Introduction to Particle Physics

- 1. Express in units of GeV
 - a) 1 kg
 - b) 1 m
 - c) 1 s
 - d) Newton's gravitational constant $G_N = 6.67 \times 10^{-11} \,\mathrm{m^3 kg^{-1} s^{-2}}$. Planck mass is defined as $m_{\mathrm{Planck}} = 1/\sqrt{G_N}$ (in our "natural units"). How large is it in units of GeV and in kg?

By dimensional analysis, when the energy in a process is of order m_{Planck} , quantum gravity effects cannot be neglected!

- 2. In LEP-experiment at CERN beams of electrons and positrons were collided head-on so that the total energy was equal to the Z-boson mass, $m_Z = 91 \text{ GeV}$. How large was the speed of e^- and e^+ ?
- 3. Cosmic rays (p) produce pions π^{\pm} in the atmosphere at ~ 8 km altitude. Pions move at almost the speed of light, say v = 0.998 towards the Earth. Pions decay (in their rest frame) after $\tau = 2.6 \times 10^{-8}$ s into myons, which decay further into electrons after $\tau = 2.2 \times 10^{-6}$ s (again, in their rest frame).
 - a) At which altitude should the detector be in order to observe Pions?
 - b) What kind of particles reach the Earth surface?
- 4. Draw the lowest-order Feynman diagram for the process

 $e^+ + e^- \rightarrow \mu^+ + \mu^- \,.$

Assume that the myons are produced at rest in the center of mass frame. Estimate the distance between the vertices

- a) in the center of mass frame
- b) in the rest frame of e^+ .