
Instructions on how to solve exercise 14 problem 2

Consider a dipole transition in the Lyman series. Show that the matrix element
of the z component of the dipole operator is (when we omit the elementary
charge)

〈ψ100|z|ψn10〉 =
16√

3
n7/2(n− 1)n−5/2(n+ 1)−n−5/2.

Instructions

For a general discussion on the Lyman series, see e.g. Wikipedia, Lyman series.
What comes to the problem at hand, one begins by briefly explaining why the
matrix element 〈ψ100|z|ψnlm〉 vanishes if l 6= 1 or m 6= 0. Then one takes the
matrix element 〈ψ100|z|ψn10〉 under scrutiny. One obtains

〈ψ100|z|ψn10〉 = N10Nn1
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One calculates the angular integral and substitutes the associated Laguerre
polynomial of order one. One obtains

〈ψ100|z|ψn10〉 =
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∫ ∞
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A certain change of variables yields

〈ψ100|z|ψn10〉 = NI

∫ ∞
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e−tt3e−
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where NI = N10Nn1√
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(
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)5. One expresses the factor e−
n−1

2 t in terms of the
associated Laguerre polynomials by employing the generating function. After
that, by employing a recurrence relation, one writes the factor tL3

n−2(t) as a
linear combination of the associated Laguerre polynomials. The integral can
now be calculated by employing the orthogonality property of the associated
Laguerre polynomials.


