
Translations
The previous discrete spectrum state vector formalism
can be generalized also to continuos cases, in practice, by
replacing

• summations with integrations

• Kronecker’s δ-function with Dirac’s δ-function.

A typical continuous case is the measurement of position:

• the operator x corresponding to the measurement of
the x-coordinate of the position is Hermitean,

• the eigenvalues {x′} of x are real,

• the eigenvectors {|x′〉} form a complete basis.

So, we have

x|x′〉 = x′|x′〉

1 =
∫ ∞

−∞
dx′ |x′〉〈x′|

|α〉 =
∫ ∞

−∞
dx′ |x′〉〈x′|α〉,

where |α〉 is an arbitrary state vector. The quantity
〈x′|α〉 is called a wave function and is usually written
down using the function notation

〈x′|α〉 = ψα(x′).

Obviously, looking at the expansion

|α〉 =
∫ ∞

−∞
dx′ |x′〉〈x′|α〉,

the quantity |ψα(x′)|2dx′ can be interpreted according to
the postulate 3 as the probability for the state being
localized in the neighborhood (x′, x′ + dx′) of the point x′.
The position can be generalized to three dimension. We
denote by |x′〉 the simultaneous eigenvector of the
operators x, y and z, i.e.

|x′〉 ≡ |x′, y′, z′〉
x|x′〉 = x′|x′〉, y|x′〉 = y′|x′〉, z|x′〉 = z′|x′〉.

The exsistence of the common eigenvector requires
commutativity of the corresponding operators:

[xi, xj ] = 0.

Let us suppose that the state of the system is localized at
the point x′. We consider an operation which transforms
this state to another state, this time localized at the point
x′ + dx′, all other observables keeping their values. This
operation is called an infinitesimal translation. The
corresponding operator is denoted by T (dx′):

T (dx′)|x′〉 = |x′ + dx′〉.

The state vector on the right hand side is again an
eigenstate of the position operator. Quite obviously, the
vector |x′〉 is not an eigenstate of the operator T (dx′).

The effect of an infinitesimal translation on an arbitrary
state can be seen by expanding it using position
eigenstates:

|α〉 −→ T (dx′′)|α〉 = T (dx′′)
∫
d3x′ |x′〉〈x′|α〉

=
∫
d3x′ |x′ + dx′′〉〈x′|α〉

=
∫
d3x′ |x′〉〈x′ − dx′′|α〉,

because x′ is an ordinary integration variable.
To construct T (dx′) explicitely we need extra constraints:

1. it is natural to require that it preserves the
normalization (i.e. the conservation of probability) of
the state vectors:

〈α|α〉 = 〈α|T †(dx′)T (dx′)|α〉.

This is satisfied if T (dx′)is unitary, i.e.

T †(dx′)T (dx′) = 1.

2. we require that two consecutive translations are
equivalent to a single combined transformation:

T (dx′)T (dx′′) = T (dx′ + dx′′).

3. the translation to the opposite direction is equivalent
to the inverse of the original translation:

T (−dx′) = T −1(dx′).

4. we end up with the identity operator when dx′ → 0:

lim
dx′→0

T (dx′) = 1.

It is easy to see that the operator

T (dx′) = 1− iK · dx′,

where the components Kx, Ky and Kz of the vector K
are Hermitean operators, satisfies all four conditions.
Using the definition

T (dx′)|x′〉 = |x′ + dx′〉

we can show that

[x, T (dx′)] = dx′.

Substituting the explicit reprersentation

T (dx′) = 1− iK · dx′

it is now easy to prove the commutation relation

[xi,Kj ] = iδij .

The equations

T (dx′) = 1− iK · dx′

T (dx′)|x′〉 = |x′ + dx′〉



can be considered as the definition of K.
One would expect the operator K to have something to
do with the momentum. It is, however, not quite the
momentum, because its dimension is 1/length. Writing

p = h̄K

we get an operator p, with dimension of momentum. We
take this as the definition of the momemtum. The
commutation relation

[xi,Kj ] = iδij

can now be written in a familiar form like

[xi, pj ] = ih̄δij .

Finite translations

Consider translation of the distance ∆x′ along the x-axis:

T (∆x′x̂)|x′〉 = |x′ + ∆x′x̂〉.

We construct this translation combining infinitesimal
translations of distance ∆x′/N letting N →∞:

T (∆x′x̂) = lim
N→∞

(
1− ipx∆x′

Nh̄

)N

= exp
(
− ipx∆x′

h̄

)
.

It is relatively easy to show that the translation operators
satisfy

[T (∆y′ŷ), T (∆x′x̂)] = 0,

so it follows that
[py, px] = 0.

Generally
[pi, pj ] = 0.

This commutation relation tells that it is possible to
construct a state vector which is a simultaneous
eigenvector of all components of the momentum operator,
i.e. there exists a vector

|p′〉 ≡ |p′x, p′y, p′z〉,

so that

px|p′〉 = p′x|p′〉, py|p′〉 = p′y|p′〉, pz|p′〉 = p′z|p′〉.

The effect of the translation T (dx′) on an eigenstate of
the momentum operator is

T (dx′)|p′〉 =
(

1− ip · dx′

h̄

)
|p′〉 =

(
1− ip′ · dx′

h̄

)
|p′〉.

The state |p′〉 is thus an eigenstate of T (dx′): a result,
which we could have predicted because

[p, T (dx′)] = 0.

Note The eigenvalues of T (dx′) are complex because it is
not Hermitean.

So, we have derived the canonical commutation relations
or fundamental commutation relations

[xi, xj ] = 0, [pi, pj ] = 0, [xi, pj ] = ih̄δij .

Recall, that the projection of the state |α〉 along the state
vector |x′〉 was called the wave function and was denoted
like ψα(x′). Since the vectors |x′〉 form a complete basis
the scalar product between the states |α〉 and |β〉 can be
written with the help of the wave functions as

〈β|α〉 =
∫
dx′ 〈β|x′〉〈x′|α〉 =

∫
dx′ ψ∗β(x′)ψα(x′),

i.e. 〈β|α〉 tells how much the wave functions overlap. If
|a′〉 is an eigenstate of A we define the corresponding
eigenfunction ua′(x′) like

ua′(x′) = 〈x′|a′〉.

An arbitrary wave function ψα(x′) can be expanded using
eigenfunctions as

ψα(x′) =
∑
a′

ca′ua′(x′).

The matrix element 〈β|A|α〉 of an operator A can also be
expressed with the help of eigenfunctions like

〈β|A|α〉 =
∫
dx′

∫
dx′′ 〈β|x′〉〈x′|A|x′′〉〈x′′|α〉

=
∫
dx′

∫
dx′′ ψ∗β(x′)〈x′|A|x′′〉ψα(x′′).

To apply this formula we have to evaluate the matrix
elements 〈x′|A|x′′〉, which in general are functions of the
two variables x′ and x′′. When A depends only on the
position operator x,

A = f(x),

the calculations are much simpler:

〈β|f(x)|α〉 =
∫
dx′ ψ∗β(x′)f(x′)ψα(x′).

Note f(x) on the left hand side is an operator while f(x′)
on the right hand side is an ordinary number.

Momentum operator p in position basis {|x′〉}
For simplicity we consider the one dimensional case.
According to the equation

T (dx′′)|α〉 = T (dx′′)
∫
d3x′ |x′〉〈x′|α〉

=
∫
d3x′ |x′ + dx′′〉〈x′|α〉

=
∫
d3x′ |x′〉〈x′ − dx′′|α〉

we can write(
1− ip dx′′

h̄

)
|α〉



=
∫
dx′ T (dx′′)|x′〉〈x′|α〉

=
∫
dx′ |x′〉〈x′ − dx′′|α〉

=
∫
dx′ |x′〉

(
〈x′|α〉 − dx′′

∂

∂x′
〈x′|α〉

)
.

In the last step we have expanded 〈x′ − dx′′|α〉 as Taylor
series. Comparing both sides of the equation we see that

p|α〉 =
∫
dx′ |x′〉

(
−ih̄ ∂

∂x′
〈x′|α〉

)
,

or, taking scalar product with a position eigenstate on
both sides,

〈x′|p|α〉 = −ih̄ ∂

∂x′
〈x′|α〉.

In particular, if we choose |α〉 = |x′〉 we get

〈x′|p|x′′〉 = −ih̄ ∂

∂x′
δ(x′ − x′′).

Taking scalar product with an arbitrary state vector |β〉
on both sides of

p|α〉 =
∫
dx′ |x′〉

(
−ih̄ ∂

∂x′
〈x′|α〉

)
we get the important relation

〈β|p|α〉 =
∫
dx′ψ∗β(x′)

(
−ih̄ ∂

∂x′

)
ψα(x′).

Just like the position eigenvalues also the momentum
eigenvalues p′ comprise a continuum. Analogically we can
define the momentum space wave function as

〈p′|α〉 = φα(p′).

We can move between the momentum and configuration
space representations with help of the relations

ψα(x′) = 〈x′|α〉 =
∫
dp′ 〈x′|p′〉〈p′|α〉

φα(p′) = 〈p′|α〉 =
∫
dx′ 〈p′|x′〉〈x′|α〉.

The transformation function 〈x′|p′〉 can be evaluated by
substituting a momentum eigenvector |p′〉 for |α〉 into

〈x′|p|α〉 = −ih̄ ∂

∂x′
〈x′|α〉.

Then
〈x′|p|p′〉 = p′〈x′|p′〉 = −ih̄ ∂

∂x′
〈x′|p′〉.

The solution of this differential equation is

〈x′|p′〉 = C exp
(
ip′x′

h̄

)
,

where the normalization factor C can be determined from
the identity

〈x′|x′′〉 =
∫
dp′ 〈x′|p′〉〈p′|x′′〉.

Here the left hand side is simply δ(x′ − x′′) and the
integration of the left hand side gives 2πh̄|C|2δ(x′ − x′′).
Thus the transformation function is

〈x′|p′〉 =
1√
2πh̄

exp
(
ip′x′

h̄

)
,

and the relations

ψα(x′) = 〈x′|α〉 =
∫
dp′ 〈x′|p′〉〈p′|α〉

φα(p′) = 〈p′|α〉 =
∫
dx′ 〈p′|x′〉〈x′|α〉.

can be written as familiar Fourier transforms

ψα(x′) =
[

1√
2πh̄

] ∫
dp′ exp

(
ip′x′

h̄

)
φα(p′)

φα(p′) =
[

1√
2πh̄

] ∫
dx′ exp

(
− ip

′x′

h̄

)
ψα(x′).


