
763312A QUANTUM MECHANICS I Exercise 13 Autumn 2007

1. Let us assume that a hydrogen atom is in a 3p state. Show that the
radial part of its wave function is
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2. Derive the dipole selection rules ∆l = ±1, ∆m = ±1 by calculating the
matrix elements of the x and y components of the dipole operator D =
er. You may need the identity (2` + 1)
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3. Consider a one-dimensional anharmonic oscillator. Let the perturbation
be of the form H1 = σ~ωx3. Calculate the matrix elements
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4. Consider an anharmonic oscillator in which the perturbation is of the
form H1 = σ~ωx3. First, show that the energy levels are (to the second
order in σ)
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Then, show that the energy difference
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Finally, determine the energy eigenstates to the first order in σ.
See the lecture notes section 17.2.3.



5. Calculate the van der Waals constant
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