
763312A QUANTUM MECHANICS I Exercise 12 Autumn 2008

1. Derive the dipole selection rules ∆l = ±1, ∆m = ±1 by calculating
the matrix elements of the x and y components of the dipole operator
D = er. You may need the recurrence relation (2` + 1)
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2. Consider a one-dimensional anharmonic oscillator. Let the perturbation
be of the form H1 = σ~ωx3. Calculate the matrix elements
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3. Consider an anharmonic oscillator in which the perturbation is of the
form H1 = σ~ωx3. First, show that the energy levels are (to the second
order in σ)
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Then, show that the energy difference
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Finally, determine the energy eigenfunctions to the first order in σ.
See the lecture notes section 17.2.3.

4. Calculate the van der Waals constant
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5. Consider a system composed of noninteracting spin–1
2

fermions in a
three-dimensional harmonic oscillator potential. First, describe the shell
structure of the system. Then, suppose that there are a total of 100
particles in the system and that all the energy states of the system are
filled up to energy EF = 1 Ry. Estimate the strength of the potential
V (r) = 1

2
mω2r2 by calculating the value of ~ω.

6. Consider a hydrogen, a helium and a lithium atom and assume that
there is no Coulomb interaction between the electrons. Calculate the
binding energies of the outmost electrons. Does this model give the cor-
rect shell structure for these atoms, or for heavier atoms?
Since we assume that there is no Coulomb interaction between the elect-
rons, the shell structures of all the three atoms can be solved in a similar
manner.


