1. Show that in the xz-plane the curve

$$r = |Y_1^1(\theta, 0)|$$

represents two circles.

2. Show that the spherical harmonics $Y_m^l(\theta, \varphi)$ can be written in terms of the harmonic polynomials as

a)
$$Y_0^0(\theta, \varphi) = \sqrt{\frac{1}{4\pi}}$$
.
b) $rY_0^1(\theta, \varphi) = \sqrt{\frac{3}{4\pi}} z$,
 $rY_{\pm 1}^1(\theta, \varphi) = \mp \sqrt{\frac{3}{8\pi}} (x \pm iy)$.
c) $r^2 Y_0^2(\theta, \varphi) = \sqrt{\frac{5}{16\pi}} (2z^2 - x^2 - y^2)$,
 $r^2 Y_{\pm 1}^2(\theta, \varphi) = \mp \sqrt{\frac{15}{8\pi}} z(x \pm iy)$,
 $r^2 Y_{\pm 2}^2(\theta, \varphi) = \sqrt{\frac{15}{32\pi}} (x \pm iy)^2$.

- 3. Construct the N = 2 states for an isotropic harmonic oscillator in both Cartesian and spherical coordinates.
- 4. Write the harmonic oscillator energy eigenfunction $\psi_{2,2,0}(r,\theta,\varphi)$ as a linear combination of the harmonic oscillator energy eigenfunctions $\psi_{n_x n_y n_z}(x, y, z)$.
- 5. Let us assume that a particle experiences the potential

$$V(x,y,z) = \frac{1}{2}m\Big[\omega_x^2x^2 + \omega_y^2y^2 + \omega_z^2z^2\Big]$$

Determine the energy levels. After that, pick a couple of levels and determine their degeneracies when $\omega_x = \omega_y = \omega_0$ and $\omega_z = \omega_0 + \Delta$ (i.e. when ω_x and ω_y are equal and ω_z differs from them).