Quantum statistics

Density operator:

$$\rho \equiv \sum_{i} w_i |\alpha_i\rangle \langle \alpha_i|$$

is

• Hermitean:

$$\rho^{\dagger} = \rho$$

• normalized:

$$tr \rho = 1$$
.

Density matrix:

$$\langle b''|\rho|b'\rangle = \sum_{i} w_i \langle b''|\alpha_i\rangle \langle \alpha_i|b'\rangle.$$

Ensemble average:

$$[A] = \sum_{b'} \sum_{b''} \langle b'' | \rho | b' \rangle \langle b' | A | b'' \rangle$$
$$= \operatorname{tr}(\rho A).$$

Dynamics

$$|\alpha_i\rangle = |\alpha_i; t_0\rangle \longrightarrow |\alpha_i, t_0; t\rangle$$

We suppose that the occupation of states is conserved, i.e.

$$w_i = \text{constant}.$$

Now

$$\rho(t) = \sum_{i} w_i |\alpha_i, t_0; t\rangle \langle \alpha_i, t_0; t|,$$

so

$$i\hbar \frac{\partial \rho}{\partial t} = \sum_{i} w_{i} \left(i\hbar \frac{\partial}{\partial t} |\alpha_{i}, t_{0}; t \rangle \right) \langle \alpha_{i}, t_{0}; t |$$

$$+ \sum_{i} w_{i} |\alpha_{i}, t_{0}; t \rangle \left(-i\hbar \frac{\partial}{\partial t} |\alpha_{i}, t_{0}; t \rangle \right)^{\dagger}$$

$$= H\rho - \rho H = -[\rho, H].$$

Like Heisenberg's equation of motion, but wrong sign! OK, since ρ is not an observable.

Continuum

Example:

$$[A] = \int d^3x' \int d^3x'' \langle \boldsymbol{x}''|\rho|\boldsymbol{x}'\rangle\langle \boldsymbol{x}'|A|\boldsymbol{x}''\rangle.$$

Here the density matrix is

$$\langle \boldsymbol{x}''|\rho|\boldsymbol{x}'\rangle = \langle \boldsymbol{x}''|\left(\sum_{i}w_{i}|\alpha_{i}\rangle\langle\alpha_{i}|\right)|\boldsymbol{x}'\rangle$$

$$= \sum_{i}w_{i}\psi_{i}(\boldsymbol{x}'')\psi_{i}^{*}(\boldsymbol{x}').$$

Note

$$\langle \boldsymbol{x}'|\rho|\boldsymbol{x}'\rangle = \sum_{i} w_{i}|\psi_{i}(\boldsymbol{x}')|^{2}.$$

Thermodynamics

We define

$$\sigma = -\operatorname{tr}(\rho \ln \rho).$$

One can show that

• for a completely stochastic ensemble

$$\sigma = \ln N$$
,

when N is the number of the independent states in the system.

• for a pure ensemble

$$\sigma = 0$$
.

Hence σ measures disorder \Longrightarrow it has something to do with the entropy.

The entropy is defined by

$$S = k\sigma$$
.

In a thermodynamical equilibrium

$$\frac{\partial \rho}{\partial t} = 0,$$

SO

$$[\rho, H] = 0$$

and the operators ρ and H have common eigenstates $|k\rangle$:

$$H|k\rangle = E_k|k\rangle$$

$$\rho|k\rangle = w_k|k\rangle.$$

Using these eigenstates the density matrix can be represented as

$$\rho = \sum_{k} w_k |k\rangle\langle k|$$

and

$$\sigma = -\sum_{k} \rho_{kk} \ln \rho_{kk},$$

where the diagonal elements of the density matrix are

$$\rho_{kk} = w_k.$$

In the equilibrium the entropy is at maximum. We maximize σ under conditions

- $U = [H] = \operatorname{tr} \rho H = \sum_{k} \rho_{kk} E_k$.
- $tr \rho = 1$.

Hence

$$\delta\sigma = -\sum_{k} \delta\rho_{kk} (\ln \rho_{kk} + 1) = 0$$

$$\delta[H] = \sum_{k} \delta\rho_{kk} E_k = 0$$

$$\delta(\operatorname{tr}\rho) = \sum_{k} \delta\rho_{kk} = 0.$$

With the help of Lagrange multipliers we get

$$\sum_{k} \delta \rho_{kk} \left[(\ln \rho_{kk} + 1) + \beta E_k + \gamma \right] = 0,$$

SO

$$\rho_{kk} = e^{-\beta E_k - \gamma - 1}.$$

The normalization $(tr \rho = 1)$ gives

$$\rho_{kk} = \frac{e^{-\beta E_k}}{\displaystyle\sum_{l}^{N} e^{-\beta E_l}} \quad \text{(canonical ensemble)}.$$

It turns out that

$$\beta = \frac{1}{k_B T},$$

where T is the thermodynamical temperature and k_B the Boltzmann constant.

In statistical mechanics we define the canonical partition function Z:

$$Z = \operatorname{tr} e^{-\beta H} = \sum_{k}^{N} e^{-\beta E_k}.$$

Now

$$\rho = \frac{e^{-\beta H}}{Z}.$$

The ensemble average can be written as

$$[A] = \operatorname{tr} \rho A = \frac{\operatorname{tr} \left(e^{-\beta H} A \right)}{Z}$$
$$= \frac{\left[\sum_{k=1}^{N} \langle k | A | k \rangle e^{-\beta E_k} \right]}{\sum_{k=1}^{N} e^{-\beta E_k}}.$$

In particular we have

$$U = [H] = \frac{\sum_{k}^{N} E_k e^{-\beta E_k}}{\sum_{k}^{N} e^{-\beta E_k}}$$
$$= -\frac{\partial}{\partial \beta} (\ln Z).$$

Example Electrons in a magnetic field parallel to z axis. In the basis $\{|S_z;\uparrow\rangle, |S_z;\downarrow\rangle\}$ of the eigenstates of the Hamiltonian

$$H = \omega_a S$$

we have

$$\rho \mapsto \frac{\left(\begin{array}{cc} e^{-\beta\hbar\omega_c/2} & 0 \\ 0 & e^{\beta\hbar\omega_c/2} \end{array}\right)}{Z},$$

where

$$Z = e^{-\beta\hbar\omega_c/2} + e^{\beta\hbar\omega_c/2}.$$

For example the ensemble averages are

$$[S_x] = [S_y] = 0,$$

$$[S_z] = -\left(\frac{\hbar}{2}\right) \tanh\left(\frac{\beta\hbar\omega_c}{2}\right).$$