763312A QUANTUM MECHANICS I Exercise 13 Autumn 2007

1. Let us assume that a hydrogen atom is in a 3p state. Show that the
radial part of its wave function is
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2. Derive the dipole selection rules Al = +1, Am = +1 by calculating the
matrix elements of the z and y components of the dipole operator D =
er. You may need the identity (2¢+ 1)v1 —2P"7'(t) = P2, (t) — P, (1).

3. Consider a one-dimensional anharmonic oscillator. Let the perturbation
be of the form H; = chwa?. Calculate the matrix elements
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4. Consider an anharmonic oscillator in which the perturbation is of the
form H, = ohwx?®. First, show that the energy levels are (to the second
order in o)
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Then, show that the energy difference
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Finally, determine the energy eigenstates to the first order in o.
See the lecture notes section 17.2.5.



5. Calculate the van der Waals constant
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