
763654S HYDRODYNAMICS Solutions 1 Autumn 2011

1. For plane or cylindrical polar coordinates r̂ = i cos θ + j sin θ and θ̂ = −i sin θ + j cos θ,
see appendix B of the lectures. Express i, j in terms of r̂, θ̂.
Solution:
We start from r = cos θi+ sin θj. From vector analysis, we know that (see the appendix
of the lecture notes)

r̂ =
∂r/∂r

|∂r/∂r|
= cos θi+ sin θj,

and
θ̂ =

∂r/∂θ

|∂r/∂θ|
=
−r sin θi+ r cos θj

r
= − sin θi+ cos θj.

Multiplying the first equation by sin θ, the second by cos θ and adding both sides gives
sin θr̂+ cos θθ̂ = (sin2 θ + cos2 θ)j = j.
On the other hand, multiplying the first equation by cos θ, the second by − sin θ and
adding both sides gives cos θr̂− sin θθ̂ = (cos2 θ + sin2 θ)i = i, and thus we get finally

i = cos θr̂− sin θθ̂ j = sin θr̂+ cos θθ̂.

2. Generalise the one dimensional Taylor’s theorem for three dimensions φ(x1 + h1, x2 +
h2, x3 + h3) by considering all the coordinates separately and ending at second degree
terms in h. Show that it may be put as

φ(x+ h) = φ(x) + h · (∇φ)x +O(h2) = φ(x) + hj(∂φ/∂xj)x +O(hkhk). (1)

Solution:
Using Taylor’s theorem one can approximate the function f(x) around point x0 by

f(x) =
∞∑
n=0

f (n)(x0)

n!
(x− x0)n = f(x0) + f ′(x0)(x− x0) +

1

2
f ′′(x0)(x− x0)2 +O(x3).

We can use the theorem to approximate f(x+h) near point x: f(x+h) = f(x)+f ′(x)h+
O(h2). This is now the Taylor’s theorem in 1D that we need.
In three dimensions, we apply the theorem to each coordinate separately and start from
coordinate xi.

φ(x+ hix̂i) = φ(x) +

(
∂φ

∂xi

)
x

hi +O(h2i ). (2)

We then approximate this around point x + hix̂i with respect to another coordinate xj,
i 6= j, by

φ(x+ hix̂i + hjx̂j) = φ(x+ hix̂i) +

(
∂φ

∂xj

)
x+hix̂i

hj +O(h2j).
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The above partial derivative is approximated as in Eq. (??) and can be written as(
∂φ

∂xj

)
x+hix̂i

=

(
∂φ

∂xj

)
x

+ hi

(
∂2φ

∂xj∂xi

)
x

+O(h2),

and using again Eq. (??) for φ(x+ hix̂i) we end up with

φ(x+ hix̂i + hjx̂j) = φ(x) +

(
∂φ

∂xi

)
x

hi +

(
∂φ

∂xj

)
x

hj +O(h2),

where h2 includes h2i , h2j and hihj. The third coordinate is treated similarly, and we get

φ(x+ h) = φ(x) +
3∑
i=1

(
∂φ

∂xi

)
x

hi +O(h2) = φ(x) + h · (∇φ)x +O(h2).

3. For spherical polar coordinates calculate ∂r̂/∂θ, ∂θ̂/∂θ, ∂θ̂/∂λ, ∂λ̂/∂λ; in each case
express your answer in terms of the unit vectors r̂, θ̂, λ̂ and not in terms of i, j, k.
Solution: For notational beauty and shortness, we use now notation: ∂xf = ∂f

∂x
.

The position vector in spherical polar coordinates is (see the appendix of the lecture
notes)

r = r sin θ cosλi+ r sin θ sinλi+ r cos θk

The definition of the unit vectors

r̂ =
∂rr

|∂rr|
=

sin θ cosλi+ sin θ sinλi+ cos θk

1
= sin θ cosλi+ sin θ sinλi+ cos θk

θ̂ =
∂θr

|∂θr|
=
r cos θ cosλi+ r cos θ sinλi− r sin θk

r
= cos θ cosλi+ cos θ sinλi− sin θk

λ̂ =
∂λr

|∂λr|
=
−r sin θ sinλi+ r sin θ cosλj

r sin θ
= − sinλi+ cosλj

The partial derivatives ∂θr̂, ∂θθ̂, ∂λθ̂ and ∂λλ̂ are calculated in the above representation
since the unit vectors i, j, k do not depend on the variables r, θ, λ.

∂θr̂ =cos θ cosλi+ cos θ sinλj − sin θk = θ̂

∂θθ̂ =− sin θ cosλi− sin θ sinλj − cos θk = −r̂
∂λθ̂ =− cos θ sinλi+ cos θ cosλj = cos θλ̂

∂λλ̂ =− (cosλi+ sinλj) = −(sin θr̂+ cos θθ̂)

4. The following identities and notations are extensively used in this exercise, and remember
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the Einstein summation rule
∑3

i=1 aibi = aibi.

A×B = (ênAn)× (êmBm) = εijkêiAjBk A ·B = (ênAn) · (êmBm) = AiBi

∇ = êi∂i ∇φ = êi∂iφ

∇ ·A = ∂iAi ∇×A = εijkêi∂jAk

∇2 =
3∑
i=1

∂2i = ∂i∂i = ∂ii

One should also recall that derivation is a linear operation: ∂j(A+B+C) = ∂jA+∂jB+
∂jC and the derivative of the product ∂j(AB) = ∂jA+ ∂jB.
Solutions:
(a) If vector field A = A(r, t) is well behaved in the sense of derivation then the order

of derivatives is interchangeable. Notation of ∂jt = ∂2

∂j∂t
is in addition applied.

∇× (∂tA) = εijkêi∂jtAk = ∂t(εijkêi∂jAk) = ∂t(∇×A)

(b) By applying the product rule of derivation:

∇ · (φ∇ψ) = (ên∂n) · (φ(êm∂mψ)) = (ên∂n) · (êm(φ∂mψ))
= ∂k(φ∂kψ)︸ ︷︷ ︸

product rule

= ∂kφ∂kψ + φ∂kkψ

= (∇φ) · (∇ψ) + φ∇2ψ

(c) The vector field A = A(r, t) is assumed well behaved that the interchange of the
order of the partial derivation holds: ∂jkAl = ∂kjAl.

∇ · (∇×A) = (ên∂n) · (εijkêi∂jAk) = εijk∂ijAk

= ∂12A3 + ∂31A2 + ∂23A1 − ∂13A2 − ∂32A1 − ∂21A3

= (∂12A3 − ∂21A3)︸ ︷︷ ︸
=0

+(∂31A2 − ∂13A2)︸ ︷︷ ︸
=0

+(∂23A1 − ∂32A1)︸ ︷︷ ︸
=0

= 0

At the second row, the permutation symbol εijk is explicitly expressed (see the
appendix of the lecture notes).

(d)

∇× (∇φ) = (ên∂n)× (êm∂mφ) = εijkêi∂jkφ

= ê1 (∂23φ− ∂32φ)︸ ︷︷ ︸
=0

+ê2 (∂31φ− ∂13φ)︸ ︷︷ ︸
=0

+ê3 (∂12φ− ∂21φ)︸ ︷︷ ︸
=0

= 0

(d)

∇× (∇×A) = εijkêi∂j(∇× A)k = εijkêi∂jεklm∂lAm

= êiεijkεklm∂jlAm = −êiεijkεmlk∂jlAm
= −êi(δimδjl − δilδjm)∂jlAm = −êi∂jjAi + êi∂jiAj

= (êi∂i)(∂jAj)−∇2A = ∇(∇ ·A)−∇2A
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For εijkεmlk, it has been applied the identity derived in the appendix of the lectures.

5. An estimate for the mean free path λ of gas particles can be based on the equation

λ ≈ 1

nσ
, (3)

where n = N/V is the number density of particles and σ is the scattering cross section.
Estimate λ in standard temperature and pressure (T = 273 K and p = 105 Pa) using
this formula and σ ≈ πa2, where a = 150 pm is the bond length of N2 molecule. Use
the equation of state of an ideal gas pV = NkBT , where the Boltzmann’s constant
kB = 1.381 · 10−23 J K−1.

(Note that equation (??) can be derived as follows: when a particle of cross section σ
travels distance λ, it sweeps volume V = σλ. For one collision to occur in this distance,
we must have approximately one particle in this volume, nV ≈ 1.)
Solution: The number density n of an ideal gas is

n =
N

V
=

P

kBT

and the estimate for the scattering cross section for N2 molecule σ = πa2. Plugging these
formulas and given values for P , T and a in the formula of the guestimated mean free
path λ of a particle in an N2 ideal gas:

λ ≈ 1

nσ
=

kBT

Pπa2
=

1.381 · 10−23 NmK−1 273 K

105 Nm−2π(150)210−24 m2
= 0.533 µm ≈ 0.5µm
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