Quantum statistics
Density operator:
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Density matrix:
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Dynamics
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We suppose that the occupation of states is conserved, i.e.

w; = constant.
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Like Heisenberg’s equation of motion, but wrong sign!
OK, since p is not an observable.

Continuum
Example:
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Here the density matrix is
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Thermodynamics

We define
o= —tr(plnp).

One can show that

e for a completely stochastic ensemble
oc=1InN,

when N is the number of the independent states in
the system.

e for a pure ensemble

oc=0.

Hence o measures disorder = it has something to do
with the entropy.
The entropy is defined by

S = ko.

In a thermodynamical equilibrium

Ip

o =Y

SO
[p,H] =0

and the operators p and H have common eigenstates |k):
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Using these eigenstates the density matrix can be
represented as
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and

o= —Zpkklnpkm
k

where the diagonal elements of the density matrix are
Pkk = Wk-

In the equilibrium the entropy is at maximum.
We maximize o under conditions

o U= [H] = trpH = Zk pkkEk-
o trp=1.
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With the help of Lagrange multipliers we get

ZCSPM@ [(Inprr + 1)+ BEL +~] =0,
%

S0
Pk = e PEL——1
The normalization (trp = 1) gives
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It turns out that

Prk = (canonical ensemble).
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where T is the thermodynamical temperature and kg the
Boltzmann constant.
In statistical mechanics we define the canonical partition

function Z:
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The ensemble average can be written as
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In particular we have
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Example Electrons in a magnetic field parallel to z axis.
In the basis {|S.;1),[S; 1)} of the eigenstates of the
Hamiltonian

H=w.S,
we have
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For example the ensemble averages are

[S.] = [Sy] =0,

5] = (Z)tanh(ﬁh;c).




