of the guestimated mean free
path X of a particle in an Ny ideal gas:

1 kgT  1.381-107B NmK ! 273K
A — = = = 0.533 ~ 0.5
no  Pra?> 105 Nm 27(150)210-24 m?2 H p




