- 1. Show that the operators
 - a) $p = -i\hbar\nabla$
 - b) $H = -\frac{\hbar^2}{2m} \nabla^2 + V$, where V is a real function
 - c) x, the position operator, are Hermitian.
- 2. Show that

$$\int_{-\infty}^{\infty} \frac{\sin gx}{x} dx = \pi, \text{ when } g > 0.$$

In one version of the solution, one calculates a certain contour integral of the function $f(z) = e^{igz}/z$ and employs the Cauchy's integral theorem.

- 3. Show that a linear combination of two square-integrable, complex-valued functions is also square-integrable.
- 4. a) Calculate the density $\rho(k_F)$ of the one-dimensional Fermi gas as a function of the Fermi wave vector k_F .
 - b) Calculate the density of states g(E) as a function of energy E in one and two dimensions.
- 5. Assume that the Hamiltonian of the system, H, has only two eigenstates, for which $H|\psi_i\rangle = \hbar\omega_i|\psi_i\rangle$, where $i\in\{1,2\}$. Furthermore, let us assume that the system is in a superposition state $|\Psi\rangle = c_1|\psi_1\rangle + c_2|\psi_2\rangle$. We want to measure a dynamical quantity β to which corresponds a hermitian operator B. The operator B satisfies the eigenvalue equation $B|u_j\rangle = b_j|u_j\rangle$, where $j\in\{1,2\}$ and $b_1\neq b_2$.
 - a) What are the possible results of the measurement?
 - b) What are the probabilities to get these results?