Instructions on how to solve exercise 14 problem 2

Consider a dipole transition in the Lyman series. Show that the matrix element
of the z component of the dipole operator is (when we omit the elementary
charge)
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Instructions

For a general discussion on the Lyman series, see e.g. Wikipedia, Lyman series.
What comes to the problem at hand, one begins by briefly explaining why the
matrix element (100|2|%nim) vanishes if [ # 1 or m # 0. Then one takes the
matrix element (1100|2|¥n10) under scrutiny. One obtains
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One calculates the angular integral and substitutes the associated Laguerre
polynomial of order one. One obtains
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A certain change of variables yields
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associated Laguerre polynomials by employing the generating function. After

that, by employing a recurrence relation, one writes the factor tL3_,(t) as a
linear combination of the associated Laguerre polynomials. The integral can
now be calculated by employing the orthogonality property of the associated
Laguerre polynomials.
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