
763654S HYDRODYNAMICS Solutions 7 Autumn 2011

1. Microscopic model of viscosity
The viscosity of a gas can be estimated as µ = 1

3
ρvλ, where v =

√
3kbT/m is the average

velocity of molecules and λ is the mean free path. Estimate µ numerically for air (use
the results λ = 570 nm from exercise set 1, problem 5, and mass m = 4.65 · 10−26 kg for
N2) and compare with the measured value.
Solution: We use the values T = 293 K, kB = 1.381 · 10−23 JK−1 nm, and a = 150 pm.
The density can be written as ρ = nm, where n is the number density. From the problem
5 of exercise set 1, we have the formula for the mean free path

λ =
1

nσ
,

so for number density n = 1/(λσ), where the cross section σ = πa2. Thus we get

µ =
1

3
ρvλ =

1

3
nm

√
3kbT

m
λ =

√
mkBT

3σ2
≈ 1.68 · 10−4

kg

ms
.

The measured value is µ = 1.8 · 10−5 kg/(ms), factor 10 smaller than calculated above.
Using the measured density ρ = 1.2 kg/m3, and the given mean free path (calculated in
room temperature T = 293 K), the result is µ = 1.16 · 10−4.

2. Viscous stress tensor
(a) The form of the stress tensor, assuming ∇ · v = 0,

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
is valid in cartesian coordinates. Applying the formulas given in appendix B of the
lecture notes show that in plane polar coordinates the stress tensor takes the form

σrr = −p+ 2µ
∂vr
∂r

, σθr = σrθ = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
,

σθθ = −p+ 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)
.

(b) The stream function

Ψ = U

(
r − a2

r

)
sin θ

gives a model flow past a cylinder of radius a. Calculate the components of the
viscous stress tensor σ′ij in plane polar coordinates.
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(c) Calculate the viscous force on the cylinder. Is it realistic?
Solution:
(a) Another way to express tensors is to understand them as products of vectors, this

can be useful when changing coordinate system, for example. This procedure was
applied in the appendix B of the lecture notes, such that

σij = −pδij + µ
(
v
←
∇ +∇v

)
ij
,

where the tensor 2eij = (v
←
∇ +∇v)ij is in plane polar coordinates (see appendix)

(v
←
∇ +∇v)ij = 2

∂vr
∂r
r̂r̂ +

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
(r̂θ̂ + θ̂r̂) + 2

(
1

r

∂vθ
∂θ

+
vr
r

)
θ̂θ̂.

Now, we simply write the answer by picking the corresponding components of the
tensor

σrr = −p+ 2µ
∂vr
∂r

, σθr = σrθ = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
,

σθθ = −p+ 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)
.

(b) In the problem 3 of the exercise 3, we had exactly the same stream function Ψ.
From there we can take the velocity field:

vr =
1

r

∂Ψ

∂θ
= U

(
1− a2

r2

)
cos θ vθ = −∂Ψ

∂r
= −U

(
1 +

a2

r2

)
sin θ.

Applying the expressions for the stress tensor calculated above, we get the viscous
stress tensor σ′

ij through, σ
′
ij = σij + pδij:

σ
′

rr = 2µ
∂vr
∂r

= 4Uµa2
cos θ

r3
,

σ
′

rθ = σ
′

θr = µ

(
1

r

∂vr
∂θ

+
∂vθ
∂r
− vθ

r

)
= 4Uµa2

sin θ

r3
,

σ
′

θθ = 2µ

(
1

r

∂vθ
∂θ

+
vr
r

)
= −4Uµa2

cos θ

r3
.

(c) The ith component of the force is dFi = σijdSj = σijnjdS. The cylinder radius is a,
so the surface element is dS = adθr̂, i.e. nr = 1 and nθ = 0 on the surface.
In the vector form, we can write dF = dFiêi and

F =

∫
S

dFiêi =

∫
S

σijnj êi dS =

∫
S

(σrrnr + σrθnθ)r̂ + (σθrnr + σθθnθ)θ̂ dS.

Inserting nr = 1 and nθ = 0 gives

F =

∫
S

σrrr̂ + σθrθ̂ dS =

∫ 2π

0

(σrrr̂ + σθrθ̂) adθ.
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To be able to calculate the total force in vector form, we need to use cartesian unit
vectors i and j. We cannot use r̂ and θ̂, since they depend on θ, and would change
during the integration. Inserting

r̂ = cos θi+ sin θj

θ̂ = − sin θi+ cos θj

into the integral gives

F =

∫ 2π

0

[(σrr cos θ − σθr sin θ)i+ (σrr sin θ + σθr cos θ)j] adθ.

Taking σrr = −p+ σ′rr = −p+ 4µr−3a2U cos θ and σrθ = σ′rθ = 4µr−3a2U sin θ from
the previous exercise gives

F = 4µr−3a2U

∫ 2π

0

[
(cos2 θ − sin2 θ)i+ 2 sin θ cos θj

]
adθ = 0.

The result is not realistic (d’Alembert’s paradox). Surely, we feel a force if we stick
a rod into a flowing river. The main reason, that our model flow is not realistic,
is that the flow assumes wrong boundary condition at the surface of the cylinder.
Clearly, the velocity does not vanish at the surface of the cylinder, schematized in
Fig. ??, discussed also in the lectures, and in Ex. 3.3. Later on the course, we will
see that the drag forces on a body arise from the implications of the separation
layer around the surface of the body.

 

Figure 1: The velocity field (red arrows) near the cylinder (blue circle) and the stream-lines.
Notice the non-vanishing velocity field at the surface of the cylinder.
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3. Reynold’s number estimates
Calculate the Reynolds number and comment the relative importance of inertial and
viscous forces in the following cases.
Solution: The Reynold’s number was defined in the lectures as:

Re =
ρva

µ
=
va

ν
,

where ρ and µ denotes, respectively the density and the viscosity of the medium (kinematic
viscosity ν = µ/ρ), whereas v and a denote, respectively, the characteristic velocity and
scale of the object or the construction.

a) A swimmer’s kick: a = 50 cm, v = 30 cm/s, νwater = 1.1·10−6 m2/s and Re ∼ 1.4·105.
Inertial forces are the most important but viscosity may have affect though.

b) A bacterium in water: a = 1 µm, v = 30 µm/s, νwater = 1.1 · 10−6 m2/s and Re ∼
2.7 · 10−5. Opposite to the case of the swimmer’s kick, inertial forces are negligible
and viscosity dominates. As an implication bacteria uses different kind of swimming
strategy, i.e. they may use rotating corkscrew-shaped swimming flagellum.

c) A river: a = 10 m, v = 10 cm/s, νwater = 1.1 · 10−6 m2/s and Re ∼ 9.1 · 105. Inertial
forces dominate but viscosity may have affect though.

d) The climate: a = 1000 km, v = 10 m/s, νair = 1.5 · 10−5 m2/s and Re ∼ 6.8 · 1011.
Inertial forces dominate.

e) A glacier: a = 100 m, v = 1 m/year, µ ∼ 1010 kg/(ms), ρice = 916.7 kg/m3 and
Re ∼ 2.9 · 10−13. Viscous forces dominate.

f) An accretion disk around a black hole: a = 105 m, v = 107 m/s, ν ∼ 102 m2/s and
Re ∼ 1010. Inertial forces dominate although the value of the kinematic viscosity is
huge.
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