1. The wave function of a particle in one dimension is

$$\Psi(x,t) = xe^{-2|x| - i\omega t}.$$

- a) Calculate the probability density.
- b) Let us consider intervals of the form $[x \frac{1}{4}, x + \frac{1}{4}]$, where $x \in \mathbb{R}$. Determine the interval in which the particle is most likely found.
- c) What is the probability to find the particle at range [-2, 2]? Part b) is the most challenging.
- 2. Particle is described by a wave function

$$\Psi(r) = \frac{e^{(ik-a)r}}{r}; \qquad a > 0 \text{ constant.}$$

Calculate the probability current density **S**, when $r^2 = x^2 + y^2 + z^2$. How does **S** behave for large values of r?

3. A particle is described by the wave function

$$\Psi(\mathbf{r},t) = \frac{1}{N}e^{-2br}e^{-i\omega t}; \qquad b > 0 \text{ constant.}$$

Calculate the normalization factor N so that

$$\int |\Psi(\mathbf{r},t)|^2 dV = 1.$$

Then calculate the expectation values $\langle \mathbf{p} \rangle$ and $\langle E \rangle$. The momentum expectation value $\langle \mathbf{p} \rangle$ vanishes.

4. A particle moves in a potential V = V(x). Show that the quantum mechanical expectation values satisfy

$$\frac{d}{dt}\langle p_x \rangle = -\left\langle \frac{\partial V}{\partial x} \right\rangle$$

where $p_x = -i\hbar \frac{\partial}{\partial x}$ is the momentum operator in the x-direction.

5. Show that

$$\left\langle \frac{\partial V}{\partial x} \right\rangle = \frac{\partial V}{\partial x}|_{x=\langle x\rangle}$$

when $V(x) = ax^2$. Does the above equation hold for $V(x) = bx^3$?